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Abstract: A new hyperbolic shear deformation theory for bending of isotropic beams, in which number of 

variables is same as that in the hyperbolic shear deformation theory, is developed. The theory takes into account 

transverse shear deformation effects; the noteworthy feature of theory is that the transverse shear stresses can 

be obtained directly from the use of constitutive relations with efficacy, satisfying the shear stress free condition 

on the top and bottom surfaces of the beam. Hence, the theory obviates the need of shear correction factor. The 

cantilever isotropic beam subjected to parabolic load is examined using the present theory. The scope of the 

present study is restricted to the linear analyses of beams with different aspect ratios. The beams can have 

cantilever as well as simple support boundary conditions. Results obtained are discussed critically with those of 

other theories. 
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I. Introduction 
The shear deformation effects are more pronounced in the thick beams when subjected to transverse 

loads than in the thin beams under similar loading. The shear deformation effects are more significant in the 

thick beams. These effects are neglected in Elementary Theory of Beam (ETB). In order to describe the correct 

bending behavior of thick beams including shear deformation effects and the associated cross sectional warping, 

shear deformation theories are require. The wide spread use of shear flexible materials in aircraft, automotive, 

shipbuilding and other industries has stimulated interest in the accurate prediction of structural behavior of  

beams. The flexural analysis of thick beams led to the development of refined theories in order to address the 

correct structural behavior. The objective of this paper is to present a comprehensive review of refined shear 

deformation theories for shear deformable homogeneous, isotropic beams. More emphasis is placed on the 

recent advances in the modeling and analysis of isotropic beams. 

Several researchers have presented their studies as, Rayleigh [9] included the rotatory inertia effect 

while later the effect of shear stiffness was added by Timoshenko [10]. Timoshenko showed that the effect of 

shear is much greater than that of rotatory inertia for transverse vibration of prismatic beams. The first correct 

boundary conditions for the Timoshenko beam were derived by Kruszewski [11] . Stephen and Levinson [22] 

have introduced a refined theory incorporating shear curvature, transverse direct stress and rotatory inertia 

effects. The governing differential equation is similar in form to the Timoshenko beam equation. However, the 

theory requires two coefficients, one for cross sectional warping and the second dependent on the transverse 

direct stresses. These coefficients for various cross sections are evaluated. Rychter [23] studied a rectangular 

beam bending theory, which incorporates the usual mean deflection and a rotation represented in terms of the 

relative axial displacement of the upper and lower surfaces of the beam. Soler [28] developed the higher order 

theory for thick isotropic rectangular elastic beams using Legendre polynomials Levinson [29] obtained the 

higher order beam theory providing the fourth order system of differential equations, satisfying two boundary 

conditions at each end of the beam. Ghugal [31, 32] has developed a beam theory including transverse shear 

deformation effect. Shi and Voyiadjis [37] have developed a new beam theory with the sixth order differential 

equations for the analysis of shear deformable beams with variational consistent boundary conditions and 

discussed the role of boundary conditions commensurate with the govering differential equations according to 

refined beam theories. Donnell [39] provided the series solution in the loading function, for the deflections and 

stresses in continuously loaded beams of rectangular cross section in terms of the top and bottom loading. 
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II. System of Development 
The beam under consideration as shown in Fig. 3.1 occupies in 0 x y z   Cartesian coordinate system the 

region: 

0 ; 0 ;
2 2

h h
x L y b z                          (3.1) 

where x, y, z are Cartesian coordinates, L and b are the length and width of beam in the x and y directions 

respectively, and h is the thickness of the beam in the z-direction. The beam is made up of homogeneous, 

linearly elastic isotropic material.  
 

 
Fig. 1 Beam under bending in x-z plane 

 

2.1 The displacement field  

 Based on the before mentioned assumptions, the displacement field of the present refined beam theory can be 

expressed as follows: 

Axial and Transverse Displacement: 

1
( , ) cosh hsinh

2

( , ) ( )

dw z
u x z z z

dx h

w x z w x


    

       
    
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                                                            (2.1) 

Here, u is the axial displacement component in the x direction, and w is the transverse displacement in the z 

direction.  

2.1 Strain-displacement relationships 
    Normal and shear strains are obtained within the framework of linear theory of elasticity using the 

displacement field given by Eqn. (2.1). These relationships are given as follows 

 Normal Strain: 

                                               

2

2
( )x

du d w d
z f z

dx dx dx


                                                            (2.2)                                                  

Shear Strain: 

                                                 
1
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2

zx
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    
       

    
                            (2.3)         

Where,  

1
( ) cosh sinh

2

z
f z z h

h

   
    

   
 

 

2.2 Stress-strain relationships: 

 . The axial stress x  is related to strain  x and shear stress is related to shear strain by the following 

constitutive relations: 
2

2

1
cosh sinh

2
x x

d w z d
E zE E z h

dx h dx


 

    
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    
                                                   (2.4) 
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zx zx

z
G G
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(2.5) 

Where, E and G are the elastic constants of the beam material 
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2.3 Governing equations and boundary conditions 

 
.

/ 2

0 / 2 0
( ) 0x x zx zx

x L z h x L

x z h x
b dxdz q x wdx    

  

  
                              (2.6) 

 
Further simplifying it leads to 
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                                                                                                                                                          (2.7) 

The governing differential equations obtained are as follows: 
4 3

4 3
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d w d
EI AEI q x

dx dx
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Where, 

A=0.102401712EI, B=0.010608504EI, C=0.008738524EI 

The associated variationally consistent boundary conditions obtained at the ends x = 0 and x = L is of following 

form:  
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where xV , xM  are the shear force and bending moment resultants respectively analogous to elementary theory 

of beam bending and sM  is the moment resultant due to the effect of transverse shear deformation. All the left 

hand equations in Eqn. (3.0) to (3.2) are natural or forced boundary conditions, and all the right hand terms are 

rigid or kinematic boundary conditions.  

    Thus, the variationally consistent governing differential equations and boundary conditions are obtained. The 

static (flexural) behaviour of the beam is described by the solution of these equations and simultaneously 

satisfaction of the associated boundary conditions. The associated boundary conditions for static flexure of beam 

under consideration can be obtained directly from Eqns. (3.0) through (3.2).  

 

III. Illustrative Example 

Example 1: A cantilever beam with varying load,   0

x
q x q

L
  

The beam has its origin at left hand side fixed support at x = 0 and free at x = L. The beam is subjected to 

varying load,   0

x
q x q

L
 on surface z = +h/2 acting in the downward z direction with maximum intensity of 

load 0q . 
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The material properties for the beam used are: E=210Gpa, μ =0.3 and  = 7800 kg/m³ as young’s modulus, 

Poisson’s ratio, density respectively 

Boundary conditions associated with this problem are as follows: 

          At Free end: 

2

2

d w d
EI EI

dx dx




3 2

3 2
0

d w d
EI EI

dx dx


    at x = L and 

          At Fixed end: 
dw

w
dx

  = 0 at x = 0 

Using general solutions for ( )x  and ( )w x  from Eqn. (3.13) and (3.14) the complete solution for a beam is 

obtained by imposing natural (forced) and / or geometric or kinematical boundary /end conditions of beam as 

mentioned in Eqn. (3.15) through Eqn. (3.17). A detailed analytical solution of this beam problem is given in 

Appendix C. The final expressions for transverse displacement w(x) and  (x) obtained from this solution are as 

follows: 
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(3.24) 

Substituting expressions for w  given by Eqns. (3.24) into Eqns. (3.2), (3.3), (3.7) and (3.8), the final expressions 

for axial displacement u, transverse displacement w, axial stresses x and transverse shear stress zx can be 

obtained respectively. 

Expression for axial displacement, u          
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Expression for axial stress,  x        
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Expression for transverse shear stress using constitutive relationship 
CR
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                                                                                                                                              (3.27) 

Expression for transverse shear stress
EE

zx  obtained from equilibrium equation 

The alternate approach to determine the transverse shear stresses is the use of equilibrium 
equations. Integrating the first equation with respect to the thickness coordinate and satisfying the 
boundary conditions at the bounding surfaces of the beam on can obtain the final expressions of 
transverse shear stresses. The first stress equilibrium equation of two dimensional theory of 
elasticity is as follows: 

                                                  0x zx

x z

  
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                                                                 (3.28)

  

The expression of obtained for transverse shear stress for this loading case is as follows: 
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                                                                                                                                               (3.29)

  

IV. Graphs and Tables 
For beams subjected to various types load, q(x) 

    

310
,

4
0 0

Ebu Ebh w
u w

q h q L
   

The transverse shear stresses ( zx ) are obtained directly by constitutive relation and, alternatively, by 

integration of equilibrium equation of two dimensional elasticity and are denoted by (
CR

zx ) and (
EE

zx ) 

respectively. The transverse shear stress satisfies the stress free boundary conditions on the top 

 / 2z h  and bottom  / 2z h   surfaces of the beam when these stresses are obtained by both the 

above mentioned approaches. 
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Table 4.1: Non-Dimensional Axial Displacement ( u ) at (x = L, z = h/2),     Transverse Deflection ( w ) at (x = 

L, z = 0.0), Axial Stress ( x ) at (x = 0, z = h/2) Maximum Transverse Shear Stresses 
CR

zx (x= 0.01L, z =0.0) 

and 
EE

zx (x = 0, z =0) of the Cantilever Beam Subjected to Varying Load for Aspect Ratio 4 

  
Source Model u  w     

 

Present HPSDT 
 

Dahake [54] 

 

HPSDT 
 

TSDT 

 

54.2771 
 

54.2767 

 

12.6187 
 

12.6172 

   

Krishna Murty [50] HSDT 54.2771 12.6191    
Timoshenko [53] FSDT 48.0000 11.3250    

Bernoulli-Euler ETB 48.0000 11.0000    

-0.50 0.00 0.50

-20.00

0.00

20.00

PRESENT HPSDT

HPSDT

HSDT

TSDT

FSDT

ETB

 
 

Fig. 4.1: Variation of axial displacement ( u ) through the thickness of cantilever beam at (x = L, z) when 

subjected to varying load for aspect ratio 4. 

 

Table 4.2: Non-Dimensional Axial Displacement ( u ) at (x = L, z = h/2),     Transverse Deflection ( w ) at (x = 

L, z =0.0) Axial Stress ( x ) at (x = 0, z = h/2) Maximum Transverse Shears Stresses 
CR

zx (x = 0.01L, z = 

0.0) and 
EE

zx (x = 0, z = 0) of the Cantilever Beam Subjected to Varying Load for Aspect Ratio 10 

 
Source Model u  w  

 

Present HPSDT 

 
Dahake [54] 

 

 

HPSDT 

 
TSDT 

 

765.6593 

 
765.6917 

 

11.2600 

 
11.2601 

Krishna Murty [50] HSDT 765.6928 11.2603 
Timoshenko [53] FSDT 750.0000 11.0520 

Bernoulli-Euler ETB 750.0000 11.0000 
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Fig. 4.2: Variation of axial displacement ( u ) through the thickness of cantilever beam at (x = L, z) when 

subjected to varying load for aspect ratio 10. 
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Fig. 4.3: Variation of maximum transverse displacement ( w ) of cantilever beam at (x = L, z = 0) when 

subjected to varying load with aspect ratio S.  

 

INTERPRETATION: 

Among the results of all the other theories, the values of axial displacement given by present theory are 

in close agreement with the values of other refined theories for aspect ratio 4 and 10.The through thickness 

distribution of this displacement obtained by present theory is in close agreement with other refined theories 

except the one given by classical and first order shear deformation theory (FSDT) as shown in Figures 4.1, 4.2, 

for aspect ratio 4 and 10.  

The comparison of results of maximum non-dimensional transverse displacement ( w ) for the aspect 

ratios  is presented in Tables 4.1 through  for cantilever beams subjected to linearly varying load and parabolic 

load. Among the results of all the other theories, the values of present theory are in excellent agreement with the 

values of other refined theories for aspect ratio 4 and 10 except those of classical beam theory (ETB) and FSDT 

of Timoshenko.  The variation of w  with aspect ratio (S) is shown in Figure 4.3. For the aspect ratios greater 

than 20  all the refined theories converges to the values of classical beam theory.  

 

 

 
z/h 

u  

x  

S 

w 
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V. Conclusion 
The variationally consistent theoretical formulation of the theory with general solution technique of 

governing differential equations is presented. The general solutions for beam with uniformly varying load are 

obtained in case of cantilever beam. The displacements and stresses obtained by present theory are in excellent 

agreement with those of other equivalent refined and higher order theories. The present theory yields the 

realistic variation of axial displacement and stresses through the thickness of beam. The theory is shown to be 

capable of predicting the effects of stress concentration on the axial and transverse stresses in the vicinity of the 

built-in end of the beam which is the region of heavy stress concentration.  Thus the validity of the present 

theory is established. 

 

Acknowledgements  
I am greatly indebted forever to my guide Dr. M. N. Mangular, Asso. Prof. Marathwada Institute of 

Technology, Aurangabad for her continuous encouragement, support, ideas, most constructive suggestions, 

valuable advice and confidence in me. I sincerely thank to Mr. R.L Shirale, Prof. Government Polytechnic 

Aurangabad, for their encouragement and kind support and stimulating advice. 

 

References 
[1] Averill, R.C., Reddy, J.N. (1992) An assessment of four-noded plate finite elements based on a generalized third order theory, 

International Journal of Numerical Methods in Engineering, 33, 1553-1572. 

[2] Bhimaraddi, A., Chandrashekhara, K. (1993) Observations on higher order beam Theory, ASCE Journal of Aerospace Engineering, 
6(4), 408-413. 

[3] Bickford, W.B. (1982) A consistent higher order beam theory, International Proceeding of Dev. in Theoretical and Applied 

Mechanics (SECTAM).11, 137-150. 

[4] Vaibhav B.Chavan and Dr. Ajay G. Dahake, 2014,”Analysis of Thick Beam Bending Problem by using a New Hyperbolic Shear 

Deformation Theroy.Vol. 2,No.5,ISSN 2091-2730. 

[5] Mr. Mithun.K.Sawant and Dr. Ajay G. Dahake,2016, “Transverse Shear Deformation for Deep Beam using New Hyperbolic Shear 
Deformation Theory, Vol. 2,No.6,ISSN 2454-1362 

[6] Bresse, J.A.C. (1859) Cours de Mechanique Applique, Mallet-Bachelier, Paris, 1859. 

[7] Cowper, G.R. (1966) The shear coefficients in Timoshenko beam theory, ASME Journal of Applied Mechanic, 33(2), 335-340. 

[8] Cowper, G.R. (1968) On the accuracy of Timoshenko beam theory, ASCE Journal of Engineering Mechanics Division. 94 (EM6), 

1447-1453. 

[9] Ghugal, Y.M., Shmipi, R.P. (2001) A review of refined shear deformation theories for isotropic and anisotropic laminated beams, 
Journal of Reinforced Plastics And Composites, 20(3), 255-272.  

[10] Kant,T. Gupta, A.(1988) A finite element model for higher order shears deformable beam theory, Journal of  Sound and Vibration, 

125 (2), 193-202. 

[11] Krishna Murthy, A.V. (1984)Towards a consistent beam theory, AIAA Journal, 22(6),811-816.  

[12] Lord Rayleigh, J.W.S. (1877)The Theory of Sound, Macmillan Publishers, London. 

[13] Reddy, J.N. (1993) An Introduction to Finite Element Method. 2nd Edition, McGraw-Hill, Inc., New York, 1993. 

[14] Stein, M. (1989) Vibration of beams and plate strips with three dimensional flexibility, ASME Journal of Applied  Mechanics, 

56(1), 228-231.  

[15] Timoshenko, S.P. (1921) On the correction for shear of the differential equation for transverse vibrations of prismatic bars, 
Philosophical Magazine, 41 (6), (1921), 742-746. 

[16] Timoshenko, S.P., Goodier, J.N. (1970) Theory of Elasticity, Third International Edition, McGraw-Hill, Singapore. 

[17] Ghugal Y. M. and Dahake A. G. (2012) “Flexural Analysis of Deep Beam Subjected to Parabolic Load Using Refined Shear 
Deformation Theory”, Applied and Computational Mechanics, 6(2), 163-172. 

 

Appendix A 
Notations 
A                : Cross sectional area of beam = bh 
b  : Width of beam in y -direction 
E, G, μ             : Elastic constants of the beam material 
h  : Deepness of beam 
I  : Moment of inertia of cross-section of beam 
L  : Span of the beam 
q0  : Intensity of parabolic transverse load 
S  : Aspect ratio of the beam = L / h 
w                 : Transverse displacement in z direction 

w                 : Non-dimensional transverse displacement 
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u                 : Non-dimensional axial displacement 
x, y , z            : Rectangular Cartesian coordinates     

x                : Non-dimensional axial stress in x -direction 
CR

ZX                 : Non-dimensional transverse shear stress via constitutive relation 
EE

ZX                : Non-dimensional transverse shear stress via equilibrium equation 

 x  : Unknown function associated with the shear slope 

List of abbreviations 
CR                   : Constitutive Relations 
EE                   : Equilibrium Equations 
TSDT     : Trigonometric Shear Deformation Theory 
HPSDT              : Hyperbolic Shear Deformation Theory 
HSDT                : Third Order Shear Deformation Theory 
FSDT    : First Order Shear Deformation Theory 
ETB                   : Elementary Theory of Beam 
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