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Abstract: The present study investigates the vibration behaviour of orthotropic double-nanoplate system 

subjected to an in-plane magnetic field and in-plane preload with various boundary conditions. The nonlocal 

governing equations of motion are derived via Hamilton’s principle with the consideration the Eringen’s 

differential nonlocal elastic law, where the influences of the Lorenz magnetic force are obtained via a 

Maxwell’s relation. Analytical methods are employed and explicit solutions for vibrational frequency are 

obtained for orthotropic double-nanoplate system for various boundary conditions. The obtained results are 

compared with the results available in the literature to check their validation. Effects of nonlocal parameter, 

magnetic field strength, number of half waves, initial preload (compression and tension), size of nanoplate and 

boundary conditions on vibrational frequency are presented. 
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I. Introduction 
Nanostructural elements, among which the best-known ones are carbon nanotube (CNT) and graphene 

sheet (GS), due to their extraordinary physical, chemical and mechanical properties can have a wide possible 

application in nanoelectro-mechanical systems (NEMS) as mechanical sensors
1,
 biosensors

2,
 nanoactuators

3
 and 

nanoresonators
4
. Besides that, CNT and GS have a great perspective to be applied in medicine, astronautics and 

energy storage systems. Due to their extraordinary mechanical properties, GS can be used as excellent 

reinforcement of polymer composites. Regarding the fact that CNT presents a deformed form of GS it can be 

concluded that for a successful development of carbon-based nanostructures it is very importance to know 

accurately the physical, mechanical and electrical features of GS. Besides that, for a successful application of 

GS as a nanostructural component and a nanomaterial it is very important to know its vibrational behaviour. 

Both experimental and molecular dynamic simulation (MD simulation) show that in nanostructural elements 

with very small dimensions their mechanical properties and behaviour change when these dimensions become 

very small. However, the classical elasticity theory cannot take into account the size effect in the analysis of 

mechanical behaviour of micro- and nanostructures.  

Due to very small dimensions of nanoplates, it is necessary to take into account the influence of atomic 

forces to their mechanical behaviour. It is known that the influence of atomic forces has been neglected in 

classical elasticity theory. However, in the first papers which discussed the vibrational behaviour of graphene 

sheet classical elasticity theory
5,6,7,8

 was used. Arash and Wang
9
 demonstrated that by the application of classical 

elasticity theory significantly higher values were obtained for the resonant frequency then its real value. The 

application of MD simulation is too complex and expensive, especially in the case of more complex 

nanostructures with a greater number of atoms. Because of that, a few classical continuum theories have been 

developed in which the small-scale size effect has been incorporated into constitutive equations and governing 

equations of motion/equilibrium. There belong the nonlocal elasticity theory
10,11,12,13

, strain gradient theory
14,15

 

and couple stress theory
16,17

. Due to its relatively simple formulation and applicability, in recent years the 

nonlocal elasticity theory has been widely applied in the defining of nonlocal governing equations of 

motion/equilibrium of nanostructures. Pradhan and Kumar 
18

 examined the nonlocal influences on the 

vibrational behaviour of the orthotropic graphene sheets using nonlocal elasticity theory and differential 

quadrature method.  

The effect of in-plane preload on vibrations of nanoplate via nonlocal elasticity was investigated by 

Murmu and Pradhan
19

. Kiani
20

 applied the nonlocal shear deformation theory to investigate the vibration of 

double-walled carbon nanotubes on elastic foundation subjected to axial preload. Mohammadi et al.
21 

investigated the free vibration behaviour of circular graphene sheet under in-plane preload using nonlocal 
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continuum theory. In recent time, double-layered nanoplate structures have been in the focus of research more.   

Asemi et al.
22

 studied the vibration behaviour of double-piezoelectric-nanoplate with initial stress under an 

external electric voltage and various boundary conditions using differential quadrature method. 

Mohammadimehr et al.
23

 carried out the free vibration analysis of viscoelastic double layered nanoplates using 

sinusoidal shear deformation theory and meshless method. Liu et.al
24

 presented the nonlocal vibration and 

biaxial buckling behaviour of simply supported double-viscoelastic-FGM-nanoplate system with viscoelastic 

medium in between. Radić and Jeremić
25

 formulated the new first order shear deformation theory via nonlocal 

elasticity theory for analysing the thermal buckling of isotropic double-layered graphene sheets with various 

boundary conditions. Radić and Jeremić
26 

researched the nonlocal vibration and buckling of orthotropic double-

layered graphene sheets with different boundary conditions subjected to hygrothermal loading using nonlocal 

elasticity theory and Galerkin’s method.  When a nanostructure is exposed to the activity of magnetic field, then, 

as the consequence of the activity, Lorentz’s forces occur, which are the body forces and act to every elementary 

particle of that structure. In the absence of experimental research on the influence of Lorentz’s forces to the 

vibration and buckling behaviour of nanoplates, a great significance is given to the theoretical research based on 

Maxwell’s equations.   

Güven
27 

studied the effects of longitudinal magnetic field and initial stress on the transverse vibration 

of single-walled carbon nanotubes. Kiani
28

 scrutinized free transverse vibrations of double-walled carbon 

nanotubes subjected to a longitudinally varying magnetic field with various boundary conditions. Murmu et al.
29

 

examined vibration behaviour of double-walled carbon nanotubes subjected to a longitudinal magnetic field 

using a nonlocal Euler-Bernoulli beam theory. Kiani3
0
 investigated the vibration and instability of a single-

walled carbon nanotube in a three-dimensional magnetic field using nonlocal Rayleigh beam theory.  Transverse 

vibration behaviour of embedded single-layer graphene sheets exposed to in-plane magnetic field with simply 

supported boundary conditions is analysed by Murmu et al.
31

 . Kiani
32

 presented free vibration behaviour of 

single-layer nanoplates subjected to in-plane magnetic field with simply supported boundary conditions using 

nonlocal shear deformable plate theories. Vibration behaviour of double bonded orthotropic graphene sheets 

subjected to 2D magnetic field and biaxial in-plane preload using differential quadrature method was 

investigated by Ghorbanpour Arani et al
33

. In other works, the nonlocal vibrations of axially moving graphene 

sheet resting on orthotropic visco-Pasternak foundation under longitudinal magnetic field using the hybrid 

analytical-numerical method for solution were addressed by Ghorbanpour Arani et al
34

. Vibration analysis of 

bilayer graphene sheets subjected to in-plane magnetic field using nonlocal elasticity theory and nonlocal 

element-free kp-Ritz method has been studied by Zhang et al.
35

 .Karličić et al.
36

 investigated the nonlocal 

vibration of multi-nanoplate system embedded in viscoelastic medium under in-plane magnetic field. 

Stamenković Atanasov et al.
37 

expressed the influence of an in-plane magnetic field on the forced transverse 

vibration of orthotropic double-nanoplate system with simply supported boundary conditions using Kirchhof-

Love plate theory. Satish et al.
38

 studied the thermal vibration of single-layer nanoplates subjected to in-plane 

magnetic field and surface elasticity effects with simply supported boundary conditions using Navier’s method 

for solution. Jamalpoor and Hosseini
39

 presented the in-plane magnetic field effects on biaxial buckling of 

simply supported double-orthotropic micro-plate-systems using nonlocal strain gradient theory.  

Ebrahimi and Reza Barati
40

 investigated the vibration of graphene sheets subjected to hygro-thermal 

and in-plane magnetic field based on the nonlocal strain gradient theory. Shimpi et al.
41

 formulated new-first 

order shear deformation theory (NFSDT) and showed that it has been significantly more accurate then classical 

plate theory (CLPT) with very few deviations from first-shear deformation theory (FSDT) for isotropic and 

orthotropic rectangular plate with symmetric boundary conditions. Xian and Xing
42

 studied free vibrations of 

rectangular plates with various boundary conditions using the NFSDT. Thai et al.
43

 investigated the bending, 

buckling and free vibration of functionally graded sandwich plates with different boundary conditions via the 

NFSDT. A verification study showed that the NFSDT was more accurate in relation FSDT and comparable to 

higher-order shear deformation theory (HSDT). Radić and Jeremić
25

 formulated the solution for the nonlocal 

vibration of isotropic DLGSs using the nonlocal formulation of the NFSDT. The verification study in Refs.
25,26

 

showed that the nonlocal NFSDT could be applied very successfully in the analysis of buckling and vibration 

behaviour of isotropic and orthotropic nanoplates. The advantage of the NFSDT in relation to FSDT can be seen 

in the fact that we have only one parameter of rotation instead of two, so it can be said that the NFSDT is a 

reduced version of the FSDT. A drawback of the NFSDT is in the fact that it cannot be used in the analysis of 

anisotropic nanostructures, and in the analysis of asymmetrical boundary conditions the results may be obtained 

which are not accurate enough. To the best author’s knowledge transverse vibration analysis of the orthotropic 

DLGSs subjected to in-plane magnetic and initial in-plane preload with various boundary conditions has not 

been covered using nonlocal continuum mechanics until now. In the present paper, using differential nonlocal 

elastic law we study the influence of a unidirectional in-plane magnetic field and initial in-plane preload on the 

vibration behaviour of DLGS. The governing equations of motion are derived based on new first-order shear 

deformation theory (NFSDT), Eringen’s differential nonlocal elastic law and the Hamilton’s principle. 
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Analytical solution for frequency is based on functions which satisfy different boundary conditions. The effects 

of nonlocal parameter, magnetic field strength, in-plane preload, boundary conditions, aspect ratio, side length 

and number of half waves on the vibration behaviour of DLGSs are examined. 

 

II. Problem formulation 
A schematic configuration of the orthotropic DLGS which consists of two layers of graphene sheets 

(GS1 and GS2), with length a , width b and thickness h  embedded in Pasternak foundation subjected to in-

plane magnetic field 
xH  has been illustrated in Fig.1. 

Fifure no 1: Geometry, coordinate system and loading for orthotropic double-layered graphene sheet 

 
 

GS1 and GS2 are in the interaction by van der Waals (vdW) interaction forces shown by a set of springs 

with modulus 
0k . As it can be seen, two sheets are surrounded by an external Pasternak elastic medium, where 

wk  and 
Gk  are Winkler modulus parameter and shear modulus parameter respectively. As depicted 0

xxN  and 

0

yyN  denote two uniform preload forces in the x and y directions. The material characteristics used for both 

graphene sheets are identical. 

 

The new first-order shear deformation theory (NFSDT) 

According to the new first-order shear deformation theory, the displacement field of the graphene sheet 

is expressed by 
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where u and v  are the displacement of mid-plane along x- and y-axis respectively,  w  is transverse 

displacement of a point on the mid-plane of the graphene sheet, and   is   rotation parameter. 

Nonzero strains of the NFSDT model are expressed as 
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Nonlocal constitutive equations 

According to nonlocal differential elastic law by Eringen
10,11

, the nonlocal stress tensor at a reference 

point x in an elastic continuum depends not only on strain tensor at that point but also on the strain tensor at all 
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other points 'x  on the observed domain. The strain-driven integral constitutive equation for a linear, 

homogeneous, orthotropic, nonlocal elastic body neglecting the body forces can be expressed as 

( ) ( ' , ) ( ') ( ') , , ,ij ij

V

t x x x x dV x i j x y z                                                     (3) 

 

where ( )ijt x  and  ( ')ij x  are respectively,  the nonlocal stress tensor  and classical or  local stress tensor  at any 

point 'x  in the body, nonlocal kernel function ( ' , )x x  represents the nonlocal module and it defines the 

influence of deformation in the point 'x  to the stress in the observed point x , 
0 / ee    is a material constant 

that depends on the internal characteristic length   (e.g. lattice parameter, granular size, or molecular diameters) 

and external characteristic length 
e  ( e.g. crack length, wave length), 

0e  is the constant appropriate to each 

material and it is determined independently for each material, on the basis of experimental results or other 

theories.  Local stress tensor at a point 'x  can be expressed vie the deformation tensor by the generalized 

Hook’s law 

( ') ( ') , , , , ,ij ijkl klx C x i j k l x y z                                       (4) 

 

where 
ijklC is the fourth-order elasticity tensor and ( ')kl x  is the strain tensor 

The strain-driven integral constitutive equation (3) is very difficult to apply. Making certain assumptions 

presented by Eringen [10,11] we will assume the consequent (not equivalent) differential constitutive laws as  
2 2

01 ( ) ( ) , , , , ,ij ijkl kle t x C i j k l x y z    
 

                                                                  (5) 

 

where 2  is the Laplacian operator which is defined by 
2 2 2 2 2( / / )x y       ,and 0e  is the nonlocal 

parameter that takes into account the small scale effects into the differential constitutive law.  

 

Maxwell’s relations 

In this section we present Maxwell’s relations. Denoting  J


 as current density, U


 as the displacement 

vector,   as magnetic field permeability, e


 as strength vector of magnetic field and h


 is disturbing vectors of 

magnetic field, the Maxwell’s relations of electromagnetics according to
29,46

 are given as 

 , , 0, ,
h U

J h e h e H h U H
t t

 
  

             
  

 
      

                                                          (6) 

 

where   is the Hamilton operator and is expressed as i j k
x y z

  
   
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 
. Consider the magnetic field 

vector as ( , , )x y zH H H H


, which exerted on the DLGSs.  Let the displacement vector be ( , , )x y zU u u u


, 
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x y zJ h J i J j J k    
   

                                      (8) 

where 
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The Lorenz force induced by magnetic field is  

     
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In the present paper, we consider a uniaxial   magnetic field. Therefore, the Lorentz force components along the 

x, y and z direction, induced by the uniaxial in-plane magnetic field 
xH  is given as 

0xf                                                                                                                                                                   (11a) 
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The effective Lorenz forces in the direction of y and z axis can be written as 
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In this study only the transverse vibrations of the DLGS are significant. According to (12a) it is obvious that the 

transverse and in-plane vibration are not related. Also, because of the very low thickness of the nanoplate 

 0.34h nm  as in Ref.
46

 we will neglect the value of the bending moment  
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Nonlocal governing equations of motion 

Based on Eqs. (2) and (5) the stress-strain equations of a rectangular orthotropic graphene sheet are 

expressed as follows: 
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 where 
ijQ  and 

ijC  are stiffness of the orthotropic layer graphene sheet defined by 
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where 
1E  and 

2E  are Young’s moduli in directions x and y, respectively, 
12 13 23, ,G G G  are shear modulus and 

12 21,   denote Poisson’s ratios. 

The nonlocal stress resultants 
iM  and 

jQ for orthotropic graphene sheet are expressed as 
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In which 5 / 6sK   is the transverse shear correction factor. By substituting Eqs. (2) and (13) into Eq. (15), the 

nonlocal constitutive equations in terms of displacement are obtained 
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Q e Q H

y y





  
    

  

  
    

  





                                                                                                                   (17) 

 

where ( , 1,2,6)ijD i j   and 
44 55,H H  are the bending and shear stiffness of the graphene sheet defined by 

33 3 3

6611 22 12

11 22 12 66

44 44 55 55

, , , ,
12 12 12 12

, ,S S

Q hQ h Q h Q h
D D D D

H K C h H K C h

   

 

                                               (18) 

 

To obtain the nonlocal equations of motion of DLGSs, the Hamilton’s principle is expressed as: 

 
0

0

t

U V T dt                            (19) 

 

In which U  is the strain energy, V is the work done by external loads and T  is the kinetic energy. The two 

graphene sheet are referred as GS1 and GS2. The transverse displacements of GS1 and GS2 are assumed  
1w  and 

2w  respectively. 

The variation of strain energy is calculated as  
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2 2

1 1 1 1 1 1 1 1 1 1 1 1

2 2

( )

h h

ij ij xx xx yy yy xy xy yz yz xz xz

h A h A

U dAdz dAdz            
 

                               (20) 

 

 Substituting Eqs. (2)  into Eq. (20) yields 
2 2

1 1 1 1

2 2xx xx yy yy

A

u v
U N M N M

x yx y

   


    
   

  
 +

   2
1 1 1 11 1 12xy xy xz yz

w wu v
N M Q Q

y x x y x y

            
      

       
                               (21) 

 

Where the index 1 marks for displacements indicates that graphene sheets 1 is in question. The term 
zf  is the 

consequence of activity to the in-plane magnetic field 
xH .The effective transverse Lorentz magnetic load for 

graphene sheet 1 (GS1) is obtained as  
/ 2 2 2

2 1 1
1 1 1 2 2

/ 2

h

magnetic z z x

h

w
q f dz hf hH

x y






  
    

  
                     (22) 

 

The effective transverse load of Pasternak elastic foundation for GS1 can be written as 
2 2

1 1

1 1 2 2Pasternak w G

w w
q k w k

x y

  
    

  
                                   (23) 

 

where 
wk  and 

Gk  are Winkler’s parameter and Pasternak’s shear parameter of elastic medium, respectively. 

The effective transverse load of van der Waals interaction for GS1 is obtained as 

 1 0 1 2vdWq k w w                           (24) 

 

Finally, the variation of work done by Lorentz magnetic force, Pasternak elastic foundation, van der Waals 

interaction and in-plane preload is calculated as 

 

 

2 2

0 01 1

1 1 1 12 2

2 2 2 2 2 2

2 0 01 1 1 1 1 1

1 0 1 2 12 2 2 2 2 2

magnetic Pasternak vdW xx yy

A

x w G xx yy

A

w w
V q q q N N w

x y

w w w w w
hH k w k k w w N N w

x y x y x y

 


 

   
        

    

            
                             





(25) 

 

where 0

xxN and 0

yyN  indicate in-plane preload forces exerting on the graphene sheet along x and y directions. The 

variation of kinetic energy can be written as 

 
3

1 1 1 1

1 1 1 1 1 1 1 1
12

x x y y z z

V A

h
K u u u u u u dAdz hw w dA

x x y y

   
      

     
       

      
 

   
                            (26) 

 

Using the expressions for ,U V  and K  from Eqs. (21), (25) and (26) in the preceding Eq. (19) and 

integrating the equation by parts, and setting the coefficients of,
1u , 

1 1,v w  and 
1  to zero, the following 

equations of motion for GS1 are obtained 

11

1 1

1 1

1 1

:

:

xyxx

xy yy

NN
u hu

x y

N N
v hv

x y

 

 


 

 

 
 

 





             



Vibration analysis of orthotropic double-nanoplate system subjected to unidirectional in-plane .. 

DOI: 10.9790/1684-1503045976                                www.iosrjournals.org                                            66 | Page 

2 2
1 21 1 1

1 12 2

2 2
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1 0 1 2 12 2

2 22 3
1 1 1 21 1

1 12 2
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( )

: 2
12

yz zx

x W

G xx yy

xy yy yzxx xz

Q Q w
w hH k w

y x x y

w w
k w k w w N N hw

x y

M M QM Q h

x y y xx y


 




 

    
    

    

 
      

 

   
      

    





                                                                        (27) 

 

For this case, the equations that correspond to the in-plane displacements 
1 1( , )u v   are not coupled with the 

equations that correspond to the displacements due to bending. If we apply the operator 2 2

01 ( )e     to Eq. 

(27) and substitute Eqs. (16) and (17) into the resulting equation then equations of motion can be expressed via 

the displacement 
1 1( , )w   

 

 

2 2 2 2 2 2

1 1 1 1 1 1

55 44 1 0 1 22 2 2 2 2 2

2 2 2 2 2 2 4 4 4
20 0 21 1 1 1 1 1 1 1 1

02 2 2 2 2 2 4 2 2 4
2

W G

xx yy x W G

w w w w
H H k w k k w w
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             

          

            
             
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e

 
 
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            
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

 

 


2 2
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w w
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x y

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 

                      (28a) 
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                                    (28b) 

 

Eqs. (28a) and (28b) are related to GS1. In the same way the equations of motion for GS2 are obtained.  
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(28c) 
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                                 (28d) 

 

The equations (28) present the equations of motion for orthotropic DLGSs. 
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III. Solution by Galerkin’s method 
In this section, the equations of motion (28) are solved analytically using Galerkin’s method to obtain 

the vibrational frequencies of the DLGSs subjected to in-plane preload. Before solving the equations of motion, 

the boundary conditions should be defined. In this study the graphene sheet is assumed to have simply supported 

(S), clamped (C) edges or have combinations of them. These boundary conditions are given as follows
43,26

: 

 

 

 

Simply supported (S): 

0,i

i i xxiu w M
y


   


  at 0,ax         

0,i

i i yyiv w M
x


   


  at 0,y b ;i=1,2;                                                                                        (29) 

 

Clamped (C): 

0,i i

i iu w
x y

  
   
 

                at 0,ax   

iv   0,i i

iw
x y

  
  

 
  at 0,y b ; i=1,2;                                                                         (30) 

    

 To satisfy the above boundary conditions, the displacement quantities can be written in the following form: 

1 1

1 1

2 2

2 2

( , ) ( ) ( )

( , ) ( ) ( )

( , ) ( ) ( )

( , ) ( ) ( )

i t

mn

i t

mn

i t

mn

i t

mn

w x y W X x Y y e

x y X x Y y e

w x y W X x Y y e

x y X x Y y e









 

 









                       (31) 

     

where  1i   ,  1 1 2 2, , ,mn mn mn mnW W   are arbitrary parameters, 
mn   denotes vibrational frequency 

associated with (mth, nth) mode,  m and n are half wave numbers, and the functions ( )X x  and ( )Y y  satisfies 

the simply supported and clamped boundary conditions and therefore it is given in Table 1, where 

/ a, /m n b     . These functions are suggested in Refs.
43,25,26

.
 
The method of marking the boundary 

conditions has been explained in Table 1. For example, the symbol CSCS, identifies a graphene sheet with the 

edges 0,ax  are clamped (C), while the edges 0,y b are simply supported (S).  

 

Table no 1: The admissible functions X(x) and Y(y) 
Boundary conditions The functions X(x) and Y(y) 

Notation x=0 y=0 x= a  y= b  
X(x) Y(y) 

SSSS S S S S sin( )x  sin( )y  

SCSC S C S C sin( )x  
2sin ( )y  

CCCC C C C C 
2sin ( )x  

2sin ( )y  

CSCS C S C S 
2sin ( )x  sin( )y  

 

Substituting Eq. (31) into Eq. (28) and applying Galerkin’s method, the analytical solution of the 

equations of motion in terms of parameters 
1mnW , 1mn , 2mnW and 

2mn  can be obtained from 

111 12 13 11

121 22 222

31 33 34 33 2

43 44 44 2

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

00 0 0 0 0

mn

mn

mn

mn

WK K K m

K K m

K K K m W

K K m






       
       

               
                     

                                                                           (32) 

where 
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In Eq. (33) the mark for nonlocal parameter 
0e    has been used. By solving Eq. (32) the analytical solutions 

for the vibrational frequency are obtained for two characteristics of the vibration cases.  

 

Out-of-phase vibration 

In this case, two graphene sheets vibration asynchronously and it means that there is a relative 

displacement between them  1 2w w . The first solution Eq. (32) gives the value for the vibrational frequency 

for out-of-phase vibration 
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In-phase vibration 

In the case of in-phase vibration, two graphene sheets vibrate synchronously and it means that there is 

no relative displacement between them 
1 2( )w w .Using the Galerkin’s method the second solution of Eq. (32) 

gives the vibrational frequency for in-phase vibration 
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IV. Numerical results and discussions 
In this section, the effect of unidirectional magnetic field strength, nonlocal parameter, number of half 

waves, initial preload, size of nanoplate and boundary conditions on vibrational frequency is investigated. The 

material and geometrical properties of the orthotropic graphene sheet are adopted from papers
44,45,26

 as follows: 

Young’s  modulus 
1 1130E GPa  and 

2 1050E GPa  of the orthotropic graphene sheet, mass density 

32250 /kg m  , Poisson’s ratio 
12 0.112   and 

21 0.0803  , shear modulus 

 12 1 12/ 2 1 508.09G E GPa    and 
13 23 12

5
423.41

6
G G G GPa   , thickness of graphene sheet  

0.34h nm .  

In the present study we have used the value for the magnetic field strength  in the range  

0 0.1251 /xH A nm   and in the case of a square nanoplate with the dimensions 10nm  it corresponds to the 

value of dimensionless magnetic parameter ( MP = 2 2axhH /
11D ) within the limits 0 180 . In Ref.

46
 the value 

for dimensionless magnetic parameter has been taken in the range of 0 100 , and in Ref. [39] in the range of 

0 160 . Also, in the present study, we have used the values 

0 0.15 / , 0.075 / , 0.75 /w Gk GPa nm k GPa nm k N m   , as in Ref.
26

. 

In the comparison study the following dimensionless parameters are used: 
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Verification of the predict results with those of another work 

In the first example of validation, the present results for the dimensionless frequency ( 1N )  of 

isotropic rectangular single-layer graphene sheet with a simply supported boundary conditions subjected to in-

plane magnetic field are compared to the results of Kiani
46 

in Table 2. The material properties and geometrical 

characteristics applied in this analysis are defined as: 
31060 , 0.25, 2250 / , 100,WNЕ GPa kg m k     0, 1.345 ,GNk nm  a 10 , 15 , 0.34 .nm b nm h nm    

As shown in Table 2 the present results for dimensionless frequency are in excellent agreement with the results 

presented by Ref.
46

. 

 

Table no 2: Comparison of the present dimensionless frequencies ( 1N ) with that in literature for square 

SLGSs subjected to magnetic field obtained from nonlocal Classical Plate Theory 
MP Kiani46 Present 

0 16,1731 16,1359 

10 17,7876 17,7582 

20 19,2442 19,2673 
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30 20,6234 20,6413 

40 21,9160 21,9293 

50 23,1364 23,1457 

60 24,2957 24,3013 

70 25,4020 25,4045 

80 26,4622 26,4616 

90 27,4815 27,4781 

100 28,4643 28,4584 

 

In the second example, dimensionless frequency (
2N ) of isotropic plates with CCCC and CSCS boundary 

conditions is examined. The material properties and geometrical characteristics applied in this analysis are 

defined as: 210E GPa , 0.3,   a/b=1, h/a=0.1.  As a result, by ignoring the terms related to the size effect 

 0  , the dimensionless frequencies at macroscale obtained via classical NFSDT are calculated and 

compared with those reported by
47,48,35

. As indicated in Table 3, a strong agreement is found between the present 

results and the results in Ref.
47,48,35

. 

 

Table no 3: Comparison of the present dimensionless fundamental frequencies ( 2N ) with that in literature for 

square SLGSs. 

 

 

 
 

 

 

Parametric study 

In this section, the effects of the nonlocal parameter, magnetic field strength, in-plane preload 

(compression and tension), various boundary conditions, aspect ratio, side length and number of half waves on 

the vibrational behaviour of DLGSs are discussed in detail. 

In Fig. 2 (a), (b) and (c) the in-phase natural frequency for SSSS boundary conditions is plotted as a 

function of the nonlocal parameter for various values of the magnetic field strength. From Fig. 2 (a) and (c) it 

can be noticed easily that in the case of a square DLGS (a = b =10nm)  and an equal number of half waves 

( 1, 2)m n m n      with the increase of value of the magnetic field strength the increase of value of the 

natural frequency is negligibly low. In the case when the number of half waves is ( 2, 1)m n   the increase of 

value of the natural frequency is significant with the increase of value of the magnetic field strength.  

 

Figure no  2: Change in in-phase fundamental frequency with respect to nonlocal parameter and magnetic field 

strength for SSSS boundary conditions 

  
(a)                                                  (b) 

CCCC CSCS 

Zhang 

[35] 

Reddy 

[47] 

Bardell 

[48] 
Present 

Bardell 

[48] 
Present 

3,619 3,648 3,646 3,734 2,741 2,827 
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(c) 

From Fig. 3 (a), (b) and (c) it can be seen that in the case of out-of-phase vibration the behaviour of a square 

DLGS (a = b =10nm) with the change of value of magnetic field strength and number of half waves is the same 

as in the case of in-phase vibration. 

Figure no  3: Change in out-of-phase fundamental frequency with respect to nonlocal parameter and magnetic 

field strength for SSSS boundary conditions 

  
(a)                                                           (b) 

 
(c) 
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Fig. 4(a), (b) and (c) demonstrates in-phase natural frequency versus nonlocal parameter for different 

values of magnetic field strength and CCCC boundary conditions. In the case of a square DLGS (a = b =10nm)  

and equal number of half waves (m = n =1,m = n = 2)   with the increase of value of the magnetic field 

strength the change in the value the natural frequency does not occur. It can be concluded that in these cases the 

in-plane magnetic field does not affect the vibrational behaviour of DLGS. In the case when the number of half 

waves is ( 2, 1)m n   with the increase of value of magnetic field strength the value of the natural frequency 

(Fig. 4b) also increases. From Fig. 4b it can be noticed that in the case of CCCC boundary conditions the 

increase of value of magnetic field strength decreases the nonlocal effect, and that is not the case in SSSS 

boundary conditions.  

 

Figure no 4: Change in in-phase fundamental frequency with respect to nonlocal parameter and magnetic field 

strength for CCCC boundary conditions 

  
(a)                                                          (b) 

 
(c) 

 

From Fig. 5 (a), (b) and (c) it can be seen that in the case of out-of-phase vibration for CCCC boundary 

conditions the behaviour of a square DLGS (a = b =10nm)  with the change of value of magnetic field strength 

and number of half waves is similar as in the case of in-phase vibration. From Fig. 5(b) it can be observed that 

in the case when the number of number of half waves is (m = 3,n =1)  with the increase of value of magnetic 

field strength the influence of local effect to the value of the natural frequency decreases significantly. 
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Figure no 5:Change in out-of-phase fundamental frequency with respect to nonlocal parameter and magnetic 

field strength for CCCC boundary conditions 

  
(a)                                                              (b) 

 
(c) 

 

Fig.6 (a) and (b) provides the variations of the in-phase natural frequency for various amounts of 

nonlocal parameter for CSCS and SCSC boundary conditions, respectively. In both cases, a square DLGS 

(a=b=10 nm) is observed with numbers of half waves (m=1, n=1).  It is obvious that in the case of CSCS 

boundary conditions with the increase of value of magnetic field strength the increase of value of the natural 

frequency occurs. In the case of SCSC boundary conditions, the situation is reverse, so that with the increase of 

value of the magnetic field strength a decrease of value of the natural frequency occurs. In the case of CSCS 

boundary conditions with the increase of value of magnetic field strength the influence of nonlocal effect is 

decreased, while in the case of SCSC boundary conditions it is increased. 
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Figure no 6: Change in in-phase fundamental frequency with respect to nonlocal parameter and magnetic field 

strength for CSCS and SCSC boundary conditions 

  
(a)                                                                           (b) 

 

From Fig. 7(a) and (b) it can be noticed that in the case out-of-phase vibration we have an identical behaviour as 

in the case of in-phase vibration for CSCS and SCSC boundary conditions  

 

Figure no 7: Change in out-of-phase fundamental frequency with respect to nonlocal parameter and magnetic 

field strength for CSCS and SCSC boundary conditions. 

  
(a)                                                                           (b) 

 

V. Conclusions 

In this paper, in-phase and out-of-phase vibration of the orthotropic double-nanoplate system subjected 

to unidirectional in-plane magnetic field and initial in-plane (compression and tension) preload with various 

boundary conditions was presented. By using Hamilton’s principle, the equations of motion and boundary 

conditions were obtained base on the new first order shear deformation theory in the framework of the Eringen’s 

differential nonlocal elastic law. The Galerkin’s method has been used to solve the equations of motion of the 

DLGS for SSSS, CCCC, CSCS and SCSC boundary conditions. The present analytical solution is validated by 

comparing results with results available in the literature.  Numerical results are presented to investigate the 

effects of nonlocal parameter, magnetic field strength, number of half waves and boundary conditions on 

vibrational frequency. It is observed that increasing the nonlocal parameter will decrease the frequency and 

increasing the in-plane compression preload degrades the graphene sheet stiffness and frequency reduce until a 

critical point in which frequency becomes zero. Also, the frequency increase with the increase of the magnetic 

field strength for rectangular DLGS.  
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