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Abstract: This paper presents the application of shear deformation theory for pure bending analysis of CCCS 

and SSFS rectangular isotropic using polynomial shape function. The theory herein accounts for shear 

deformation and no shear correction factor is required.The principle of elasticity is adopted for the formation of 

the total potential energy equation of a thick plate. The governing equations for determination of displacement 

coefficients were derived by subjecting the total potential energy equation to direct variation. Numerical studies 

of three edges clamped with one edge simply supported and three edges simply supported with one edge single 

free of support thick plate were carried out. The results obtained herein for in plane and transverse 

displacements and stresses were compared with those from previous works and observed that they have the 

same behavioral trend and are quite close. It is alsoobserved that at span to depth ratio of 100 the values of the 

obtained results herein coincides with that of Classical Plate Theory (CPT). This satisfied the assumption that at 

span to depth ratio of 100, a plate is consider to be thin plate and thin plate theory can be used for the analysis. 

Keywords:shear deformation, shear correction factor, vertical shear stress, deflection, displacement, potential 

energy 
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I. Introduction 
The effect of shear deformation has been the basis for thick plate theory. Refined plate theory is mostly 

used by previous researchers for thick plate analysis. This required the use of trigonometry displacement 

functions which involved the use of double Fourier series. The complexity of using double Fourier series for 

thick plate analysis has made most engineers resorted to thin plate analysis in the face of its (double Fourier) 

numerous challenges.The idealization of a thick plate as a thin plate by most engineers because the difficulty of 

handling double Fourier series of thick plate analysis always underestimates the stresses in the plate. The 

consequences of using these erroneous stresses in design and construction are structural failure and sometimes 

total collapse. Previous researchers have delved into different aspects of thick plate analysis such as: pure 

bending (Ghugal& George, 2010; Sayyad&Ghugal, 2012; Sayyad et al., 2016; etc), buckling (Avalos 

&Larondo, 1995; Wang et al., 2001; Kim al., 2009; Ibearugbulem et al., 2014; etc), free vibrations 

(Guruwamy& Yang, 1979; Gupta & Ansari, 1998; Wu & Liu; 2001; Sayyad&Ghugal, 2012; etc), isotropic 

plates (Raju & Rao, 1996; Sayyad, 2011; Sayyad&`Ghugal 2012, etc), orthotropic plates (Gupta & Lai, 1985; 

Shimpi& Patel, 2006; Chikathanker et al., 2013; etc), anisotropic plates (Krishna, 1984; Setoodeh&Karami, 

2004; Azhari&Kassaei, 2004; etc), graded laminated plates (Karama&Mistov, 2003; Goswami& Becker, 2013; 

Daouadji et al., 2013, Reddy, 2014; etc). One common observation is that most of these works are based mainly 

on trigonometric displacement functions. In the course of the development of refined plate theory, the 

assumption that the shear deformation line does not vary linearly with the depth of the plate was introduced. 

This according to many scholars helps to ensure that the vertical shear stress across the plate section does not 

remain constant, but varies parabolically with zero values at both the top and bottom surfaces (Ambartsumian, 

1958; Murty, 1984; Touratier, 1991; Karama&Mistou, 2003). They came up with different shear deformation 

line functions, here-in-after called F(z). However, their F(z) functions were not strictly based on the vertical 

shear stress mathematical formulation. If we follow the work of Timoshenko and Woinowsky-krieger, (1970), 

we shall note that maximum shear stress occurs at the mid surface (where z = 0) and the value of the maximum 

shear stress is one and half of nominal vertical shear stress. With most of the F(z) functions from the literature, 

we may obtain good profile (curve) for the deformation line and shear stress distribution across the section, but 

the midsurface value of shear stress may not coincide with that by Timoshenko and Woinowsky-krieger, 

(1970).Thus, the present study came up with these specific objectives: 

i. To develop a direct governing simultaneous equations for thick plate analysis 

ii. To formulation of a polynomial F(z) mathematical in line with works of Timoshenko 
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iii. To use polynomial displacement functions, variation calculus analysis. 

II. Theoritical Formulation 
The plate under considerationoccupies in x-y-z Cartesian coordinate system region: 

0 ≤  x ≤  a; 0 ≤  y ≤  b; −𝑡 2 ≤ 𝑧 ≤ 𝑡 2  

The dimensions (lengths) along x, y and z axes are a, b and t respectively. 

 

 
Figure 1: Geometry of a rectangular thick plate under load 

 

To achieve the specific objectives of this study, we used the under-listed assumptions: 

i. The displacement components u and v are the in-plane displacements in x and y directions respectively and 

w is the transverse displacement in z-direction. These displacements are small when compared with plate 

thickness. 

ii. The in-plane displacements, u and v are differentiable with respect to x, y and z coordinates, while the 

transverse displacement (deflection), w is only differentiable with respect to x and y coordinates. This 

means that the first derivative of w with respect to z is zero. Consequently, z = 0. 

iii. The effect of the transverse normal stress on the gross response of the plate is small when compared with 

other stresses. Thus, it can be neglected. That is z = 0. 

iv. The vertical line that is initially normal to the middle surface of the plate before bending is no longer 

straight nor normal to the middle surface after bending. That is  ≠ c. Where  is the total rotation of the 

middle surface in this case, c is the classical plate theorem rotation of the middle surface.  

 

III. Kinematic Relations 
 The in-plane displacements composed of classical and shear deformation parts in line with the fourth 

assumption as stated herein. Ibeargbulem et al. (2016) gave the classical in-plane displacements (uc and vc) and 

shear deformation in-plane displacements (us and vs) as: 

𝑢𝑐 = −𝑧𝜃𝑐𝑥 = −𝑧
𝑑𝑤

𝑑𝑥
                     (1) 

𝑣𝑐 = −𝑧𝜃𝑐𝑦 = −𝑧
𝑑𝑤

𝑑𝑦
                      (2) 

𝑢𝑠 = 𝐹(𝑧)𝜃𝑠𝑥                                      (3) 

𝑣𝑠 = 𝐹(𝑧)𝜃𝑠𝑦                                       (4) 

  

 Where F(z) is the shear deformation profile of the vertical line, which was earlier (before bending) 

straight and normal to the middlle surface, but after bending refused to be straight nor being normal to the 

middle surface. For classical part of deformation F(z) remained straight and normal to the middle surface. That 

is F(z) is the same as z for classical part of dewformation. Ibearugbulem et al. (2016) defined the shear 

deformation profile line as: 

𝐹 𝑧 =
3𝑧

2
 1 −

4

3
 
𝑧

𝑡
 

2

                  (5𝑎) 

This is written in non dimensional form as: 

𝐹 𝑆 =
3𝑆𝑡

2
 1 −

4

3
𝑆2                 (5𝑏) 
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Where S = z/t. Adding equations (1) and (2) gave the in-plane displacement of thick plate along x direction as: 

𝑢 = −𝑧
𝑑𝑤

𝑑𝑥
+ 𝐹(𝑧)𝜃𝑠𝑥                         (6) 

Similarly, adding equations (2) and (3) gave the in-plane displacement of thick plate along y direction as: 

𝑣 = −𝑧
𝑑𝑤

𝑑𝑦
+ 𝐹(𝑧)𝜃𝑠𝑦                          (7) 

Let the deflection (transverse displacement), w be defined as: 

𝑤 = 𝑐1ℎ                                                   (8) 
Where c1 and h are the yet to be determined coefficient of deflection and shape function of deflection 

respectively. Substituting equation (8) into equations (6) and (7) respectively gave: 

𝑢 =  −𝑐1𝑧 +  𝑐2𝐹(𝑧) 
𝑑ℎ

𝑑𝑥
                  (9) 

𝑣 =  −𝑐1𝑧 +  𝑐3𝐹(𝑧) 
𝑑ℎ

𝑑𝑦
                   (10) 

Where c2 and c3 are coefficients of shear deformation rotations along x and y directions (sx and sy). 

 

IV. Strain - Displacement Relations 
 Based on the second assumption herein, that deflection is not differentiable with respect to z, it follows 

that z is equal to zero. Conseuently, the normal stress along z axis is also taken to be zero. Thus, engineering 

strain components remain only five with five coreesponding stress components. Thefive engineering strain 

components are defined as: 

𝑥  =  
𝑑𝑢

𝑑𝑥
=  −𝑐1𝑧 + 𝑐2𝐹(𝑧) 

𝑑2ℎ

𝑑𝑥2
    (11) 

𝑦  =  
𝑑𝑣

𝑑𝑦
=  −𝑐1𝑧 + 𝑐3𝐹(𝑧) 

𝑑2ℎ

𝑑𝑦2
    (12) 


𝑥𝑦

 =  
𝑑𝑢

𝑑𝑦
+

𝑑𝑣

𝑑𝑥
=  −𝑐1𝑧 + 𝑐2𝐹(𝑧) 

𝑑2ℎ

𝑑𝑥𝑑𝑦
+  −𝑐1𝑧 + 𝑐3𝐹(𝑧) 

𝑑2ℎ

𝑑𝑥𝑑𝑦
 .  𝑇ℎ𝑎𝑡 𝑖𝑠: 


𝑥𝑦

=  −2𝑐1𝑧 + 𝑐2𝐹 𝑧 + 𝑐3𝐹(𝑧) 
𝑑2ℎ

𝑑𝑥𝑑𝑦
   (13) 


𝑥𝑧

 =  
𝑑𝑢

𝑑𝑧
+

𝑑𝑤

𝑑𝑥
 =  −𝑐1 + 𝑐2

𝑑𝐹 𝑧 

𝑑𝑧
 
𝑑ℎ

𝑑𝑥
+ 𝑐1

𝑑ℎ

𝑑𝑥
 = 𝑐2

𝑑𝐹 𝑧 

𝑑𝑧

𝑑ℎ

𝑑𝑥
                                  (14) 


𝑦𝑧

 =  
𝑑𝑣

𝑑𝑧
+

𝑑𝑤

𝑑𝑦
 =  −𝑐1 + 𝑐3

𝑑𝐹 𝑧 

𝑑𝑧
 
𝑑ℎ

𝑑𝑦
+ 𝑐1

𝑑ℎ

𝑑𝑦
 = 𝑐3

𝑑𝐹 𝑧 

𝑑𝑧

𝑑ℎ

𝑑𝑦
                                  (15) 

 

V. Constitutive Relations 
The five stress components are defined in terms of strains as:  

𝑥  =  
𝐸

1 − 2
 𝑥 +  𝑦                        (16) 

𝑦  =  
𝐸

1 − 2
 

𝑥
+  𝑦                         (17) 

𝑥𝑦  =  
𝐸(1 − )

1 − 2

𝑥𝑦

                                (18) 

𝑥𝑧  =  
𝐸(1 − )

1 − 2

𝑥𝑧

                                 (19) 

𝑦𝑧  =  
𝐸(1 − )

1 − 2

𝑦𝑧

                                  (20) 

VI. Stress – Displacement Equations 
Substituting equations (11) to (13) into equations (14) to (18) where appropriate gave: 

𝑥  =  
𝐸

1 − 2
  −𝑐1𝑧 + 𝑐2𝐹(𝑧) 

𝑑2ℎ

𝑑𝑥2
+   −𝑐1𝑧 + 𝑐3𝐹(𝑧) 

𝑑2ℎ

𝑑𝑦2
      (21) 

𝑦  =  
𝐸

1 − 2
 𝑧  𝑐1 +

𝐹(𝑧)

𝑧
𝐵2 

𝑑2ℎ

𝑑𝑥2
+   −𝑐1𝑧 + 𝑐3𝐹(𝑧) 

𝑑2ℎ

𝑑𝑦2
        (22) 

𝑥𝑦  =  
𝐸(1 − )

2 1 − 2 
 −2𝑐1𝑧 + 𝑐2𝐹 𝑧 + 𝑐3𝐹(𝑧) 

𝑑2ℎ

𝑑𝑥𝑑𝑦
                       (23) 
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𝑥𝑧  =  
𝐸(1 − )

2 1 − 2 
𝑐2

𝑑𝐹 𝑧 

𝑑𝑧

𝑑ℎ

𝑑𝑥
                              (24) 

𝑦𝑧  =  
𝐸(1 − )

2 1 − 2 
𝑐3

𝑑𝐹 𝑧 

𝑑𝑧

𝑑ℎ

𝑑𝑦
                               (25) 

 

Total Potential Energy 
Total potential energy is the summation of strain energy, U and external work, V. that’s  
 =  𝑈 + 𝑉                                                           (26) 
Let’s define external work as: 

𝑉 =  −𝑞   𝑤
𝑦𝑥

𝑑𝑥𝑑𝑦                                    (27) 

Let’s also define strain energy mathematically as: 𝑈 =      . 𝑑𝑧

𝑡

2

−
𝑡

2

 
𝑦𝑥

𝑑𝑥𝑑𝑦.  𝑇ℎ𝑎𝑡 𝑖𝑠: 

 𝑈 =       𝑥𝑥 + 𝑦𝑦 + 𝑥𝑦 𝑥𝑦 + 𝑥𝑧 𝑥𝑧 + 𝑦𝑧 𝑦𝑧  𝑑𝑧

𝑡

2

−
𝑡

2

 
𝑦𝑥

𝑑𝑥𝑑𝑦    (28) 

Applying equations (11) and (21), (12) and (22), (13) and (23), (14) and (24), and (15) and (25) respectively 

gave: 

𝑥𝑥 =  
𝐸

1 − 2
  𝑧2𝑐1

2 − 2𝑐1𝑐2𝑧𝐹(𝑧) + 𝑐2
2𝐹(𝑧)2  

𝑑2ℎ

𝑑𝑥2
 

2

+  𝑧2𝑐1
2 − 𝑐1𝑐2𝑧𝐹 𝑧 − 𝑐1𝑐3𝑧𝐹(𝑧) + 𝑐2𝑐3𝐹(𝑧)2  

𝑑2ℎ

𝑑𝑥𝑑𝑦
 

2

   (29) 

𝑦𝑦 =  
𝐸

1 − 2
  𝑧2𝑐1

2 − 2𝑐1𝑐3𝑧𝐹(𝑧) + 𝑐3
2𝐹(𝑧)2  

𝑑2ℎ

𝑑𝑦2
 

2

+  𝑧2𝑐1
2 − 𝑐1𝑐2𝑧𝐹 𝑧 − 𝑐1𝑐3𝑧𝐹(𝑧) + 𝑐2𝑐3𝐹(𝑧)2  

𝑑2ℎ

𝑑𝑥𝑑𝑦
 

2

   (30) 

𝑥𝑦 . 
𝑥𝑦

 =  
𝐸(1 − )

2 1 − 2 
 4𝑐1

2𝑧2 − 4𝑐1𝑐2𝑧𝐹 𝑧 − 4𝑐1𝑐3𝑧𝐹 𝑧 + 𝑐2
2𝐹(𝑧)2 + 2𝑐2𝑐3𝐹(𝑧)2

+ 𝑐3
2𝐹(𝑧)2  

𝑑2ℎ

𝑑𝑥𝑑𝑦
 

2

                   (31) 

𝑥𝑧 . 
𝑥𝑧

 =  
𝐸(1 − )

2 1 − 2 
𝑐2

2  
𝑑𝐹(𝑧)

𝑑𝑧
 

2

 
𝑑ℎ

𝑑𝑥
 

2

           (32) 

𝑦𝑧 . 
𝑦𝑧

 =  
𝐸(1 − )

 1 − 2 
𝑐3

2  
𝑑𝐹(𝑧)

𝑑𝑧
 

2

 
𝑑ℎ

𝑑𝑦
 

2

          (33) 

Substituting equations (39) to (33) into equation (28) gave: 

𝑈 =  
𝐷

2
  [

𝑦𝑥

𝑔1𝑐1
2 − 2𝑔2𝑐1𝑐2 + 𝑔3𝑐2

2]  
𝑑2ℎ

𝑑𝑥2
 

2

 

+  2𝑔1𝑐1
2 − 2𝑔2𝑐1𝑐2 − 2𝑔2𝑐1𝑐3 +

1

2
𝑔3𝑐2

2 + 𝑔3𝑐2𝑐3 +
1

2
𝑔3𝑐3

2  
𝑑2ℎ

𝑑𝑥𝑑𝑦
 

2

 

+  𝑔3𝑐2𝑐3 −
1

2
𝑔3𝑐2

2 −
1

2
𝑔3𝑐3

2  
𝑑2ℎ

𝑑𝑥𝑑𝑦
 

2

 

+ 𝑔1𝑐1
2 − 2𝑔2𝑐1𝑐3 + 𝑔3𝑐3

2  
𝑑2ℎ

𝑑𝑦2
 

2

+ (1 − )
𝛼2

2
𝑔4𝑐2

2  
𝑑ℎ

𝑑𝑥
 

2

+  1 −  
𝛼2

2
𝑔4𝐵3

2  
𝑑ℎ

𝑑𝑦
 

2

] 𝑑𝑥𝑑𝑦     (34) 

𝑊ℎ𝑒𝑟𝑒: 𝐷 =
𝑡3

12
 

𝑔1 =

  𝑧2𝑑𝑧
𝑡

2

−
𝑡

2

 

𝐷 
  = 1                        (35) 
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𝑔2 =

  𝑧𝐹 𝑧 𝑑𝑧
𝑡

2

−
𝑡

2

 

𝐷 
                            (36) 

𝑔3 =

  𝐹(𝑧)2𝑑𝑧
𝑡

2

−
𝑡

2

 

𝐷 
                           (37) 

𝛼2𝑔4 =

   
𝑑𝐹(𝑧)

𝑑𝑧
 

2

𝑑𝑧
𝑡

2

−
𝑡

2

 

𝐷 
                    (38) 

The flexural rigidity of the plate is: 

𝐷 =
𝐸

1 − 2
∗ 𝐷 =  

𝐸𝑡3

12(1 − 2)
         (39) 

Let’s define the span-to-depth ratio as 

∝ =
𝑎

𝑡
                                                        (40) 

Let define non dimensional coordinates R and Q and the span-span aspect ratio, P as: 

𝑅 =
𝑥

𝑎
𝑥 = 𝑎𝑅                                      (41) 

𝑄 =
𝑦

𝑏
𝑦 = 𝑏𝑄                                      (42) 

𝑃 =
𝑏

𝑎
𝑏 = 𝑎𝑃                                       (43) 

Substituting equations (27), (34) and (41) to (43)into equation (26) gives: 

 =
𝑎𝑏𝐷

2𝑎4
  [

1

0

1

0

𝑔1𝑐1
2 − 2𝑔2𝑐1𝑐2 + 𝑔3𝑐2

2]   
𝑑2ℎ

𝑑𝑅2
 

2

 

+
1

𝑃2
 2𝑔1𝑐1

2 − 2𝑔2𝑐1𝑐2 − 2𝑔2𝑐1𝑐3  
𝑑2ℎ

𝑑𝑅𝑑𝑄
 

2

 

(1 + 𝜇)

𝑃2
𝑔3𝑐2𝑐3  

𝑑2ℎ

𝑑𝑅𝑑𝑄
 

2

 

+
(1 − )

2𝑃2
 𝑔3𝑐2

2 + 𝑔3𝑐3
2  

𝑑2ℎ

𝑑𝑅𝑑𝑄
 

2

 

+
(1 − )𝛼2

2
𝑔4𝑐2

2  
𝑑ℎ

𝑑𝑅
 

2

 

+
(1 − )𝛼2

2𝑃2
𝑔4𝑐3

2  
𝑑ℎ

𝑑𝑄
 

2

] 𝑑𝑅𝑑𝑄 

−𝑎𝑏  𝐹𝐹
1

0

1

0

𝑑𝑅𝑑𝑄         (44) 

 

VII. Direct Governing Equations 
This total potential energy contains three unknown coefficients (c1, c2 and c3) for deflection, rotation in x axis 

and rotation in y axis. Differentiating total potential energy equation with respect to c1, c2 and c3 in turn will give 

three simultaneous equations.  
𝑑

𝑑𝑐1

 =
𝑑

𝑑𝑐2

=
𝑑

𝑑𝑐3

= 0                    (45) 

Substituting equation (44) into equation (45) gave in matrix form: 

 

𝑟11 𝑟12 𝑟13

𝑟12 𝑟22 𝑟23

𝑟13 𝑟23 𝑟33

  

𝑐1

𝑐2

𝑐3

 =
𝑞𝑎4

𝐷
 
𝐹𝑟𝑞
0
0

    (46𝑎) 

 

𝑟11 𝑟12 𝑟13

𝑟12 𝑟22 𝑟23

𝑟13 𝑟23 𝑟33

  

𝐵1

𝐵2

𝐵3

 =  
𝐹𝑟𝑞
0
0

    (46𝑎) 

Where 

𝐵𝑖 =
𝑐𝑖

 
𝑞𝑎 4

𝐷
 

= 𝑐𝑖  
𝐷

𝑞𝑎4
 ;     𝑐𝑖 = 𝐵𝑖  

𝑞𝑎4

𝐷
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𝑟11 = 𝑔1  𝑘1 + 2
𝑘2

𝑃2
+

𝑘3

𝑃4
 ; 𝑟12 = −𝑔2(𝑘1 +

𝑘2

𝑃2
) 

𝑟13 = −𝑔2  
𝑘2

𝑃2
+

𝑘3

𝑃4
 ; 𝑟23 =

(1 + 𝜇)

2𝑃2
𝑔3𝑘2 

𝑟22 = 𝑔3𝑘1 +
(1 − 𝜇)

2𝑃2
𝑔3𝑘2 +

(1 − ) ∝2

2
𝑔4𝑘4 

𝑟33 =
(1 − 𝜇)

2𝑃2
𝑔3𝑘2 +

1

𝑃4
𝑔3𝑘3 +

(1 − 𝜇) ∝2

2𝑃2
𝑔4𝑘5 

𝑘1 =    
𝑑2ℎ

𝑑𝑅2
 

21

0

1

0

𝑑𝑅𝑑𝑄 

𝑘2 =    
𝑑2ℎ

𝑑𝑅𝑑𝑄
 

21

0

1

0

𝑑𝑅𝑑𝑄 

𝑘3 =    
𝑑2ℎ

𝑑𝑄2
 

21

0

1

0

𝑑𝑅𝑑𝑄; 

𝑘4 =    
𝑑ℎ

𝑑𝑅
 

21

0

1

0

𝑑𝑅𝑑𝑄 

𝑘5 =    
𝑑ℎ

𝑑𝑄
 

21

0

1

0

𝑑𝑅𝑑𝑄; 𝐹𝑟𝑞 =   ℎ
1

0

1

0

𝑑𝑅𝑑𝑄 

 

VIII. Definition Of Some Quantities 
From equation (8) it is gathered that: 

𝑤 = 𝑐1ℎ =  𝐵𝑖  
𝑞𝑎4

𝐷
  . ℎ ⟹ 𝑤 = 𝐵𝑖ℎ  

𝑞𝑎4

𝐷
  

𝑤 = 𝑤  
𝑞𝑎4

𝐷
 = 𝐵1ℎ  

𝑞𝑎4

𝐷
  

𝑢 = 𝑢  
𝑞𝑎4

𝐷
 =

1

∝
 −𝐵1𝑆 +  𝐵2𝐹(𝑆) 

𝑑ℎ

𝑑𝑅
.  

𝑞𝑎4

𝐷
  

𝑣 = 𝑣  
𝑞𝑎4

𝐷
 =

1

𝑃 ∝
 −𝐵1𝑆 +  𝐵3𝐹(𝑆) 

𝑑ℎ

𝑑𝑄
 
𝑞𝑎4

𝐷
  

𝜎𝑥 = 𝜎𝑥    . 𝑞 =
𝐸

 1 − 2 
 
 −𝐵1𝑆 + 𝐵2𝐹 𝑆  

∝ 𝑎

𝑑2ℎ

𝑑𝑅2
+ 

 −𝐵1𝑆 + 𝐵3𝐹(𝑆) 

𝑃2 ∝ 𝑎

𝑑2ℎ

𝑑𝑄2
  

𝑞𝑎4

𝐷
  

That is: 

𝜎𝑥 = 𝜎𝑥    . 𝑞 = 12𝑞 ∝2   −𝐵1𝑆 + 𝐵2𝐹 𝑆  
𝑑2ℎ

𝑑𝑅2
+



𝑃2
 −𝐵1𝑆 + 𝐵3𝐹(𝑆) 

𝑑2ℎ

𝑑𝑄2
  

Similarly; 

 

𝜎𝑦 = 𝜎𝑦    . 𝑞 = 12𝑞 ∝2   −𝐵1𝑆 + 𝐵2𝐹 𝑆  
𝑑2ℎ

𝑑𝑅2
+

1 

𝑃2
 −𝐵1𝑆 + 𝐵3𝐹(𝑆) 

𝑑2ℎ

𝑑𝑄2
  

𝜏𝑥𝑦 = 𝜏𝑥𝑦     . 𝑞 =
6𝑞 ∝2

𝑃
  −2𝐵1𝑆 + 𝐵2𝐹 𝑆 + 𝐵3𝐹(𝑆) 

𝑑2ℎ

𝑑𝑅𝑑𝑄
 (1 − ) 

𝜏𝑥𝑧 = 𝜏𝑥𝑧    . 𝑞 = 6𝑞 ∝3  𝐵2

𝑑𝐹 𝑆 

𝑑𝑆

𝑑ℎ

𝑑𝑅
 (1 − ) 

𝜏𝑦𝑧 = 𝜏𝑦𝑧    . 𝑞 = 6𝑞 ∝3  
𝐵3

𝑃

𝑑𝐹 𝑆 

𝑑𝑆

𝑑ℎ

𝑑𝑄
 (1 − ) 

From the foregoing definitions, it was gathered that: 

𝑤 = 𝐵1ℎ                                                             (47) 

𝑢 =
1

∝
 −𝐵1𝑆 +  𝐵2𝐹(𝑆) 

𝑑ℎ

𝑑𝑅
                        (48) 

𝑣 =
1

𝑃 ∝
 −𝐵1𝑆 +  𝐵3𝐹(𝑆) 

𝑑ℎ

𝑑𝑄
                     (49)  

𝜎𝑥   = 12 ∝2   −𝐵1𝑆 + 𝐵2𝐹 𝑆  
𝑑2ℎ

𝑑𝑅2
+



𝑃2
 −𝐵1𝑆 + 𝐵3𝐹(𝑆) 

𝑑2ℎ

𝑑𝑄2
  (50) 
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𝜎𝑦   = 12 ∝2   −𝐵1𝑆 + 𝐵2𝐹 𝑆  
𝑑2ℎ

𝑑𝑅2
+

1 

𝑃2
 −𝐵1𝑆 + 𝐵3𝐹(𝑆) 

𝑑2ℎ

𝑑𝑄2
  (51)  

𝜏𝑥𝑦    =
6 ∝2

𝑃
 1 −    −2𝐵1𝑆 + 𝐵2𝐹 𝑆 + 𝐵3𝐹 𝑆  

𝑑2ℎ

𝑑𝑅𝑑𝑄
              (52) 

𝜏𝑥𝑧    = 6 ∝3 (1 − )  𝐵2

𝑑𝐹 𝑆 

𝑑𝑆

𝑑ℎ

𝑑𝑅
      (53) 

𝜏𝑦𝑧    = 6 ∝3 (1 − )  
𝐵3

𝑃

𝑑𝐹 𝑆 

𝑑𝑆

𝑑ℎ

𝑑𝑄
                (54) 

However, Sayyad et al. (2012) defined the non dimensional parameters different from they were defined herein. 

Their definitions are: 

𝑤 =  
100𝐸𝑤

𝑞𝑡 ∝4
= 1200 1 − 𝜇2  . 𝑤  55  

𝑢 =
𝑢𝐸

𝑞𝑡 ∝3
= 12 1 − 𝜇2 𝑢  56  

𝑣 =
𝑣𝐸

𝑞𝑡 ∝3
= 12 1 − 𝜇2 𝑣  57  

𝜎𝑥 =
𝜎𝑥

𝑞 ∝2
=

𝜎𝑥   

∝2
 58  

𝜎𝑦 =
𝜎𝑦

𝑞 ∝2
=

𝜎𝑦   

∝2
 59  

𝜏𝑥𝑦 =
𝜏𝑥𝑦

𝑞 ∝2
=

𝜏𝑥𝑦    

∝2
 60  

𝜏𝑥𝑧 =
𝜏𝑥𝑧
𝑞 ∝

=
𝜏𝑥𝑧    

∝
 61  

𝜏𝑦𝑧 =
𝜏𝑦𝑧

𝑞 ∝
=

𝜏𝑦𝑧    

∝
 62  

 

IX. Numerical PROBLEM 
 Determine the deflection at the center (0.5, 0.5, 0) of cccs and ssfs thick plate. Where (0.5, 0.5, 0) 

means R = 0.5; Q = 0.5; S = 0. Determine also the in-plane normal stresses at (0.5, 0.5, 0.5), in-plane shear 

stress at (0, 0, 0.5) and the vertical shear stress (xz) at (0, 0.5, 0) of thessss and ssfs plate. Polynomial 

displacement function shall be used.  

The polynomial displacement functions, h is given as: 

a).CCCS rectangular thick plate 

ℎ =  𝑅 − 2𝑅3 + 𝑅4 .  𝑄 − 2𝑄3 + 𝑄4  
b). SSFS rectangular thick plate 

ℎ =  𝑅 − 2𝑅3 + 𝑅4 .  
7

3
𝑄 −

10

3
𝑄3 +

10

3
𝑄4 − 𝑄5  

The stiffness coefficients (k values) for cccs plate are: 

𝑘1 = 0.002857; 𝑘2 =  0.0016327 

𝑘3 =  0.006032; 𝑘4 =  0.000136 

𝑘5 =  0.0001437;  𝐹𝑟𝑞 = 0.0025 
Similarly, the stiffness coefficients (k values) for ssfs plate are: 

𝑘1 = 4.025782; 𝑘2 =  0.6013605 

𝑘3 =  0.187457; 𝑘4 =  0.407371 

𝑘5 =  0.1046604;  𝐹𝑟𝑞 = 0.16667 

 

X. Results And Discussions 
Non dimensional Center deflection of cccs plate (when multiplied by 100) as obtained in this paper was 

compared with the ones obtained by Li et al. (2015) as presented on Table 1.They worked on "Symplectic 

Superposition Method for Benchmark Flexure Solutions forRectangular Thick Plates". The maximum recorded 

percentage difference obtained is 5.11%. This indicates that at 94% confidence level, the values from the present 

study shall not differ from the values obtained by Li et al. (2015). The difference should be a result of using 

different displacement functions. Whereas they used trigonometric displacement functions, the present paper 

used polynomial displacement function. Hence, the difference should not be attributed to the approach to 

analysis. Results for other parameters (displacements and stresses) for cccs and ssfs thick plates were presented 

on Table 2 and Table 3 respectively.  
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Critical look at Table 2, reveals that for span-to-depth ratio less than 20 the value of vertical shear 

stress  is more than 0.00006when corrected to 5 decimal places. For span-to-depth ratios between 30 and 50 the 

value of vertical shear stress varies between 0.00001 and 0.00003. For span-to-depth ratios more than 50 the 

value of vertical shear stress less than 0.00001. This same trend is also evident from Table 3. It can seen from 

that table that for span-to-depth ratios more than 50, the value of vertical shear stress is less than 0.0000005. 

When the span-to-depth ratio is between 20 and 50, the vertical shear stress is more than 0.0000005 but less than 

0.0000014. However, vertical shear stress is more than 0.0000014 for span-to-depth ratios less than or equal to 

20. The observations made could infer that there are three classes of rectangular plate. The plates whose vertical 

shear stress do not differ much from zero shall be classified as thin plates. The ones that differ very well from 

zero shall be classified as thick plates. In between the thick plate and thin plate is the class for moderately thick 

plate. Thus, the span-to-depth ratios for these classes of rectangular plate are: Thick plate - a/t  20; moderately 

thick plate - 20  a/t  50; thin plate - a/t ≥ 50 

 

Table 1: Comparison of values of Non dimensional center deflectionmultiplied by 100 of cccssquare 

rectangular thick plate obtained herein with those from Li et al. (2015). 

a/t present Li et al. (2015) % Diff 

5 0.2434 0.2565 5.11 

10 0.1816 0.1833 0.93 

20 0.166 0.166 0 

  

Table 2:Non dimensional displacements and stresses of cccssquare thick plate 

a/t 𝑤  𝑢  𝑣  𝜎𝑥    𝜎𝑦    𝜏𝑥𝑦     𝜏𝑥𝑧     

2 0.006507 -0.003774 -0.003347 0.022280 0.022545 -0.010241 0.007302 

2.5 0.004803 -0.003311 -0.002968 0.019596 0.019948 -0.009027 0.004601 

3 0.003853 -0.003024 -0.002777 0.018003 0.018562 -0.008333 0.003139 

3.333 0.003437 -0.002888 -0.002700 0.017269 0.017978 -0.008022 0.002514 

4 0.002889 -0.002695 -0.002609 0.016252 0.017239 -0.007604 0.001712 

5 0.002434 -0.002518 -0.002544 0.015350 0.016663 -0.007246 0.001072 

6 0.002184 -0.002412 -0.002514 0.014825 0.016365 -0.007044 0.000733 

7 0.002032 -0.002344 -0.002499 0.014493 0.016192 -0.006918 0.000533 

8 0.001933 -0.002298 -0.002490 0.014271 0.016083 -0.006836 0.000405 

9 0.001865 -0.002265 -0.002484 0.014115 0.016010 -0.006778 0.000318 

10 0.001816 -0.002241 -0.002481 0.014002 0.015958 -0.006737 0.000257 

11 0.001780 -0.002223 -0.002478 0.013917 0.015921 -0.006706 0.000211 

12 0.001753 -0.002209 -0.002476 0.013851 0.015892 -0.006682 0.000177 

13 0.001731 -0.002198 -0.002475 0.013800 0.015871 -0.006664 0.000151 

14 0.001714 -0.002190 -0.002474 0.013759 0.015853 -0.006649 0.000130 

15 0.001700 -0.002183 -0.002473 0.013726 0.015840 -0.006637 0.000113 

16 0.001689 -0.002177 -0.002473 0.013699 0.015828 -0.006627 0.000099 

17 0.001680 -0.002172 -0.002472 0.013676 0.015819 -0.006619 0.000088 

18 0.001672 -0.002168 -0.002472 0.013657 0.015811 -0.006612 0.000078 

19 0.001665 -0.002165 -0.002471 0.013641 0.015805 -0.006607 0.000070 

20 0.001660 -0.002162 -0.002471 0.013627 0.015799 -0.006602 0.000063 

30 0.001630 -0.002146 -0.002469 0.013556 0.015771 -0.006576 0.000028 

40 0.001620 -0.002141 -0.002469 0.013531 0.015761 -0.006567 0.000016 

50 0.001615 -0.002139 -0.002469 0.013519 0.015756 -0.006563 0.000010 

60 0.001613 -0.002137 -0.002469 0.013513 0.015754 -0.006561 0.000007 

70 0.001611 -0.002136 -0.002468 0.013509 0.015752 -0.006560 0.000005 

80 0.001610 -0.002136 -0.002468 0.013507 0.015751 -0.006559 0.000004 

90 0.001610 -0.002135 -0.002468 0.013505 0.015751 -0.006558 0.000003 

100 0.001609 -0.002135 -0.002468 0.013504 0.015750 -0.006558 0.000003 

 

𝐿𝑒𝑔𝑒𝑛𝑑: 𝑤 =   𝑤  𝑅 = 0.5, 𝑄 = 0.5, 𝑆 = 0.5 ;  𝑢 =   𝑢  𝑅 = 0.2, 𝑄 = 0.5, 𝑆 = 0.5  

𝑣 = 𝑣  𝑅 = 0.5, 𝑄 = 0.2, 𝑆 = 0.5 ; 𝜎𝑥   = 𝜎𝑥    𝑅 = 0.5, 𝑄 = 0.5, 𝑆 = 0.5  

𝜎𝑦   =  𝜎𝑦    𝑅 = 0.5, 𝑄 = 0.5, 𝑆 = 0.5 ; 𝜏𝑥𝑦    = 𝜏𝑥𝑦     𝑅 = 0.2, 𝑄 = 0.2, 𝑆 = 0.5  

𝜏𝑥𝑧    =  𝜏𝑥𝑧     𝑅 = 0.2, 𝑄 = 0.5, 𝑆 = 0 ;  ∗ 𝜏𝑥𝑧    = 𝜏𝑥𝑧     𝑃𝑟𝑒𝑠𝑒𝑛𝑡 − 𝜏𝑥𝑧    𝑎𝑡 𝑎 𝑡 = 100  
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Table 3: Non dimensional displacements and stresses of ssfssquare thick plate 
a/t 𝑤  𝑢  𝑣  𝜎𝑥    𝜎𝑦    𝜏𝑥𝑦     𝜏𝑥𝑧     

2 0.000387 -0.000313 -0.000374 0.001999 0.002370 -0.000977 0.0003014 

2.5 0.000323 -0.000300 -0.000354 0.001907 0.002252 -0.000931 0.0001938 

3 0.000288 -0.000292 -0.000344 0.001857 0.002186 -0.000905 0.0001349 

3.333 0.000273 -0.000289 -0.000339 0.001835 0.002157 -0.000894 0.0001094 

4 0.000253 -0.000285 -0.000333 0.001807 0.002119 -0.000879 0.0000761 

5 0.000236 -0.000281 -0.000328 0.001784 0.002088 -0.000867 0.0000487 

6 0.000228 -0.000280 -0.000325 0.001771 0.002071 -0.000861 0.0000339 

7 0.000222 -0.000278 -0.000323 0.001763 0.002061 -0.000857 0.0000249 

8 0.000219 -0.000278 -0.000322 0.001758 0.002054 -0.000854 0.0000191 

9 0.000216 -0.000277 -0.000321 0.001755 0.002050 -0.000853 0.0000151 

10 0.000215 -0.000277 -0.000321 0.001752 0.002046 -0.000851 0.0000122 

11 0.000213 -0.000277 -0.000320 0.001750 0.002044 -0.000850 0.0000101 

12 0.000212 -0.000276 -0.000320 0.001749 0.002042 -0.000850 0.0000085 

13 0.000212 -0.000276 -0.000320 0.001748 0.002040 -0.000849 0.0000072 

14 0.000211 -0.000276 -0.000320 0.001747 0.002039 -0.000849 0.0000062 

15 0.000211 -0.000276 -0.000320 0.001746 0.002038 -0.000848 0.0000054 

16 0.000210 -0.000276 -0.000319 0.001746 0.002038 -0.000848 0.0000048 

17 0.000210 -0.000276 -0.000319 0.001745 0.002037 -0.000848 0.0000042 

18 0.000210 -0.000276 -0.000319 0.001745 0.002036 -0.000848 0.0000038 

19 0.000209 -0.000276 -0.000319 0.001745 0.002036 -0.000847 0.0000034 

20 0.000209 -0.000276 -0.000319 0.001744 0.002036 -0.000847 0.0000031 

30 0.000208 -0.000276 -0.000319 0.001743 0.002034 -0.000847 0.0000014 

40 0.000208 -0.000275 -0.000319 0.001742 0.002033 -0.000846 0.0000008 

50 0.000208 -0.000275 -0.000319 0.001742 0.002033 -0.000846 0.0000005 

60 0.000208 -0.000275 -0.000319 0.001742 0.002032 -0.000846 0.0000003 

70 0.000208 -0.000275 -0.000319 0.001742 0.002032 -0.000846 0.0000002 

80 0.000207 -0.000275 -0.000319 0.001742 0.002032 -0.000846 0.0000002 

90 0.000207 -0.000275 -0.000319 0.001742 0.002032 -0.000846 0.0000002 

100 0.000207 -0.000275 -0.000319 0.001742 0.002032 -0.000846 0.0000001 

 

𝐿𝑒𝑔𝑒𝑛𝑑: 𝑤 =   𝑤  𝑅 = 0.5, 𝑄 = 0.5, 𝑆 = 0.5 ;  𝑢 =   𝑢  𝑅 = 0.2, 𝑄 = 0.5, 𝑆 = 0.5  

𝑣 = 𝑣  𝑅 = 0.5, 𝑄 = 0.2, 𝑆 = 0.5 ; 𝜎𝑥   = 𝜎𝑥    𝑅 = 0.5, 𝑄 = 0.5, 𝑆 = 0.5  

𝜎𝑦   =  𝜎𝑦    𝑅 = 0.5, 𝑄 = 0.5, 𝑆 = 0.5 ; 𝜏𝑥𝑦    = 𝜏𝑥𝑦     𝑅 = 0.2, 𝑄 = 0.2, 𝑆 = 0.5  

𝜏𝑥𝑧    =  𝜏𝑥𝑧     𝑅 = 0.2, 𝑄 = 0.5, 𝑆 = 0 ;  ∗ 𝜏𝑥𝑧    = 𝜏𝑥𝑧     𝑃𝑟𝑒𝑠𝑒𝑛𝑡 − 𝜏𝑥𝑧    𝑎𝑡 𝑎 𝑡 = 100  
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