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Abstract 
This work deals with buckling analysis of a three dimensional isotropic thick plate clamped in all the edges 

(CCCC) subjected to a uniaxial compressive load, using the variational Energy method. Total potential energy 

equation of a thick plate was formulated from the three-dimensional constitutive relations, thereafter the 
compatibility equations was established to obtain the relations between the deflection and shear deformation 

rotation along the direction of x and y coordinates. By minimizing the potential energy equation with respect to 

the coefficient deflection and shear deformation rotation, the formulae for calculating the critical buckling load 

is obtained. Using a mathematical modelling technique based on polynomial displacement function obtained 

from the compatibility governing equation, a buckling solution was obtained by applying the boundary 

conditions of the plate and substituted on buckling equation derived. From the numerical analysis obtained, it is 

found that the value of the critical buckling load increase as the span- thickness ratio increases. This means that 

an increase in plate thickness improves structural the safety of the plate. The proposed solution were validated 

and compared with the solution of the trigonometric function using the same model as developed. The critical 

buckling load was comparable for both functions at varying aspect ratio and the total average percentage 

difference obtained is 4.3%. The difference being close proved high convergence and accuracy of the approach 
in the thick plate analysis.  

Keywords: CCCC plate, polynomial and trigonometric function, variational energy method, buckling of three-

dimensional plate 

--------------------------------------------------------------------------------------------------------------------------------------- 

Date of Submission: 05-06-2021                                                                           Date of Acceptance: 18-06-2021 

--------------------------------------------------------------------------------------------------------------------------------------- 

 

I. Introduction 
Plates are three dimensional structural members and its use is on the increase in the recent years due to 

its economic and structural benefits such as light weight and its ability to withstand heavy loads, affordability 

and versatility in its applications. They are used as bridge deck, aircraft wing panel, aerospace panels and slab 

building structure [1-3].  

Plates can be subjected to in-plane loads and transverse loads, and can be simply supported, clamped or 

free at the edges. The plate problem belongs to elasticity theory and is normally applied to determine the 

distribution of stress fields in a given plate under known loading and support conditions [4].  

In avoidance of rigorous process in solving 3-D plate problems, several theories (classical plate theory 

(CPT), Mindlin theory and refined plate theory (RPT)) have been employed to reduce three dimensional 

problems to two dimensional (2-D) by integrating out the plates thickness dimension by making a kinematic 
assumption that the strains can be expanded in the smallest dimension [5, 6]. This assumption has discovered to 

have introduced errors, hence does not offer a very accurate analysis of plates in which the thickness-to-length 

proportion is relatively large [7, 8]. Hence, the analysis of 3-D thick plate structures is very essential. A number 

of theories and approaches have been suggested in the literature for the prediction of the critical buckling load of 

plates.  

The authors in [9] used the virtual work principle for the buckling analysis of simply supported 

stiffened rectangular isotropic plate. They developed numerical model based on polynomial shape function 

which enable them to determine the buckling coefficients for a stiffened rectangular plate. They found out that 

their approach can be used to predict the buckling load of thin plates. The authors in [10] also adopted the 

approach and shape function applied to uni-axially compressed plate elastically restrained in all directions. The 

author in [9] did not consider CCCC boundary condition. Both authors did not consider a thick plate as their 
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assumption is limited to the classical plate theory which will not yield a good result when the plate is relatively 

thick. 

The authors in [11] used the different boundary condition to study the stability and vibration behavior 

of the elastic rectangular thick plate using the refined plate theory. The theory did not consider the stresses in the 

direction of thickness axis, therefore can only predict buckling load of thin and moderately thick plates. They 

assumed shape function, which made their result not a close-form solution and cannot be used to solve plate 

problems in which all edges are clamped and that  heavy type of plates. 

The authors in [12] simply supported boundary condition to study the buckling behavior of the elastic 

rectangular thick plate using the Energy approach. They found out that their approach can be used with 

confidence to determine the critical buckling load of plates and can be used in the analysis of thin, moderately 
thick, and thick plates, respectively. The authors in [12] used a derived shape function using the principle of 

elasticity to yield a close-form solution but they did not consider the plate with all the edge condition clamped as 

in this present study. 

In this work, the analytical three-dimensional plate theory for isotropic plates is formulated and derived 

using the variational energy method, and presented as a problem of the theory of elasticity. The aim is to 

determine the critical buckling load of a thick rectangular plate elastically restrained along all the edges (CCCC) 

under uniaxial compressive load using trigonometric and polynomial displacement function derived from the 

governing equation. The proposed theory can be used to solve all types of plate as they consider all the stress 

elements in the analysis. 
 

II. Methodology 
          Considering the kinematics and three-dimensional constitutive relations of a rectangular thick plate 

presented in the figure 1, the total potential energy of the plate is obtained through energy potential formulation.  

 

 
Figure 1: A rectangular thick plate element showing the in-plane compressive loading 

          As shown in figure 1, the spatial dimensions of the plate along x, y and z-axes are a, b and t respectively.  

 

2.1.1. Displacement Kinematics Relations 

          The energy equation formulation for the stability analysis thick rectangular plate under compressive load 

in figure 1, will be obtained by considering its section as presented in figure 2. 
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         As shown in the figure 2, the displacement field includes the displacements along x, y and z-axes: u, v and 

w respectively. The displacement and slope along the x axis and y axis are mathematically expressed as: 

                                                                                                                                                                        

   
  

  
                                                                                                                                                                      

   
  

  
                                                                                                                                                                      

         Taking the non-dimensional form of coordinates to be R = x/a, Q = y/b and S = z/t corresponding to x, y 

and z-axes respectively,   
                                                                                                                                                                          

                                                                                                                                                                            
Also, the aspect ratio of length of the plate along x axis to the length of the plate thickness. 

   
 

 
                                                                                                                                                                        

          Thus, the non-dimensional form of Equation 2 and 3 becomes: 

   
 

 
 
  

  
                                                                                                                                                                 

   
 

 
 
  

  
                                                                                                                                                                 

          Thus, the in-plane displacements; u and v as presented in the Equation 2 and 3 are further defined using 

trigonometric relations for small angles as: 

                                                                                                                                                                           

                                                                                                                                                                           

Where: 

          The symbol    denotes deflection, the symbol    denotes in-plane displacement along x-axis, the symbol 

   denotes in-plane displacement along y-axis, the symbol    denotes shear deformation rotation along x axis, 

the symbol    denotes shear deformation rotation along the y axis, and   denotes shear deformation profile. 

          Therefore, the non-dimensional form of Equation 9 and 10 becomes: 

                                                                                                                                                                           

                                                                                                                                                                           

 

2.1.2 Engineering Strain Components 

          The six strains components are x, y,z,x-y, x-z, and y-z. are defined based on the theory of elasticity as 
the ratios of displacement of a finite length of a plate to that of the finite length. They summarized in terms of 

non-dimensional as: 

  
  

   
                                                                                                                                                                      

  
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
  

 
  

   
 

  

   
        


  

 
  

   
 

  

    
    

Substituting Equation11 into 13 gives: 

   
  

 
 
   
  

                                                                                                                                                             

Substituting Equation12 into 14 gives: 

  
  

  
 
   
  

                                                                                                                                                            

Equation15 becomes: 

  
 

 
 
  

  
                                                                                                                                                                

Substituting Equations 11 and 12 into 16 gives: 


  

 
  

  
 
   
  

 
  

 
 
   
  

             

Substituting Equation7 into 17 gives: 


  

     
 

 
 
  

  
                                                                             

Substituting Equation8 into 18 gives: 


  

     
 

  
 
  

  
                                                                   

The Equations 19, 20, 21, 22, 23 and 24 are the established six strains components in the plate material. 
Where: 

the symbol    denotes normal strain along x axis, the symbol    denotes normal strain along y axis, the symbol 

   denotes normal strain along z axis, the symbol     denotes shear strain in the plane parallel to the x-y plane, 

the symbol     denotes shear strain in the plane parallel to the x-z plane, the symbol     denotes shear strain in 

the plane parallel to the y-z plane. 

 

2.1.3. Constitutive Relations 

          In the constitutive relation, the stresses causing the body movements are considered here. These stresses 

are described using generalized Hooke’s law, therefore, the three dimensional constitutive relation for the 

isotropic material will yields the six stress components (σx, σy,σz, τxy, τxz, and τyz). 

 
 
 
 
 
 
  

  

  
   

   

    
 
 
 
 
 

 
 

           

 
 
 
 
 
 
 
 
 
 
          

          

          

    
    

 
   

     
    

 
  

      
    

 
  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
  

  

  

   

   

    
 
 
 
 
 
 
 
 

               

Substituting Equations 19 to 24 into Equation 25 and writing the equations of the six stress components one by 

one in term of the displacements gives: 

   
   

            
 
 

 
 
   
  

        
   
  

 
  

   
 
  

  
    

   
   

            
 
     

 
 
   
  

    
   
  

 
  

   
 
  

  
        

   
   

            
 
      

   
 
  

  
    

   
  

 
 

 
 
   
  

        

    
 

 

   
  

 
         

             
 

         

             
 
   
  

               

    
 

  
   

         

             
 

         

             
 
 

  

  

  
              

    
 

  
   

         

             
 

         

             
 
 

   

  

  
                            

Where: 
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E and µdenotes thePoisson’s ratios and modulus of elasticity of material respectively. 

 

2.1.4. Total Potential Energy Functional 

          The summation of strain energy and the external work gives the total potential energy. This 

mathematically expressed as: 

                                                                                                                                                                              
Where: 

          denotes thetotal potential energy, external works and strain energy respectively. 
           The strain energy being the average product of stress and strain indefinitely summed up within the spatial 

domain of the body. 

  
   

 
                                  

   

    

 

 

 

 

                                                      

However, the external work for buckling load is given as: 

  
    

   
   

  

  
 
 

 

 

 

 

                               

Thus, the total potential energy of the three dimensional thick rectangular plate is presented as [12]: 

   
       

         
         

    
  

 
 

  
 

 

    
  

 
    
  

 
     

  
 
    
  

 

 

 
      

   
 
    
  

 
 

 

 

 

 

 
      

 
 
    
  

 

 

 
       

  
      

       
   

  

  
 
 

 
 

  
 
  

  
 
 

       
  

  
 

      
 

  

  
 

 
       

  
 
  

  
 
 

 
  

  
  

  

  
 
 

                     

Where: 

    
     

      
 

 
2.1.5. Compatibility Equation 

          The true compatibility equations in x-z plane y-z plane according the author in [12] is obtained by 

minimizing the energy equation with respect to rotation in x-z plane and rotation in y-z plane and equate its 

integrands to zero to get: 

     
     

   
  

 

  
 
     

    
 

      

   

     

   
 

       

  
         

  

  
                          

 

  
 
     

    
 

     

  

     

   
 

      

 

     

   
 

       

  
       

  

 

  

  
                         

Using law of addition, the Equations 36 and 37 will be simplified, then factorizing the outcome gives: 

  

  
      

  

   
  

 

  
 
  

   
      

         

  
    

 

 
                

 

 
 
  

  
 
  

   
      

     

  

  

   
 

         

  
    

 

 
                                                     

After simplification using law of addition, one of the possible of Equation becomes: 

            

  
  

      

  
 

  

   
 

 

  

  

   
                           

 

2.1.6. General Governing Equation 

The minimization of energy equation with respect to deflection gives the general governing equation as 

presented in [2]: 
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Substituting Equation 40 into Equation 41 and simplifying the outcome givestwo governing differential 

equations of a 3-dimensional rectangular plate subject to pure buckling as presented in Equation 42 and 43: 

    

   
 

 

  
 

    

      
 

 

  
 
    

   
 

    
 

   
 
    

   
                        

       

  
 
    

   
 

    
 

  
 
    

   
                                                               

Thus, the approximate solution to the differential equation of Equation 42 in polynomial form gives: 

                 
     

      
                 

     
     

     
In a more symbolized form: 

                                                                                                  

Let: 

     

 
 
 
 
 
  

  
  

  

   
 
 
 
 

 

 
 
 
 
 
  

  

  

  

   
 
 
 
 

       

                                       

    
  

 
 
  

  
             

    
  

  
 
  

  
                                                                             

Where: 

The symbol     denotes coefficient of deflection, the symbol    denotes coefficient of shear deformation along 

x axis, the symbol    denotes coefficient of shear deformation along the y axis. 

 

2.1.7. Direct Governing Equation 
          By differentiating the total potential energy functional with respect to deflection coefficient, the formulae 
for calculating the critical buckling load was obtained.  

Substituting Equations (45), (48) and (49) into Equation (35) gives: 

  
    

   
        

    
   

   
 

  

 

 

 

      
 

  
       

        
 

 
 

        
 

 
    

   

    
 

  

 

 

 

 
       

 

  
   

   

   
 

  

 

 

 

    

         
 

 
 
 

    
    

            
  

  
 
 

 

 

 

 

    

 
 

  
    

    
            

  

  
 
 

 

 

 

 

      
   

   
 

  
    

  

  
 
 

 

 

 

 

            

Differentiating Equation 50 with respect to A2 and A3and solve simultaneously gives: 
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Differentiating Equation 50 with respect to A1 and simplifying the outcome gives: 

   
 

  
         

 

 
 
 

     
             

             

   
 

  
     

             

             

   
  

  

    

This gives: 

   
 

   
 

     

 
 
 

 
 
 

     
             

             

   
 

  
     

             

             

   
  

  

                   

 

III. Numerical Analysis 
The numerical buckling analysis of thick plate will be performed in this section, to obtain the value of 

the critical buckling load at various aspect ratios. A clamped rectangular plate is subjected to uniformly 

distributed compressive load. A fourth order polynomial displacement function as was derived in the previous 

section will be used to for the analysis CCCC rectangular plate. 

 
Figure 3: CCCC Rectangular Plate subjected to uniaxial compressive load 

Simplifying Equation 44 gives: 

                    
     

      
                 

     
     

               

The boundary conditions of the plate in figure 3 are as follows: 

At                                                                                                                                                  

At At             
  

  
 

  

  
                                                                                                                   

At                                                                                                                                                 

At            
  

  
 

  

  
                                                                                                                         

Substituting Equations (64 to 67) into Equation (63) and solving gives the following constants: 

                                                                                                                              

                                                                                                                                 
Substituting the constants of Equation (68) and (69) into Equation (63) gives; 

      
      

      
       

      
      

                                                                   
Simplifying Equation (70) which satisfying the boundary conditions of Equation (64 to 67) gave; 

         
                                                                                                    

Recall from Equation 45, that; 

      
Let the amplitude, 

                                                                                                                                                           
And;  

                                                                                                                      
Thus, the polynomial deflection functions after satisfying the boundary conditions is:  
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           In the order hand, a trigonometric displacement function for the analysis CCCC plate derived according 

to author in [8] is given as presented in Equation (76). 

                                                                        

The trigonometric displacement        functions that satisfy the boundary conditions for all edges clamped 

rectangular plate boundary conditions are determined as follows: 

Substituting Equation 64 to 67 into the derivatives of w and solving gave the characteristic equation as: 

                                                                                                                                           

The value of    that satisfies Equation 77 is: 

                                                                                                                                      

Substituting Equation 78 into the derivatives of wand satisfying the boundary conditions of Equation 64 to 

67gives the following constants; 

                                                                                                             
Substituting the constants of Equation 78 and 79 into Equation 76 gave; 

                                                                                                                    
Similarly; 

                                                                                                                    
Recall from Equation 45, that; 

      
Let     

Therefore: 

                                                                                                                        
Let the amplitude, 

                                                                                                                                                           
And; 

                                                                                                                               
Thus, the trigonometric deflection functions after satisfying the boundary conditions is:  

                                                                                                                           

 
IV. Results and Discussions 

The result of stiffness coefficients for deflection of rectangular thick plate analysis subjected to the 

CCCC boundary condition was obtained using the polynomial and trigonometric shape function as obtained in 
Equation 75 and 85, their corresponding stiffness values are presented in Table 1. The proposed Poisson’s ratio 

of the plate is 0.25. 

 

Table 1: The polynomial and trigonometric stiffness coefficients of deflection function of the CCCC plate 
Displacement Shape Function                   

Polynomial 

0.00127 0.00036 0.00126 0.00003 0.00003 

Trigonometric 

1168.91 389.636 1168.91 29.6088 29.6088 

 

The critical buckling load formulae  
   

 

   
   

    

   
  were determined by applying the expression as 

obtained in Equation 61 and 62 respectively. Table 2 and 3 contains the result of the non-dimensional values of 

the critical buckling load  
   

 

   
  for an isotropic rectangular thick plate elastically restrained at the four edges 

(CCCC) under uniaxial compressive load at varying aspect ratio. Table 4 and 5 contains the result of the non-

dimensional values of the critical buckling load  
    

   
  for an isotropic rectangular thick plate elastically 

restrained at the four edges (CCCC) under uniaxial compressive load at varying aspect ratio. Table 6 and Figure 

4, 5, 6 and 7 presents the summary of the comparison between the present study using polynomial and that of 

trigonometric shape function. Figure 8 and 9 presents the CPT result comparison with Ibeabuchi et al., 2020 and 

Iyangar, 1988. 

For the non-dimensional values obtained in Table 2, 3, 4 and 5, it shows that the values of critical 

buckling load increase as the span- thickness ratio increases. This reveals that as the in-plane load on the plate 

increase and approaches the critical buckling, the failure in a plate structure is a bound to occur. This means that 
a decrease in plate thickness increases the chance of failure in a plate structure. Hence, failure tendency in the 

plate structure can be mitigated by increasing its thickness. 
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Critical look at Table 2 to 10, it is seen that an increase in the value of the length-breadth ratio    
 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0,  4.5 and 5.0 decreases the value of the critical buckling load Nx. This means that 

an increase in plate width increases the chance of failure in a plate structure. 

In summary, Table 2 to 5 and figure 4 to 7 presented here, it is observed that as the in-plane load which 

will cause the plate to fail by compression increases from zero to critical buckling load (     , the buckling of 

the plate exceed specified elastic limit thereby causing failure in the plate structure. This means that, the load 

that causes the plate to deform also causes the plate material to buckle simultaneously. 

 

Table 2: Non-dimensional Critical Buckling Load 
   

 

   
 on the CCCC Rectangular Plate Using Polynomial 

Function 

     
   

 

    
 

  
 

 
                                                            

4 6.67690 4.1471 3.4802 3.2277 3.1083 3.0429 3.0033 2.9775 2.9597 

5 7.99385 4.8477 4.0569 3.7627 3.6242 3.5486 3.5027 3.4727 3.4521 

10 10.8463 6.2669 5.2172 4.8367 4.6589 4.5617 4.5027 4.4641 4.4374 

15 11.6137 6.6281 5.5105 5.1077 4.9197 4.8169 4.7544 4.7136 4.6853 

20 11.9086 6.7647 5.6213 5.2100 5.0180 4.9131 4.8493 4.8076 4.7787 

30 12.1286 6.8658 5.7032 5.2856 5.0908 4.9842 4.9195 4.8771 4.8478 

40 12.2075 6.9019 5.7325 5.3126 5.1167 5.0096 4.9445 4.9019 4.8725 

50 12.2444 6.9188 5.7461 5.3252 5.1288 5.0215 4.9562 4.9135 4.8839 

60 12.2645 6.928 5.7536 5.3320 5.1354 5.0279 4.9626 4.9198 4.8902 

70 12.2767 6.9335 5.7581 5.3362 5.1394 5.0318 4.9664 4.9236 4.8940 

80 12.2846 6.9371 5.7610 5.3389 5.1420 5.0344 4.9689 4.9261 4.8965 

90 12.2900 6.9396 5.7630 5.3407 5.1438 5.0361 4.9706 4.9278 4.8981 

100 12.2939 6.9414 5.7644 5.3420 5.1451 5.0373 4.9719 4.9290 4.8994 

1000 12.3104 6.9489 5.7705 5.3476 5.1504 5.0426 4.9771 4.9341 4.9045 

1500 12.3105 6.9489 5.7705 5.3477 5.1505 5.0426 4.9771 4.9342 4.9045 

 

Table 3: Non-dimensional Critical Buckling Load 
   

 

   
on the CCCC Rectangular Plate Using Polynomial 

Function 

     
   

 

   
 

  
 

 
                                                            

4 5.85760 3.6383 3.0531 2.8316 2.7269 2.6696 2.6348 2.6122 2.5966 

5 7.01300 4.2528 3.5591 3.3010 3.1795 3.1131 3.0729 3.0466 3.0285 

10 9.51540 5.4980 4.5770 4.2432 4.0873 4.0020 3.9502 3.9164 3.8930 

15 10.1887 5.8148 4.8344 4.4810 4.3160 4.2258 4.1710 4.1352 4.1104 

20 10.4474 5.9346 4.9316 4.5707 4.4023 4.3103 4.2543 4.2177 4.1924 

30 10.6404 6.0234 5.0034 4.6370 4.4661 4.3727 4.3159 4.2787 4.2530 

40 10.7096 6.0550 5.0291 4.6607 4.4889 4.3949 4.3378 4.3005 4.2746 

50 10.7420 6.0698 5.0411 4.6718 4.4995 4.4053 4.3481 4.3106 4.2847 

60 10.7597 6.0779 5.0476 4.6778 4.5053 4.4110 4.3537 4.3161 4.2902 

70 10.7703 6.0828 5.0515 4.6814 4.5088 4.4144 4.3570 4.3195 4.2935 

80 10.7773 6.0859 5.0541 4.6838 4.5111 4.4166 4.3592 4.3216 4.2957 

90 10.7820 6.0881 5.0559 4.6854 4.5126 4.4182 4.3607 4.3231 4.2971 

100 10.7854 6.0897 5.0571 4.6866 4.5138 4.4192 4.3618 4.3242 4.2982 

1000 10.7999 6.0962 5.0624 4.6915 4.5185 4.4239 4.3664 4.3287 4.3027 

1500 10.7999 6.0963 5.0625 4.6915 4.5185 4.4239 4.3664 4.3287 4.3027 
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Table 4: Non-dimensional Critical Buckling Load 
   

 

   
 on the CCCC Rectangular Plate Using Trigonometric 

Function 

     
   

 

    
 

  
 

 
                                                            

4 6.5845 4.0716 3.3996 3.1408 3.0166 2.9478 2.9057 2.8780 2.8589 

5 7.8617 4.7424 3.9446 3.6422 3.4977 3.4178 3.3689 3.3368 3.3145 

10 10.605 6.0850 5.0242 4.6320 4.446 4.3432 4.2802 4.2388 4.2101 

15 11.337 6.4231 5.2936 4.8783 4.6815 4.5728 4.5062 4.4624 4.4320 

20 11.618 6.5506 5.3950 4.9708 4.7700 4.6591 4.5911 4.5464 4.5153 

30 11.827 6.6448 5.4698 5.0392 4.8353 4.7227 4.6537 4.6083 4.5768 

40 11.902 6.6785 5.4965 5.0635 4.8586 4.7454 4.6761 4.6304 4.5987 

50 11.937 6.6941 5.5090 5.0749 4.8695 4.7560 4.6865 4.6407 4.6089 

60 11.956 6.7027 5.5158 5.0811 4.8754 4.7617 4.6921 4.6463 4.6145 

70 11.968 6.7079 5.5199 5.0848 4.879 4.7652 4.6956 4.6497 4.6179 

80 11.975 6.7112 5.5225 5.0872 4.8813 4.7675 4.6978 4.6519 4.6200 

90 11.981 6.7135 5.5244 5.0889 4.8829 4.7690 4.6993 4.6534 4.6215 

100 11.984 6.7152 5.5257 5.0901 4.884 4.7701 4.7004 4.6545 4.6226 

1000 12.000 6.7222 5.5312 5.0951 4.8888 4.7748 4.7050 4.6591 4.6272 

1500 12.000 6.7222 5.5312 5.0952 4.8889 4.7749 4.7051 4.6591 4.6272 

 

Table 5: Non-dimensional Critical Buckling Load 
   

 

   
on the CCCC Rectangular Plate Using Trigonometric 

Function 

     
   

 

   
 

  
 

 
                                                            

4 5.7766 3.5720 2.9824 2.7554 2.6465 2.5861 2.5492 2.5249 2.5081 

5 6.8971 4.1605 3.4606 3.1953 3.0685 2.9984 2.9556 2.9274 2.9078 

10 9.3033 5.3384 4.4077 4.0636 3.9004 3.8102 3.7550 3.7187 3.6935 

15 9.9459 5.6349 4.6441 4.2797 4.1071 4.0117 3.9533 3.9149 3.8882 

20 10.192 5.7468 4.7330 4.3609 4.1847 4.0874 4.0278 3.9886 3.9613 

30 10.376 5.8295 4.7987 4.4208 4.2420 4.1432 4.0827 4.0429 4.0152 

40 10.442 5.8590 4.8221 4.4422 4.2625 4.1631 4.1023 4.0623 4.0344 

50 10.472 5.8728 4.8330 4.4522 4.2720 4.1724 4.1114 4.0713 4.0434 

60 10.489 5.8803 4.8390 4.4576 4.2772 4.1775 4.1164 4.0762 4.0483 

70 10.499 5.8848 4.8426 4.4609 4.2803 4.1805 4.1194 4.0792 4.0512 

80 10.506 5.8877 4.8449 4.4630 4.2823 4.1825 4.1214 4.0811 4.0532 

90 10.511 5.8898 4.8465 4.4645 4.2837 4.1839 4.1227 4.0824 4.0545 

100 10.514 5.8912 4.8477 4.4655 4.2847 4.1848 4.1237 4.0834 4.0554 

1000 10.527 5.8973 4.8525 4.4700 4.2890 4.1890 4.1277 4.0874 4.0594 

1500 10.528 5.8974 4.8525 4.4700 4.2890 4.1890 4.1277 4.0874 4.0594 

 
In comparison, it can be seen in table 2 to 5 and figure 4 to 9 that the value of the critical buckling load 

using polynomial is higher than that of trigonometric functions.  This is quite expected because the 

trigonometric function gives higher value of stiffness coefficient than polynomial, and therefore considers safer 

to use in the thick plate analysis. Comparing the buckling coefficients K of the Ibeabuchi et al., 2020 which 

made use of the polynomial function of the work principle with KT  from an analytical solution that used a 

trigonometric function, shows good agreement (average percentage difference is 0.446%) with but varied widely 

with the present study. 

The percentage difference of critical buckling load between the present study using polynomial, and 

that of trigonometric function for an isotropic rectangular thick plate elastically restrained at the four edges 

(CCCC) under uniaxial compressive load at varying aspect ratio is presented in Table 6. The result showed that 

the lowest average percentage difference is 1.3841 which occur at ratio and the highest average percentage 
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difference is 5.6543 which occur at a ratio. This means that as the aspect ratio (span to thickness ratio and length 

to width ratio) increases, the value of the buckling load of the plate using the two approaches (polynomial and 

trigonometric) widens.  

The summary result of the comparison made as presented in Table 6 and Figure 4 to 9, shows that the 

present study predicts slightly higher values for all aspect ratios. This proves some level safety and reliability of 

this method as it will not put the structure into danger. The total average percentage difference between the 

present study using the polynomial shear deformation theory and that of trigonometric is 4.3%. This shows that 

at the 92 % confidence level both methods from the present study are the same. This value has been less than 

5% is sufficient in the statistical analysis showed that the present method can be used with confidence for 

buckling analysis of CCCC thick plate. 
 

Table 6: Percentage difference of Buckling Load on the CCCC Rectangular Plate between Polynomial and 

trigonometric Approach 

 

 

Figure 4: Graph of Critical buckling load 
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Critical Buckling load 
Poly. Trig. 

                                

  
 

 
                                                            

4 1.3841 1.8212 2.3163 2.6916 2.9498 3.1270 3.2514 3.3411 3.4076 

5 1.6526 2.1720 2.7697 3.2026 3.4909 3.6846 3.8187 3.9146 3.9851 

10 2.2291 2.9027 3.6993 4.2326 4.5707 4.7911 4.9408 5.0463 5.1233 

15 2.3831 3.0928 3.9365 4.4921 4.8409 5.0670 5.2199 5.3275 5.4058 

20 2.4421 3.1650 4.0262 4.5899 4.9426 5.1707 5.3248 5.4331 5.5118 

30 2.4861 3.2186 4.0925 4.6622 5.0177 5.2472 5.4022 5.5110 5.5901 

40 2.5019 3.2378 4.1163 4.6880 5.0444 5.2745 5.4298 5.5388 5.6180 

50 2.5093 3.2467 4.1270 4.7000 5.0569 5.2873 5.4426 5.5517 5.6310 

60 2.5133 3.2516 4.1333 4.7066 5.0637 5.2942 5.4496 5.5588 5.6381 

70 2.5157 3.2545 4.1370 4.7105 5.0678 5.2984 5.4539 5.5630 5.6424 

80 2.5173 3.2565 4.1393 4.7131 5.0705 5.3011 5.4566 5.5658 5.6452 

90 2.5184 3.2578 4.1410 4.7149 5.0723 5.3030 5.4585 5.5677 5.6471 

100 2.5192 3.2587 4.1421 4.7162 5.0737 5.3043 5.4599 5.5691 5.6485 

1000 2.5224 3.2627 4.1471 4.7215 5.0792 5.3100 5.4656 5.5748 5.6542 

1500 2.5225 3.2627 4.1471 4.7215 5.0792 5.3100 5.46561 5.5749 5.6543 

Average % 

difference 2.35 3.04 3.87 4.4176 4.76 4.98 5.14 5.24 5.32 

Total 

Average % 

difference 

 

4.3 
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Figure 5: Graph of Critical buckling load  
   

 

   
 versus aspect ratio of a square rectangular plate 

 

 

Figure 6: Graph of Critical buckling load 
   

 

    
  versus aspect ratio of a rectangular plate with length to width 

ratio of 5. 

 

 

Figure 7: Graph of Critical buckling load  
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V. Conclusion ad Recommendation 
From the result obtained in this study, it is observed that CPT and gives reliable results in thin plates, 

but over-predicts buckling loads in relatively thick plates. Also, the RPT gives is an approximate relation for 

buckling analysis of thick plate, whereas 3-D theory yields an exact solution. This proved that the displacement 

functions (polynomial and trigonometric) developed in this work are recommended for the thick plate analysis. 
Data Availability Statement: All data, models, or code that support the findings of this study are available 

from the corresponding author upon reasonable request. 
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