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Abstract: The study described here investigates the nonlinear static and ultimate behaviour of Box girder 

Cable stayed bridge up to failure. The nonlinear stress-strain behaviour, together with distortion and warping 

are considered for more accurate analysis of prestressed single box-girder cable stayed bridges. Concrete 

cracking moment and ultimate strength are determined in order to confirm the structure capacity against 

failure. The interaction between concrete and reinforcing steel due to the tension stiffening related with 

concrete cracking is also considered. 
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I. Introduction  
During the last three decades, there has been increasing interest in the field of cable stayed bridge 

systems all over the world. Researchers have developed different techniques of analysis and have considered 

many aspects of nonlinearity.  

In a simplified approach, the cable-stayed bridge is assumed a linear elastic system, which may be 

analyzed using the standard stiffness or flexibility methods. Tang (1971) has applied the transfer matrix method 

to nonlinear analysis of cable-stayed bridges in which a modified modulus of elasticity was used. Lazar (1972) 

studied the linear and nonlinear analyses using the stiffness matrix method. The nonlinear effects due to large 

deformations, the interaction of axial forces and bending moments, and due to the catenary’s effect of cables 

were considered. Fleming and Egeseli (1979) presented a combined incremental and iterative approach for two 

and three-dimensional nonlinear analyses of cable stayed bridges. Podolny and Scalzi (1986) presented 

influence lines for different cable arrangements. Seif and Dilger (1990) investigated both geometric and material 

nonlinearities and concluded that the material nonlinearity was dominant in the nonlinear static behavior of long 

span cable stayed bridges. The failure criteria adopted by Seif and Dilger is the formation of a plastic hinge.  

Troitsky (1999), Wilson and Gravelle (1991), and Xanthakos (1993) reported that one could ignore cables 

nonlinearity by linearization of cables’ stiffness, using an equivalent modulus of elasticity.   

 

II. Nonlinear Analysis  
Cable-stayed bridges exhibit geometric nonlinearity due to: (1) The nonlinear axial force elongation 

behavior for the inclined cable stays under different tension load levels due to the sag initiated by their own 

weight (sag effect), (2) the combined axial load and bending moment interaction for both girder and tower 

elements, and (3) large displacement associated with the geometrical changes of the structure. Under service 

load, it is sufficient to account for geometric nonlinearity, but near failure, load material nonlinearity must also 

be considered.  

 

II.1 Geometric Nonlinearities 

The most known cause of geometric nonlinearity of the system is the sagging of the cables. The axial 

stiffness of a stay cable depends on two factors; (1) the sag of the cable and (2) its axial deformation. The sag 

has a softening effect on the cable stiffness, which results in a nonlinear axial force-displacement relationship. 

The cable has a low stiffness for relatively large values of the sag, however as the sag decreases the cable 

stiffness increases and the behavior of the cable approaches that of a truss bar in tension. 

Referring to figure (1), the secant modulus, Esec is given by (John 1988): 



Ultimate Behaviour of Prestressed Box Girder Cable Stayed Bridgesaper Title  

 

DOI: 10.9790/1684-1605035265                                 www.iosrjournals.org                                             53 | Page 

2 2

1 2

2 2

sec 1 2

1 1 ( cos )
   ( )

E E 24 .

  
 

 


                                                     (1) 

Where E is the modulus of elasticity, γ  is the weight density, I is the chord length,  is the cable angle of 

inclination, σ and σ2 are cable stresses in points 1 and 2 along the cable respectively.  

To determine the secant modulus the cable stresses σ and σ2   must be known. In most cases σ2 is not known 

and has to be estimated resulting in an iterative procedure. 

Substituting σ2 = σ   into equation (1), the tangent modulus Etan is given by: 
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In this study, the tangent modulus is used for an initial estimate of the cable stiffness.  

The second source of geometric nonlinearity is the combined axial force and bending moment effect. 

The presence of axial force affects the stiffness of the non-prismatic trapezoidal box beam element used in 

modeling the deck and the tower. The last source of geometric nonlinearity is due to the large deflection of the 

structure. Like all nonlinear structural analysis problems, the nonlinear analysis of long span cable stayed 

bridges finally reduces to forming nonlinear incremental equilibrium equations of the system and to solving 

these equations.  
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Fig. 1.a  Inclined Stay Cable and Equivalent 

Horizontal Stay Cable With Equal 

Deformational Characteristics 

Fig. 1.b Linearized Force-Displacement Relationships; 

Secant and Tangent Stiffness of a Stay Cable 

 

 

II.2 Material Nonlinearities 

For elastic analysis under working loads, linear idealization is universally accepted. However, for the 

analysis of structures under overload up to collapse, nonlinear behavior for both concrete and steel must be 

considered. 

 In this study, the mathematical model adopted for the stress strain curve of concrete is the one 

suggested by Kang (1977,1989) as shown in figure (2). A simple load reversal model in the stress strain curve 

accounts for loading and unloading. For this model it is assumed that the slope in the load reversal path is the 

same as the initial tangent modulus Ei , and that tensile failure or cracking of concrete occurs when tensile stress 

exceeds its maximum tensile strength f\t . Once concrete has cracked, it cannot take any tensile stress again, but 

it can take compressive stresses upon closing of the crack. Thus the crack is assumed to close in compression 

and reopen in tension without any resistance. Also concrete is defined as yielded when its compressive 

mechanical strain exceeds εo which is the strain corresponding to the maximum compressive stress f"c , whereas 

compressive failure or crushing of concrete occurs when the compressive mechanical strain exceeds the 

maximum compressive strain εu.  

The parameters necessary to define this concrete stress-strain curve are the initial tangent modulus Ei, the 

maximum compressive strength f"c , the maximum tensile strength f\t and the ultimate strain εu. With lack of 



Ultimate Behaviour of Prestressed Box Girder Cable Stayed Bridgesaper Title  

 

DOI: 10.9790/1684-1605035265                                 www.iosrjournals.org                                             54 | Page 

experimental data, those parameters may be obtained using different codes of practice. Recommendations of the 

ACI Committee 209 (1997) are frequently used for bridge design.  

The complete stress-strain relationship of concrete can be summarized by the following equations:  
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m

i
σ E . ε                                                                                                (3) 
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Regions (6) and (7): 

 m
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σ E ε ε                                                                               (6) 

Where εr is the residual strain due to unloading. 

 

For the reinforcing steel, a bilinear model, which is symmetrical about the origin as shown in figure 

(3), is used in this study. The load reversal path is assumed to stay within the envelope indicated by the dotted 

lines and failure is assumed to occur when the mechanical strain εm exceeds the ultimate strain εu . Four 

different material states can be identified in the stress-strain curve and the corresponding equations can be 

written as follows: 

Case (1): In primary tension or compression 
m

1
σ E . ε                                                                                  (7) 

Case (2): Yielded 
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2 y 2 y
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Case (3): In the load reversal path 
m

1 r
 = E ( )                                                                                   (9) 

Case (4):  Failed 

 

Where E1 is the initial modulus up to yielding, E2 is the second modulus after yielding, σy  is the yield stress, 

εy is the yield strain and εr is the residual strain due to load reversal.  

A multi linear stress strain curve as shown in figure (4) is adopted for the prestressing steel, where the 

slope of each of the unloading and reloading path is assumed the same as the initial modulus. Since the 

prestressing steel is never subjected to compressive stresses the compressive stress strain curve is not 

considered. The state of stress is given by the following equations:  

 j
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              , j= 1,2,...                                (10)   
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As for cables, the algorithm used in this study to determine the nonlinear material state is best explained by an 

example as follows:  

(1) Assume that the cable steel has a tri-linear stress strain curve as shown in figure (5.a). Further, assume that 

the cable has a chord length I and a weight density  , and let the initial stress in the cable be σ0 . 

(2) Generate the stress (σ) versus the apparent strain ( ̂ ) curve shown in figure (5.b), where the strain( ̂ j) 
corresponding to the stress σ j  is given by (Seif and Dilger,1990): 
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(3) Assume that an element end axial displacement   is imposed, and compare   with the ( 1, 2, 3) array. 

For example if   is such that 1 2
    

 , then the new total stress in the cable is given by: 

 1
ˆ                         , where                                                           (13) 
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Equation (14) is solved for 

̂
 using the Newton-Raphson method.  
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Fig. 2   Stress Strain Curve of Concrete 
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 Fig. 3  Uni-axial Stress Strain Curve of Reinforcing 

Steel 
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                     Fig. 4  Uni-axial Multi Linear Stress Strain Curve of Prestressing Steel  
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Fig. 5.a  Tri-Linear Stress Strain Curve of the Cable 

Steel 

Fig. 5.b  Stress Vs Apparent Strain Plot of the Stay 

Cable  

 
1)  

III. Bridge Modeling  
The bridge deck and towers are modeled using a non-prismatic thin-walled trapezoidal box beam 

element. This element has eight displacement modes (DOF) at each node to account for the transverse distortion 

and the longitudinal warping. The formulation is based on the finite element method combined with the thin-

walled beam theory. The reinforcing steel and the prestressing steel tendons are also considered. Ismail (2002) 

gives a detailed discussion of the derivation of the element tangent stiffness matrix, the internal forces and the 

initial strain load vector. Stay cables are modeled using a combined element of an inextensible cable, which 

models the sag effect, and an elastic truss element (Seif and Dilger, 1990). 

 

IV. Case Studies  
Three different types of cable-stayed bridges are analyzed using the developed computer program 

(Ismail, 2002). Cable stays are arranged in a symmetric radiating pattern, fan pattern or harp pattern. All three 

bridges are assumed to have the same span length and same geometric and materials properties. The dead load is 

first applied to the bridge, then a uniformly distributed load is applied to the deck in increments until maximum 

capacity of the bridge is reached. The ultimate strength of the bridge is achieved when an equivalent failure 

mechanism occurs. The deflected shapes of the bridge under the dead load effect, at the formation of the first 

plastic hinge (when the maximum capacity of deck cross section is reached) and under the ultimate load effect 

are plotted. Bending moments due to dead load, uniformly distributed service load (according to AASHTO 

specifications) and at ultimate load are obtained. 

 

IV.1 Bridge Geometry and Material Properties 

Geometry of the bridge and the properties of the used materials are adapted from a technical 

publication by Seif and Dilger (1990). The bridges have a central span of 200m and two side spans of 90m each, 

while the total height of the towers is 82m. The deck consists of 19.2m wide and 2.0m deep reinforced 

prestressed concrete box girder segments. The closure segment in the middle of the central span is 20m long 

while other segments are 15m long. Each segment is supported by a cable, which in turn is anchored to the 

tower. The towers are H- shaped and each leg of the H consists of a reinforced concrete single box girder 

section. The deck is supported at the tower by means of a roller bearing and its movement in the longitudinal 

direction is only constrained by the cable stays. Figure (6) shows the three bridge models while figure (7) shows 

the cross sections of the bridge deck and tower.    
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Fig. 6.a   Radiating Cable-Stayed Bridge Model 

 

 
Fig. 6.b   Fan Cable-Stayed Bridge Model 

 

 
Fig. 6.c   Harp Cable-Stayed Bridge Model 
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Fig. 7 Cross Sections of Bridge Deck and Tower 

 

Deck and tower concrete has a maximum cylinder compressive strength of fc'= 40 MPa, a modulus of 

elasticity Ec= 30000 MPa, and an ultimate strain εu = 0.0035. The steel reinforcement has a yield strength fy = 

400 MPa, moduli of elasticity Es1 = 200000 MPa and Es2 = 930 MPa and an ultimate strain εu =0.0300 . Both 

the cable steel and, modulus of elasticity, the prestressing steel have a multi-linear stress strain curve, and the 

coordinates of the ends of each linear segment are given in tables (1) and (2). 

 

Table (1) Stress Strain Curve Data of the Stay 

Cables Steel 
Point No. Stress (MPa) Strain 

1 

2 

3 

4 

5 

1240 

1447 

1653 

1722 

1860 

.0072 

.0088 

.0120 

.0160 

.0500 
 

Table (2) Stress Strain Curve Data of the Deck 

Prestressing Steel 
Point No. Stress(MPa) Strain 

1 

2 

3 

4 

5 

1354 

1516 

1653 

1688 

1860 

.0072 

.0090 

.0115 

.0135 

.0580 

 
 

 

Table (3) gives the cables areas and initial forces. It is to be noted that each cable initial force is applied 

such that its vertical component is equal to the deck dead load supported by the cable at the cable node. The 

reinforcement of the deck cross section is As1=150 cm2, As2=50 cm2 and As3=150 cm2 arranged in the top 

flange, each web and each bottom flange respectively. The deck prestressing tendons are post tensioned and 

have a linear profile, which coincides with the centroid of the concrete section. The cross section of each tendon 

is 80 cm2 and the prestressing force is equal to 820 kN. Tendons are extended between nodes 1&18, 14&18 and 

16&18. The reinforcement of the tower box sections is As1= As2=100 cm2 and As3=160 cm2 arranged in the 

top, middle and bottom cross sections respectively.  

 

Table (3) Cross Sectional Areas and Initial Forces in the Stay Cables 
Cable No. Cross Sectional Area, x103  (mm2) Initial Tension (Prestress)  (kN) 

Radiating Fan Harp 

1 

2 
3 

4 

5 
6 

7 

10 

10 
5 

5 

5 
5 

10 

4340 

3480 
2522 

2219 

1840 
1590 

4340 

4340 

3722 
2870 

2640 

2194 
1755 

4340 

4340 

4020 
3420 

3580 

3540 
3540 

4340 
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8 

9 
10 

11 

12 

10 

5 
5 

5 

5 

2848 

2622 
2188 

1840 

1590 

3046 

3029 
2603 

2194 

1755 

3290 

3610 
3530 

3540 

3540 

 

IV.2 Ultimate Load Analysis 

Figure (8) shows the deflected shape of the radiating type bridge under the effect of different load 

levels. The first plastic hinge is formed at the mid span of the bridge when 1.78 times the dead load is applied. A 

kink of a hinge in the deck profile at each of nodes 7 and 7/ is clear, indicating occurrence of an equivalent 

failure mechanism, when the applied load reaches 3.75 times the dead load. Figure (9) shows the bridge deck 

bending moments under the effect of different load levels. It is to be noted that under the dead load effect the 

positive moment at the mid span and the negative moment at the tower support are approximately equal and 

larger than the bending moments at the rest of the deck nodes. As the load increases the negative moment at 

node 7 increases much more rapidly than the positive moment at node 18. 

Figure (10) shows the deflected shape of the fan type bridge under the effect of different load levels. 

The first plastic hinge is also formed at the mid span of the bridge when 1.76 times the dead load is applied. An 

equivalent failure mechanism occurs when the bridge deck is subjected to a uniform load equals 3.5 times the 

dead load. Figure (11) shows the bridge deck bending moments under the effect of different load levels.  

Figure (12) shows the deflected shape of the harp type bridge under the effect of different load levels. 

Two plastic hinges are formed at the quarter points of the middle span of the bridge deck when 2.56 times the 

dead load is applied. The bridge fails when 2.83 times the dead load of the bridge deck is applied. Figure (13) 

shows the bridge deck bending moments under the effect of different load levels. 

Figure (14) shows the mid span deflection for different dead load multipliers up to failure for the three 

bridges. It can be observed that the radiating type bridge can resist loads 33% higher than the harp type. It can 

also be seen that the behavior of the harp type differs from that of the radiating and the fan types when the 

plastic hinges are formed due to the change of the structural system. Figure (15) shows the deflected shape of 

the bridge deck under the effect of the service load for the three bridges. The mid span deflection of the 

radiating type is 25% less than that of the harp type. The remarkably less deflected shape of the radiating type 

than that of the harp type indicates that the radiating type resists higher loads than the harp type. This occurs 

because the cables inclinations are higher for the radiating type. It is clear that an increase in the cable 

inclination increases its ability to resist the acting vertical loads. Figure (16)shows the ultimate bending moment 

diagrams for the three bridges. Comparison of results shows that the maximum bending moment at the central 

span is 50% higher for the radiating type than the harp type, which indicates the higher resistance of the 

radiating type. Figure (17) shows the cables forces under the effect of the ultimate loads for the three bridges. It 

can be observed that the radiating type resists more loads through the cables than the harp type, and that the 

largest gain in the cables forces occurred in the end cables (1, 2, 7 and 8). It is to be noted that under the effect 

of the ultimate loads the stresses in the stay cables of the three bridges did not exceed the yield strength.  

It is to be noted that Seif and Dilger (1990) investigated the ultimate capacity of the same three bridge 

types. A spaces frame element has been used to model the bridge deck and tower, and the formation of a plastic 

hinge in the bridge deck defined the ultimate strength of the bridge. Comparison with Seif and Dilger results 

shows an increase of 5% in the bridge capacity. In the current study the accuracy of the bridge deck and tower 

modeling and the ability of increasing the applied load after the formation of the plastic hinges enhances the 

analysis, and higher ultimate capacity of the bridge is obtained.   

 

 



Ultimate Behaviour of Prestressed Box Girder Cable Stayed Bridgesaper Title  

 

DOI: 10.9790/1684-1605035265                                 www.iosrjournals.org                                             60 | Page 

 
Fig. 8   Deflected Shape of Bridge under the Effect of Different Load levels (Radiating Type) 

 

 
Fig. 9   Bending Moment Diagrams (Radiating Type) 
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Fig. 10 Deflected Shape of Bridge Under the Effect of  Different Load levels   (Fan Type) 

 

 
Fig. 11   Bending Moment Diagrams  (Fan Type) 
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Fig. 12 Deflected Shape of Bridge Under the Effect of Different Load  levels  (Harp Type) 

 

 
Fig. 13   Bending Moment Diagrams  (Harp Type) 
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Fig. 14 Mid Span Deflection for Different Dead Load Multipliers for the Three Bridges 

 
Fig. 15 Deflected Shape of the Bridge Deck Under the Effect of Service Load for the Three Bridges 

 

 
Fig. 16 Ultimate Bending Moment Diagrams for the Three Bridges 
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Fig. 17 Cables Forces Under the Effect of Ultimate Loads for the Three Bridges 

 
V. Summary And Conclusions 

A developed nonlinear finite element computer program was used to investigate the static nonlinear 

behaviour of box girder cable stayed bridges up to failure. Both geometric and material nonlinearities are 

considered. A non-prismatic thin-walled trapezoidal box beam element, which takes into account the transverse 

distortion and the longitudinal warping, was used to model the bridge deck and towers. Three case studies; 

radiating type, fan type and harp type cable stayed bridges were investigated under the effect of an incremental 

uniformly distributed load until the ultimate strength of the bridge is achieved when an equivalent failure 

mechanism occurs.  

Comparison of results shows that for cable stayed bridge systems with the same bridge geometry and 

cross sectional and material properties of deck, towers and cables, the radiating type of cable arrangement is 

superior to other types of stay cable layouts. For the particular data used in this study, the radiating type system 

resists a failure load 33% higher than that of the harp type because the cables angles of inclination are higher. 

The increase in the slope of the cables increases their ability to resist the applied loads. On the other hand the 

radiating type requires more stay cable lengths than the fan or harp types. Moreover, the design and construction 

of the tower head for the radiating type is more complicated and costly.  

At the same load level, the internal forces in the deck are higher for the harp type than those of the 

radiating type. On the other hand, the radiating type resists more loads through the cables. Under the effect of 

service loads the mid span deflection of the radiating type is 25% less than that of the harp type.  

Comparison with published results showed good correlation. The accuracy of the bridge modeling and 

the ultimate behavior analysis emphasize the enhancement achieved in this current study. 
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