Version-1 (Jan-Feb 2016)
- Citation
- Abstract
- Reference
- Full PDF
| Paper Type | : | Research Paper |
| Title | : | Very Low Power Sigma Delta Modulator for Biomedical Applications |
| Country | : | India |
| Authors | : | R.W.Jasutkar || P.R.Bajaj || A.Y.Deshmukh |
ABSTRACT: This paper discusses the design of picowatt power Sigma-delta modulator with genetic algorithm (GA) based oversampling technology. This Sigma-delta modulator design is paid special attention to its low power application of portable electronic system in digitizing biomedical signals such as Electro-cardiogram (ECG), Electroencephalogram (EEG) etc. [1]. A high performance, low power second order Sigma-delta modulator is more useful in analog signal acquisition system. Using Sigma-delta modulator can reduce the power consumption and cost in the whole system.
[1]. Joseph JC and John MB: Introduction to Biomedical Equipment Technology. In: Prentice Hall. Upper Saddle River, 2001.
[2]. Guessab S, Benabes P and Kielbasa R: A passive delta-sigma modulator for low-power applications. IEEE Circuits and Systems 2004; 3: 295-298
[3]. Leung SW and Zhang YT: Digitization of electrocardiogram (ECG) signals using delta-sigma modulation. IEEE Engineering in Medicine and Biology Society 1998; 4: 1964 -1966.
[4]. Samid L, Manoli Y: Micro Power Continuous-Time Sigma Delta Modulator. Conference on European Solid-State Circuits 2003; 165-168
[5]. Norsworthy SR, Schreier R, and Temes GC: Deltasigma converters: theory, design and simulation.In: IEEE Press, New York, 1997; 223-234.
[6]. Fujisaka H, Kurata R, Sakamoto M, Morisue M: Bit-stream signal processing and its application to communication systems. IEE Circuits, Devices and Systems 2002; 149: 159-166.
- Citation
- Abstract
- Reference
- Full PDF
| Paper Type | : | Research Paper |
| Title | : | Enhanced Multimodality Image Registration Based On Mutual Information |
| Country | : | India |
| Authors | : | M. V. Sruthi || Dr V.Usha shree || Dr.K.Soundararajan |
ABSTRACT: Different modalities can be achieved by the maximization of suitable statistical similarity measures within a given class of geometric transformations . The registration functions are less sensitive to low sampling resolution, do not contain incorrect global maxima which are sometimes found in the mutual information. This paper proposes a novel and straightforward multimodal image registration method based on mutual information, in which two matching criteria are used. It has been extensively shown that metrics based on the evaluation of mutual information are well suited for overcoming the difficulties of multi-modality registration.
Keywords: multimodalities, mutual information, metric
[1] J. B. A. Maintz and M. A. Viergever, "A survey of medical image regist rat ion," Medical Image Analysis, vol. 2, no. 1, pp. 1–36,
1998.
[2] W. M. Wells III, P. Viola, H. Atsumi, S. Nakajima, and R. Kikinis, "Mult imodal volume regist rat ion by maximizat ion of mut ual
informat ion," Medical Image Analysis, vol. 1, no. 1, pp. 35–51, 1996.
[3] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suet ens, "Mult imodalit y image regist rat ion by maximizat ion of
mut ual informat ion," IEEE Transact ions on Medical Imaging, vol. 16, no. 2, pp. 187–198,1997.
[4]. P . A. Van Den Elsen, E. J. D. Pol and M. A. Viergever, "Medical image mat ching: a review with classificat ion", IEEE Engineering
in medicine and biology, 12(1):1993,26-39
- Citation
- Abstract
- Reference
- Full PDF
| Paper Type | : | Research Paper |
| Title | : | L'indexation des images à base des extrema des IMFs de la décomposition BEMD en utilisant les fonctions radiales de base à support compact |
| Country | : | Marocco |
| Authors | : | Tarek ZOUGARI || Mohammed ARRAZAKI |
ABSTRACT: Dans cet article, nous allons accélérer l'algorithmed'indexation et de recherche d'images par le contenu basée sur la décomposition d'image en ses IMFs (fonctions modales intrinsèques) en utilisant les fonctions radiales de base à support compact (CSRBF) comme fonctions d'interpolation à la place des fonctions radiales de base globales.En général l'extraction de vecteur descripteurbasée sur la décomposition d'image en ses IMFss'appuie sur une corrélation spatiale des extrema de chaque IMF. L'efficacité de la méthode proposée est testée sur la base Columbia qui contient 1440 images décrivant 20 objets différents,constitués par des images avec différentes orientations et transformations d'échelle. Mots-clés: Recherche d'image, vecteur descripteur, BEMD, fonction CSRBF, corrélation spatiale
[1]. J.C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang, Ph. Bunel. Image analysis by bidimensionalempirical mode decomposition. Image and Vision Computing Journal, 2003.
[2]. A. Sabri, Décomposition Multimodale Empirique Bidimensionnelle : Améliorations et Applications,doctorat national UFR : Automatique et analyse des systèmes, le 13 juin 2009.
[3]. ASabri, M. Karoud, M. Tairi, H. et A. Aarab. An efficient image retrievalapproachbased on spatial correlation of the extrema points of the IMFs. International Review on Computer and Software (I.RE.CO.S), ISSN: 1828- 6003, Vol.3 N.6, November 2008, P: 597-604
[4]. B S. Morse, T S. Yoo, P Rheingans, D T. Chen, K. R. Subramanian. Interpolating Implicit Surfaces From Scattered Surface Data Using Compactly Supported Radial Basis Function. Department of Computer Science, Brigham Young University, 2005.