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Abstract: 
Monthly flow data for the Noa-Dehing River, covering a period of 19 years, are available; however, they are 

inadequate for optimising the proposed 71 MW hydropower project. To address this limitation, additional flow 

data were generated using an Artificial Neural Network (ANN) and deep learning model. Various algorithms 

have been employed to develop ANN models. Among these, the Conjugate Gradient (CG) algorithm yields the 

most favourable results. In contrast, the commonly used Gradient Descent with Momentum Backpropagation 

(GDMB) algorithm proved to be less effective, owing to its requirement for a longer duration and a greater 

number of iterations during the network's training phase. Although the Levenberg-Marquardt (LM) algorithm 

demonstrated high training efficiency, it failed to accurately predict high flows. Similarly, the Gradient Descent 

with Momentum and Adaptive Learning algorithms did not effectively predict high flows despite achieving the 

highest R value among the ANN algorithms. Consequently, a novel approach, the long short-term memory (LSTM) 

deep learning model, was employed to forecast the flows. The forecast was evaluated using the root-mean-square 

error (RMSE), mean absolute error (MAE), and correlation coefficient (R). The LSTM model yielded RMSE, 

MAE, and R-values of 55, 42, and 0.90, respectively. These assessment values were superior to those obtained 

using the ANN algorithms. 

Key Word: Artificial Neural Network, Deep Learning, LSTM, River Flow Prediction, Hydropower Project, 

Streamflow Prediction. 
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I. Introduction 
Approximately 70 years ago, there was a surge in interest in artificial neural networks driven by the 

aspiration to comprehend and replicate the functions of the human brain. In the past three decades, this field has 

experienced a significant revival owing to advances in algorithms and the availability of powerful computing 

resources. Extensive research has explored the potential of artificial neural networks (ANNs) as computational 

tools for deriving, establishing, and evaluating maps from multidimensional input spaces to other spaces. This 

potential has been made feasible by advancements in estimation methods with self-organising properties and 

parallel information systems [1] [2] [3]. These developments have led to widespread utilisation of ANNs over the 

last 30 years. Additionally, there was an introduction of a new algorithm called backpropagation, designed for 

networks consisting of neuron-like units which sparked a considerable increase in interest in this computational 

approach. The weights of the connections are adjusted through iterative minimisation of the difference between 

the output and target vectors in the neural networks [4] [5] [6]. These developments have contributed to the 

extensive adoption of ANNs across various research fields through the implementation of the backpropagation 

rule within parallel-distributed information-processing frameworks. Consequently, ANNs have found 

applications in a wide range of areas, such as finance, cybernetics, neuroscience, physics, biochemistry, 

mechanical engineering, computer technology, medicine, robotics, and electronics. Additionally, during the late 

1980s, they were widely utilised to comprehend dynamic and nonlinear relationships in machine learning [7] [8]. 

The architecture of an ANNs is influenced by the working of the human brain [9]. Although they do not 

match the complexity of the brain, there are two main parallels between biological neural networks and ANNs. 

First, both consist of basic, interconnected computing components. Second, the role of the network is determined 

by the relationships between neurones [10] [11] [12]. ANNs operate as parallel-distributed processing networks 

and share basic properties with biological neural systems [13] [14]. Neurones receive a host of signals. Each input 

is assigned a weighting that affects the result of the input. This is similar to the various synaptic capacities of the 

neurones in the human brain. A few inputs are much more appropriate than others in the way they produce an 

output. Weights are functional parameters within the system that determine the strength of an input parameter. 

The resultant signal of the neuron is generated by the addition block, which approximately corresponds to the 

biological cell body and algebraically sums all inputs after multiplying by the weights [15] [16]. Since the early 
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1990s, ANNs have been used in various hydrology-related applications, including streamflow prediction, rainfall-

runoff modelling, water quality analysis, water management strategies, precipitation forecasting, and groundwater 

modelling [17] [18] [19] [20]. 

Streamflow prediction is essential for various timeframes, such as short-term (hours) flood management 

and longer terms (days, months) for the efficient functioning of dams in hydropower generation and irrigation. 

Reliable flow forecasts enable project managers to effectively allocate water resources according to different user 

needs, including agriculture, energy production, domestic use, and ecological requirements [21] [22] [23] [24] 

[25] [26]. Streamflow forecasting becomes particularly important when multiple users rely on the same reservoir, 

particularly for flood control purposes. Additionally, flow forecasting includes information on sediment transport 

volume [27]. 

In recent years, artificial neural networks (ANNs) have been increasingly utilised in the modelling of 

water resource systems, presenting an effective alternative to traditional methods [13]. Rainfall-runoff ANN 

models have also been widely used. Researchers have examined the effectiveness of this modelling approach for 

predicting streamflow over a 1-week period. Many researchers have employed backpropagation algorithms to 

estimate river flow on an hourly basis. Some researchers have constructed ANN models for forecasting monthly 

average flow rates, whereas others have used various ANN algorithms capable of predicting both shorter- and 

longer-duration flows [28] [29]. Some researchers have assessed the accuracy of ANNs in groundwater prediction 

and utilised Levenberg-Marquardt and back-propagation algorithms to train their ANN models [30]. 

Artificial Neural Network (ANN) models have been employed using a widely utilised back-propagation 

(BP) algorithm for daily forecasting. The American Society of Civil Engineers (ASCE) Task Committee 

highlighted the principles and applications of ANNs in hydrology and concluded that ANNs could serve as 

alternative modelling methods, meriting further investigation. It has been noted that the back-propagation 

algorithm has been applied in approximately 90% of hydrology cases. [31]. 

 

 
Fig.1. Typical Artificial Neural Network Configuration 

 

Nacar et al. examined three different algorithms for predicting streamflow several days in advance and 

concluded that the Conjugate Gradient algorithm exhibited superior prediction capabilities compared to the 

backpropagation and Levenberg-Marquardt algorithms [32]. Mutlu et al.  assessed the use of ANN models for 

daily flow predictions at various measurement sites in the Eucha Watershed using a multilayer perceptron and 

radial neural network, with both models demonstrating satisfactory performance. The MLP model performed 

better than the RBFNN model did [33]. Hu et al. employed Long-Short Term Memory deep learning model for 

forecasting time-series data and compared its prediction accuracy with Support Vector Regression and Multilayer 

Perceptions, concluding that LSTM showed better performance [34]. 

In Figure 1, we can see the standard three-layer feed-forward arrangement of the Artificial Neural 

Network. The network comprises three layers: the initial input layer, hidden layer, and output layer. Each layer 

contains multiple neurones chosen based on the nature and complexity of the problem to be addressed. Neurones 

serve as fundamental computational units of a neural network. They incorporated weights, bias, summation 

points, and output transfer functions. Neurones within the same layer are not interconnected, but are connected to 

the previous or corresponding layers, as depicted in the diagram. Each connection is assigned specific weights 

which interact with inputs from the preceding layers through multiplication, resulting in aggregated products that 

ultimately produce solutions after undergoing an output transfer mechanism. The Sigmoid function is one of the 

most commonly employed transfer functions because of its S-shaped monotonic behaviour, which maps numbers 

onto a finite interval (-1, +1) within the range (-∞, +∞). The yn output from neuron n is determined by Eq. 1. 

𝑦𝑛 = 𝑓(∑ 𝑤𝑛𝑚𝑥𝑚 + 𝜃𝑛) =
1

1+𝑒−(∑ 𝑤𝑛𝑚𝑥𝑚+𝜃𝑛)                                    (1) 
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Where 𝜃𝑛= bias in the nth neuron in a layer; 𝑤𝑛𝑚= weight of the connection joining the nth neuron in a 

layer with the mth neuron in the previous layer; and 𝑥𝑚= value of the mth neuron in the previous layer. 

Initially, artificial neural networks were trained using input and target data and then tested with a portion 

of the data not used for training. It is important to note that, as ANN are utilised for predicting future outcomes, 

it is crucial to ensure that the network is capable of generalisation. Sufficient data play an essential role in 

enhancing network performance during training. The number of neurones in the hidden layer is another key aspect 

of the ANN. Insufficient neurones may lead to incomplete learning of the underlying physical mechanisms 

through the network, whereas an excessive number could result in overfitting and hinder its capability for accurate 

forecasting [6]. 

 

II. Material And Methods 
Training algorithms used in neural networks 

Although the back-propagation algorithm is commonly utilised in hydrology, it may not yield optimal 

results and often exhibits slow performance compared to other algorithms. For comparison, both the original and 

modified versions were included. The training algorithms employed include backpropagation with momentum, 

adaptive learning, conjugate gradient, and Levenberg-Marquardt algorithm. Each of these algorithms has its own 

strengths and weaknesses, leading to their use in the search for the most effective algorithm in this study. 

 

The aim of training is to minimise the mean square error (MSE), defined by Eq. 2: 

𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 (𝐸)  =   
1

𝑘
∑ (𝑇𝑎𝑟𝑔𝑒𝑡𝑚 − 𝑂𝑢𝑡𝑝𝑢𝑡𝑚)2𝑘

𝑚=1                                (2) 

The letter k denotes the total count of the output nodes. The next section introduces the training 

algorithms. These algorithms are designed to minimise the mean square error in each iteration by adjusting the 

weights and biases until they satisfy the output target. Upon completion of this process, the model can predict 

future values. 

 

Backpropagation with momentum 

Backpropagation with momentum is commonly employed for training neural networks. This technique 

uses gradient descent to minimise the error function, which is typically represented by the mean squared error 
[35]. The input vector of the designated dataset, organised as training data, undergoes forward propagation 

through the network. Subsequently, after processing the input vector, the ANN yielded the results. The mean 

square error was then computed based on these results and compared with the target values from the dataset. 

Following this computation, the resulting error is propagated backwards through the network, and adjustments 

are made to the weights connecting the neurones using Eq. 3. 

∆𝑤𝑚𝑛(𝑝) = −𝜀 ∗
𝜕𝐸

𝜕𝑤𝑚𝑛
 + ∝ ∗ ∆𝑤𝑚𝑛(𝑝 − 1)                                     (3) 

Where ∆𝑤𝑚𝑛(𝑝) and ∆𝑤𝑚𝑛(𝑝 − 1) are difference in weights between m and n during the pth and (p -1)th 

iterations. ∝ and 𝜀 are momentum and learning rate, respectively. Similarly, for a bias, the relationship can also 

be formulated. Gradient descent with the inclusion of momentum efficiently captures both the local gradient and 

overall pattern of error. The momentum acts as a low-pass filter, allowing the network to disregard insignificant 

error values, which in turn helps prevent getting stuck at shallow minima. The training process was outlined as 

follows: 

i. We assume small weight values (both positive and negative). Training of the network does not begin if all 

weights are equal. 

ii. A training pair is selected from the training dataset. 

iii. Apply the input vector to the network. 

iv. The output of the network is evaluated. 

v. The error is determined by calculating the difference between the output and the target. 

vi. The network weights were adjusted to reduce this error. 

vii. The process outlined in steps 2-6 until the error is satisfactorily minimised across the entire network. 

 

Gradient descent with momentum and adaptive learning rate backpropagation 

In gradient descent with momentum and backpropagation of the adaptive learning rate, the weight and 

bias values are modified based on the gradient descent momentum and adaptive learning rate [36] [37]. The 

learning rate remained consistent throughout the training process when using the conventional steepest descent 

method. The training outcome was linked to finding an appropriate value for the learning rate. A high learning 

rate is not optimal because it may prevent the network from converging to the desired output. Conversely, a low 

learning rate is also suboptimal because it requires a significantly higher number of iterations for the algorithm to 

yield results. Unfortunately, determining the appropriate learning rate in advance is challenging. Moreover, the 

ideal learning rate fluctuated during the various stages of training. The performance of the gradient descent 
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algorithm is significantly improved by employing a mechanism that allows the adjustment of the learning rate 

during training. An adaptive learning rate algorithm accomplishes this, enabling it to effectively address 

challenging scenarios such as local errors. Some enhancements are required in the training methodology 

employed for gradient descent and backpropagation to incorporate the adaptive learning rates. Initially, 

preliminary outputs and errors were computed, followed by the adjustment of weights and biases at each epoch 

using the current learning rate. Subsequently, the new outputs and errors were re-evaluated. If the current error 

exceeds approximately 1.05 of the previously calculated error, the derived weights and biases are discarded; 

however, if this condition is not met, they are deemed acceptable. Adjustments to the learning rate occur when 

the newly calculated error is roughly 1.06 times less than the previous one, leading to an appropriate learning rate. 

 

Levenberg-Marquardt algorithm 

The Levenberg-Marquardt algorithm is as follows [38]: 

i. Provide all network input values and calculate the corresponding network errors from the output (e = t − a). We 

then determine the sum of the squares of all input errors (V(x)). 

ii. Evaluate the Jacobian matrix J(x). 

iii. To determine the value of ∆𝑥, we must solve Eq. 4: 

∆𝑥 = [𝐽𝑇(𝑥)𝐽(𝑥) + 𝑠𝐼]−1𝐽𝑇(𝑥)𝑒(𝑥)                                               (4) 

When a step increases by V(x), s is multiplied by factor c. When V(x) decreases in steps, s is divided by 

c. The algorithm becomes the steepest descent when s is large and Gauss-Newton for small s. In the trust region, 

the Levenberg-Marquardt algorithm can be viewed as an extension of Gauss-Newton. 

iv. Using x + x, we calculate the errors, square, and sum them again. If the current result is smaller than that 

calculated earlier in the 1st step, then decreases by c and moves backward to the first step. If the value of the 

squares does not decrease, then increases s by c and returns to the third step. 

v. If the gradient is lower than a certain specified amount or if the (V(x)) is decreased to less than a target, the 

algorithm is believed to have converged. 

 

Conjugate gradient algorithm 

The conjugate gradient algorithm does not require the computation of 2nd derivatives, but converges in a 

manner similar to quadratic convergence. In this approach, the descent direction is not aligned with the error 

gradient but rather perpendicular to the previous step [39]. The Conjugate Gradient algorithm operates as follows: 

i. First, the weight vectors 𝑥𝑗  are first initialized. Error gradient 𝑔0 is computed. Select the first search direction 

𝑞0 to be the negative of the gradient as 𝑞0 = −𝑔0, where 𝑔𝑗 ≡ ∆𝐹(𝑥)|𝑥=𝑥𝑗
 

ii. In each iteration j, select the learning rate 𝛼𝑗 to minimize the function along the search direction by taking the 

step as 𝑥𝑗+1 = 𝑥𝑗 + 𝛼𝑗𝑞𝑗 

iii. Choose the direction of the next search as per, 𝑞𝑗+1 = −𝑔𝑗+1 + 𝛽𝑗𝑞𝑗 , 

Where 𝛽𝑗 =
𝑔𝑗

𝑇𝑔𝑗

𝑔𝑗−1
𝑇 𝑔𝑗−1

 

iv. Step 2 is repeated if the algorithm does not converge. 

 

Long short-term memory (LSTM) network 

The issue of exploding and vanishing gradients in artificial neural networks was addressed by 

introducing the LSTM network. This neural network is based on deep learning principles. The network 

incorporates cells and gates with memory to manage the retention or removal of long-term data stored in the 

system [40]. 

Experiment using LSTM: Evaluation of the LSTM's performance involves data preparation, model 

training, selection of performance criteria, and presenting final results and comparing them to the results obtained 

from the ANN. 

Preparation of LSTM data: Training data were standardised to improve the fitting and prevent divergence 

during training. The standardised data had an average of 0 and a standard deviation of 1. The validation data were 

similarly standardised using the parameters applied to the training set. The employed formula is shown in Eq. 5 

and Eq. 6. 

New Training data =  
Training data−𝜇

𝜎
                                                (5) 

New validation data  =  
Validation data −𝜇

𝜎
                                           (6) 

Where, 𝜇 = Mean of all the data; 𝜎 = Standard deviation of all the data. 

 

Training of LSTM model 

The various parameters utilised in the LSTM model are as follows. 
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Using a trial-and-error approach, 64 hidden nodes were determined to be required for optimal 

performance. The most commonly used optimisers include stochastic gradient descent with momentum (sgdm), 

Adaptive Moment Estimation (Adam), and root-mean-square propagation (rmsprop). From the experiment, the 

Adam optimiser demonstrated superior performance. To calculate the gradient of the loss function and update the 

weights, a batch method was employed, with an optimum batch size of 72. An epoch constitutes a complete pass 

through the entire dataset; after experimentation, it was found that utilising 250 epochs resulted in the lowest 

value for the loss function. A gradient threshold of 1 was used to prevent exploding gradients during the training. 

In this study, an initial learning rate of 0.006 was established through experimentation to balance the training time 

constraints while avoiding becoming stuck at suboptimal points. Additionally, a learning rate drop factor of 125 

was applied to adjust global learning rates every specified period of epochs; further adjustments were made using 

a multiplicative factor of 0.2 after a certain number of epochs had passed. 

 

Evaluation of LSTM results 

The root means square error (RSME), mean absolute error (MAE), and correlation coefficient (R) were 

employed to assess the outcomes of the aforementioned experiment. The RMSE is calculated by subtracting the 

observed values from the predicted values and is given by Eq. 7: 

RSME = √
𝟏

𝒏
∑ (𝑦𝑡 − 𝑦𝑡̂)2𝑛

𝑡=1                                                                (7) 

Where, 𝑦𝑡  is the predicted value, 𝑦𝑡̂ is the observed value and n is the number of observations. The 

RSME result was consistently positive, with a reduced RSME value indicating an enhanced prediction. The MAE 

can be expressed using Eq. 8: 

𝑀𝐴𝐸 =
𝟏

𝒏
∑ |(𝑦𝑡 − 𝑦𝑡̂)|𝑛

𝑡=1                                                     (8) 

A smaller MAE value indicates a more accurate prediction, whereas the RSME value decreases with 

improved predictions. R represents the correlation coefficient, which can be calculated using Eq. 9: 

𝑅 = √1 −
∑ (𝑦𝑡−𝑦𝑡̂)2𝑛

𝑡=1

∑ (𝑦𝑡−𝑦̅)2𝑛
𝑡=1

                                                           (9) 

The average of the estimated value is represented by  𝑦̅. The range for R falls between 0 and 1, with a 

higher R signifying a more accurate prediction result. 

 

III. Result 

 
Fig. 2. Location of the study area (Source:  Google Map) 

 
Table 1: Hydrological Statistics of Monthly Data 
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Fig.3. Autocorrelation plots of the time series 

 

Monthly river flow data from 1987 to 2005 were available alongside rainfall data in a 10-day format, 

which was converted to monthly data (Ref. Fig.2 for location of the study area). A total of 228 months of data 

were obtained: 160 were used for training and 68 for validation. The hydrological statistics from the observed 

data during the training and testing periods are presented in Table 1. The analysis revealed that the mean and 

skewness of the test data differed from those of the training data. However, both sets exhibit similar extreme 

minimum and maximum flow values, facilitating the forecasting accuracy for low and high flow levels. The time 

series underwent correlation analysis to assess the impact of previous flows. This analytical method is typically 

applied to investigate the influence of earlier flows on the current flow levels. An assessment was conducted on 

auto- and partial autocorrelation values using streamflow data with 95% confidence bands calculated up to lag 12 

(Figure 3). The oscillating pattern observed in the partial autocorrelation function indicates correlations at lags 1, 

3, 4, 5, 9, 10, 11, and 12, as shown in Figure 3. As a result of this observation, it can be concluded that it is 

important to consider 12 preceding flow values when constructing input vectors for ANNs. Moreover, the 

maximum value of partial autocorrelation was only 0.65 which may not be significant. This required the 

identification of a connection between the monthly rainfall in the basin and streamflow (Ref. Fig. 4). A correlation 

of 0.84 was determined from a scatter plot of monthly rainfall and streamflow data. These supports utilise monthly 

rainfall information as part of the input, along with 12 previous flow values. 

 

 
Fig.4. Scatter plot of rainfall and runoff. 

 

Before applying the ANN techniques, the rainfall and flow data were normalised using the following 

method: the maximum value in the flow vector was identified and used to divide all elements of the vector, 

resulting in normalised flow values. These normalised values were then utilised for both the training and testing 

of the ANN networks with various algorithms, as outlined below. 

The following configurations of discharge and rainfall data were tried for the assessment: (1) Qt−1, Rt−1; 

(2) Qt−1, Qt−2, Rt−1, Rt−2; … (12) Qt−1, Qt−2, Qt−3 … Qt−12, Qt−1, Qt−2, Rt−1, Rt−2, Rt−3… Rt−12, where Qt is the flow 

value at time t. Similarly, Rt represents rainfall. Discharge Qt is found out from the output neuron by using the 
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above combination. The network was trained using four distinct ANN algorithms and an LSTM deep learning 

model. These ANN algorithms include backpropagation with momentum, adaptive learning, conjugate gradient, 

and Levenberg–Marquardt algorithms. 

 

Table 2.  MSE values for different algorithms for 68 months forecasting 

 

 

 

 

 

 

Upon completion of the training, the performance of all the networks was evaluated using the forecasted 

data generated by various algorithms.  The results from the artificial neural network models, initially in 

normalised form, were then de-normalised, and mean squared errors were calculated for each model's forecasted 

data. Table 2 displays the MSE results for the predicted flow values, indicating that the Conjugate Gradient 

yielded the lowest MSE, followed by the Levenberg-Marquardt algorithm. Notably, the GDMB and GDMAL 

models exhibited the highest MSE with a correspondingly high R-value over a 68-month forecast period. Nine 

hidden layers were used for the analysis. An additional noteworthy observation is that networks incorporating an 

input vector consisting of 12 previous flows without rainfall input exhibited lower MSE despite findings from the 

rainfall-flow correlation analysis, suggesting otherwise. Fig. 5 and 6 display the results of forecasting 68 months 

ahead using the GDMB, GDMAL, and CG algorithms. Analysis of the fit line equations in the diagrams indicates 

that the forecasts from the Conjugate Gradient approach closely align with the observed flows compared with 

those from GDMB and GDMAL. The slope and intercept coefficients for the Conjugate Gradient algorithm were 

approximately equal to 1 and 0, respectively, in contrast to those for GDMB and GDMAL. 

 

 
(a)   GDMB                                                 (b) CG                                                (c) GDMAL 

Fig.5. Graph of 68-months-flow prediction for the testing period 

 

Figure 5 (b) serves as a visual representation to demonstrate the similarity between the observed and 

forecasted values for a 68-month forecasting period, using the Conjugate Gradient algorithm. This is further 

depicted in the scatter plot shown in Figure 6 (b), highlighting the close correspondence between the observed 

values and the neural network predictions produced by the Conjugate Gradient algorithm. The accuracy of 

predicting both lower and higher flow values is evident, although there are instances where under-prediction arises 

in the 18th and 50th months, which is potentially attributable to limitations inherent in ANN algorithms. 

Additionally, upon examining the scatter diagrams, it becomes apparent that forecasts exhibit an approximately 

linear relationship with observations, affirming the suitability of employing linear correlation coefficients for 

these comparisons. 

 

 
(a)    GDMB                                              (b) CG                               (c) GDMAL 

Fig.6. Scatter plot for the validation period (68-months-ahead forecast) 

Model inputs 
Mean Square Error (MSE) 

LM CG GDMB GDMAL 

𝑄𝑡−1, 𝑄𝑡−2, … , 𝑄𝑡−12 

𝑅𝑡−1, 𝑅𝑡−2, … , 𝑅𝑡−12 
4566 3673 10906 12405 

𝑄𝑡−1, 𝑄𝑡−2, … , 𝑄𝑡−12 

 
3606 3574 4197 3784 
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The Adaptive Learning algorithm achieves the highest R-value of 0.86 for forecasting 68 months ahead. 

Figure 5 (c) illustrates both the observed and forecasted plots generated by the Adaptive Learning algorithm for 

this time period, whereas Figure 6 (c) presents a scatter plot of the same data. There is a noticeable disparity 

between the observed values and the corresponding predictions made by the neural network through the Adaptive 

Learning algorithm, particularly in terms of accurately predicting higher flow values. However, lower flow values 

are generally predicted reasonably well, with just one exception noted during the analysis of the scatter plot, as 

shown in Fig. 6(c), which shows that predictions tend to be on the higher side for low-value targets. 

Four different Artificial Neural Network algorithms were evaluated for monthly streamflow forecasting 

using flow data from the Noa-Dehing River and rainfall data from the Noa-Dehing Basin. The results indicate 

that the Conjugate Gradient (CG) algorithm outperforms the other algorithms in providing accurate monthly flow 

forecasts. Additionally, the Levenberg–Marquardt algorithm demonstrated satisfactory performance, particularly 

in predicting low flow values compared to high flow values. Conversely, the commonly used Gradient Descent 

with Momentum Backpropagation algorithm exhibited slow processing and yielded less promising results among 

the four algorithms, owing to its first-order gradient. It was observed that second-order gradients contributed to a 

faster execution, as evidenced by the speed of the Levenberg–Marquardt and Conjugate Gradient algorithms. 

Furthermore, incorporating a correlation analysis before finalising the input vectors proved effective in 

determining the input vector composition and hidden layer count. These findings apply specifically to the Noa-

Dehing Basin, and further research is essential to validate these conclusions across other Himalayan River basins. 

In the next phase, the LSTM model was run, and errors were computed. The best result from the ANN 

using the Conjugate Gradient Algorithm was used for comparison with the LSTM errors, as shown in Table 3. 

 

Table 3. Comparison of errors 
Criteria ANN (Conjugate Gradient Algorithm) LSTM 

RMSE 60 55 

MAE 43 42 

R 0.86 0.90 

 

 
(a) ANN (CG)                                                          (b) LSTM 

Fig.7. Prediction results of ANN (CG) and LSTM 

 

The prediction results are shown in Figure 7.  Table 3 indicates that LSTM outperformed the best ANN 

model across all three evaluation criteria, demonstrating superior predictive accuracy. The comparison reveals 

that LSTM outperforms statistically in terms of prediction performance. Additionally, Figure 7 illustrates the 

close similarity between the plots of the LSTM predictions and the stream-flow data. Significant differences were 

noticeable in the bulging and prediction of major peaks when comparing both models; these aspects were more 

accurately represented by the LSTM model than by the ANN model. 

LSTM's ability to retain and discard information is a crucial factor in modelling nonlinear time-series 

data for prediction purposes. This feature guarantees relatively improved outcomes when predicting river flow 

based on past data. However, it has been noted that LSTM failed to accurately predict peaks in two instances. 

This could be attributed to the limited size of the training data and potential unavailability of high-quality data. 

 

IV. Conclusion 

Streamflow prediction is essential for the efficient management of water resource projects. With accurate 

forecasts, project managers can allocate water supply to various needs, such as agriculture, energy production, 

household consumption, and ecological requirements, while considering trade-offs. Streamflow predictions are 

particularly crucial for reservoirs with diverse uses, particularly for flood control. Forecasting streamflow is a 

difficult task because of the complex physical processes guided by multiple unknown factors. The current study 
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employs an ANN and a deep learning LSTM network with a remember-forget mechanism to regulate the 

vanishing and amplification of gradients for streamflow prediction. The study revealed that, compared to 

conventional ANN networks, LSTM proved to be more effective in modelling time series with nonlinear 

characteristics. The experimental results demonstrate that LSTM predictions outperform those of other evaluation 

criteria. The following aspects are significant regarding the LSTM model for enhancing streamflow prediction. 

i. Some of the peaks were not precisely predicted. The predictions were inaccurate. 

ii. The default settings for LSTM models are often adjusted on an ad hoc basis with some parameters remaining 

unchanged. It is important to conduct more systematic experiments to investigate the effects of these parameters 

thoroughly. 

iii. The accuracy of the flow prediction diminishes when rainfall data are incorporated, which is not typically 

expected. This raises doubts about the quality of rainfall data. 

iv. The available data cover a period of 19 years, on a monthly basis. The amount of data available may not be 

adequate for capturing fundamental physical phenomena. 

v. There is a chance that data have been altered at various points, potentially impacting the precision of the 

forecast. 

Using unbiased data to run the model may lead to enhanced forecast accuracy. 
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