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Abstract:The paper deals withthe analysis of structural system that built gradually such that the structural
stiffness varies with time of construction. The analysis of such structural system is carried out by applying finite
element method. First, all of the finite elements are included in the computation of number of degrees of
freedom. Then, the analysis is initiated by considering all of elements and the numbering of degrees of freedom
are carried out. Assembled elements are denoted by assigning the value of modulus elasticity, and absent
elements are denoted by assigning zero modulus of elasticity. Nodal degrees of freedom that are located in
absent elements are suppressed from the global equilibrium equation. Hence, the analysis is performed with
changing global structural stiffness. A computer package program in FORTRAN is written for the analysis. The
new package program is applied in the analysis of several study cases.
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I.  Introduction

A structural system ussually is built by assembling its components gradually. Hence, the structural total
number of degrees of freedom and the structural stiffness vary according to the assembling process. For
example, in case of multi-storey building, the system is built gradually by positioning columns of first storey
and then beams of the next floor above. The same process is carried out for storeys. This case is particularly true
for the case of structural system made of precast components.

Before the structural system is completed to its final configuration, the temporary system has to be
capable of sustaining external forces. In this case, the total number and the numbering of degrees of freedom
and hence the structural stiffness vary with time. So, the total number and numbering of degrees of freedom
have to be carried out for each construction step.

The paper proposes a method in which the numbering of degrees of freedom is carried out for
completed form of the structure. It means that the total number and numbering of structural degrees of freedom
are kept constant during all construction steps. In a particular construction step, assembled components are
indentified and given real values of modulus elasticity, and absent components are indentified and given zero
values of modulus elasticity. By doing so, total number and numbering of degrees of freedom are kept constant
for all construction steps. After stiffness and load assemblage, row and column members of stiffness matrix
pertaining to the degrees of freedom belong to absent components would be all zero and this will make the
stiffness matrix ill condition. To remedy this problem, the degrees of freedom may be suppressed from the
equilibrium equation. If the suppressed degree of freedom is inside of the displacement vector, the suppression
of the degree of freedom will decrease the total number of degrees of freedom and the new numbering of
degrees of freedom has to be carried out. This kind of remedial step may take long execution time.

Another way to handle inactive degree of freedom is to retain the degree of freedom in the matrix form
of equilibrium equation. All elements of row and column of stiffness matrix pertaining to the degree of freedom
are set to zero, and the diagonal element of the stiffness matrix pertaining to the degree of freedom is set to
some value. The element of load vector pertaining to the degree of freedom is set to zero. Therefore, the total
number and the numbering of degrees of freedom are kept constant and the solution of global equilibrium
equation results in zero displacements of inactive degrees of freedom.

I1. Finite Element Method
To begin with, in this chapter, finite element method is resumed by formulating stiffness matrices and
load vectors of some types of elements; i.e., grid element and eight load isoparametric plane element [3,4]. The
development of the two elements are described in the following.
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2.1 Grid Element

Grid element model is depicted in Fig. 1. The element consisting of two nodes, each node has one torsional
rotation, and one bending rotation. That three displacements correspond to shear, torsion and bending moments.
Hence, the element has six degrees of freedomand the matrix reads
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For uniform element load g, the element load vector reads
{p}={P1 P2 P3 p, Ps DPe} 2
in which
L? L L2 L
p1=0; pp = +4 /121 b3 = —1 /25 Pa=0; ps = —1 /12F Ps = -1 /2 3
1.1. Rectangular Bending Element

Rectangular bending element shown in Fig. 2 possessess for corner nodes, each node has three degrees of
freedom; i.e., one vertical displacement and two bending rotations. Hence, there are twelve degrees of freedom,
arranged in vector form

{u} = {Wl Hxl Hyl Wy 9)(4- 9}/4} (4)
Wa Wi
¥
0.14 } e=a p= b)o.rli
P @=1n=0
I\Ax )
(n=-a y=-b) 0a 2 (:=a. y2=-b) 0.

(G=-Lm=-1) (&=1Lmp=-1)
Figure 2: Rectangular Kirchhoff Bending Element

The stiffness matrix of rectangular bending element is derived by means of Kirchhoff bending rule. The form of
the stiffness reads
[k] = Dy([kp1] [kp2]l [kp3]l  [kpal) 5)
in which

Eh3
by, = 12 (1-v2)

(6)

where v is the Poisson’s ratio, Eelasticity modulus and hplate thickness. The matrices in Eqn. 3 read
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"9 . -

1
td=121 21 % -3¢ <21 -3 -3 21 (10)

21 -3 3a 21 3% 3a -21 3b -3a 2I

3% 20 0 -3 2 0 3 -8 0 -3 8
(38 0 -8 32 0 2’ 3 0 -2 3a 0 3|
in which a is plate length in x direction and b is plate width in y direction. For uniform element load ¢, the
element load vector reads

Y= Pz ps - o oy Pu Pi) (11)

in which

p, =+qab®/24; p, =-qa’b/24; p, =+qab/ 4

p, =+qab’/ 24; p, = +qa’h/ 24; p, = +qab/ 4

p, =—qab®/ 24; p, =+qa’b/24; p, =+qab/ 4
D, =—0ab*/24; p, =-qa’b/24; p, =+qab/ 4
(12)
2.2 Plane Eight Node Isoparametric Element
The formulation of grid and rectangular plane bending elements are described in previous sections. In
this section the formulation of plane eight node isoparametric element will be discussed. Isoparametric
formulation enables the use of distorted shape of element.Element model shown in Fig. 3 possesses eight nodes,

four corner nodes and four mid-side nodes. Hence, the element has eight nodes, each node has displacements in
x and y direction and the element has sixteen degrees of freedom.

Y
n
-1.+1) 3(+1.41)
T
s—(.;;. 8 |i+1.0) ¢
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1{-1.A1) 2(+1.-1)
X
Figure 3: Plane Eight Node Isoparametric Element
The displacement vector is arranged in the form
{U}: {Ul Vi U Vo Ug Vg }16x1 (13)
and nodal coordinates in the form
{X}: {Xl Yio X Yo o o Xg Y }16x1 (14)

In isoparametric formulation, element displacement and coordinates are interpolated from nodal displacement
and coordinates with the same shape functions
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ul [N, 0 N, 0 .. .. N, O] ()
{v}‘_o N, 0 N, . .. 0 Ngf .
and
{x}__Nl 0 N, 0 ... .. Ny O] %)
y] 1O N 0 N, .. .. 0 Ng|, .
in which

N(Em) = 3= Na(Em) =7 Ena+ Ha-1)
Na(Eom) = 5 00+ )A+n); Ny(6,m) =4 En1-£)A+n)

Na(Em) =31+ -1 No(&m) =+2 QL+ O)A+n)L-1)

1 1
N, (&,m) = +§n(l+ SA-8)A+m); Ng(&m) = —55(1—5)(1+ m@A-n)
In the formulation of element stiffness, some partial diferentiations are needed; i.e.,

X _ X SN Y oSNy Yo
6§_2Ni,§xi’ 877 le,ﬁxliaé Zwal’ 877 zwa

with the summation are carried out for 1 until 8. The Jacobian matrix then reads

8 8
ZNi,fxi ZNi,éyi

[J]= izl i;l
Zzl:NiJ]Xi ;Ni,nyi

and the determinant is

=2 N % D NG LY =2 Ny DN X
and

jll:_zNi,qyi; 512:_ZNi,fyi;jZl:_ZNi,nxi; jzzzzNi,gxi

The [B] matrix relating displacement vector to straint vector is

[B]zﬁ[él éz §8](3x16)
in which

a; 0
[§1]= 0 b

b. a.

j j
The elements in Eqgn. 23 are

a; =JyN;,+J;,N
in which

8 8 8 8
a; = Z;’ NiyYiNj _2-1: Ni:YiNj,0 by = _Z_l: NiyXiNj . +le NisXiNj,
Stiffness matrix of element may be formed by using formulation

[k1=[[[[ [BIIEIBIdV]

jps By =JuNj - +I,N;,

(25)

(15)

(16)

A7)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(26)

In the process, elements a;and bj in matrix[B] are in quadratic forms in cfandﬂ such the integrand in

qubical forms in respective & and 17. Therefore, the form in Eqn. 26 has to be integrated by means of Gauss

integration with the number of integration points M= (3+1)/2=2 in respective x and y direction. The

location of integration points is shown in &, =77, = £0.577350269 ... . Then the stiffness matrix becomes

DOI: 10.9790/1684-1501020111 www.iosrjournals.org

5 | Page



Analysis Of Gradually Built Structural System

s [Be.m)] [EJBe.n)
k « — WIX [ 1 1 1 1 (27)
[ ]88 Z=l: |J(§i177i)|
For the vertical loadt, the equivalent element load takes the form
+1+1
{pe}ZH[N]Tt(eC,U)|J|d§dT7 (28)
1-1

Considering the order of T(£,77) in&and7, while N,(&,77) are in quadratic form in &and77, then the

number of integration Gauss points M. and m, in §and77 directions may be computed, and element
equivalent load vector becomes

m, mé& T
o)=Y ww,[N(&.7)] 7)) (29)

i=1 i=1

111 Computer Programming

Several computer package programs are constructed based on the finite element method described in
the previous chapter. One computer package program is constructed for grid structural system, and another
computer program is for plane half medium system. The computer packages follow standard formation of
FORTRAN computer program. The new feature that incorporated in both programs are the suppression of
inactive degrees of freedom. If displacement component U; is suppressed, then global equilibrium equation is
modified by zeroing all row and column elements K;; = K;; = 0 and setting K;; = 1.0 and P; = 0. For example,
if Usis suppressed, then

[ 0 1Y ()
[K]{U}=|[0 0 2 0 o“%}: {0¥ (30)
0 L) )

The solution of Eqn. 30 will result in zero for Ua.

v Case Study
In the study, two cases are performed; i.e., a bridge structure as a grid system and a half plane space with
a tunnel. The first case is a bridge consisting of several girders positioned initially, then some diapraghms are
installed. The second case consists of half plane medium with own weight of the medium, and a houle is digged
beneath the soil surface.

4.1. Bridge Structure with Inserted Diapraghm

As a first case, a bridge structure shown in Fig. with span 40.0 meters and width 18 meters is
considered [2]. The bridge consists of girders made of post-tensioned concrete system, floor slab, and cross
beams at supports. Bridge cross section, depicted in Fig 5, consists of five girders. The girder is made of | beam
with the height 2.0 meters, flange width 2.0 meters, flange thickness 0.3 meter, and thickness of web 0.3 meter.
The height of diapraghm is 0.6 meter and the width is 0.3 meter. The thickness of floor slab is 0.3 meter. The
concrete is made of material with characteristic compression strength f.” = 40 MPa and elastic modulus E =
20,000 MPa. The loading considered consists of structural own weight gc= 24.0 kN/m®, uniform live load 7.83
kN/m? and line live load 49.0 kN/m.
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Figure 5:Bridge Cross Section

Finite element meshing of the bridge is shown in Fig. 6. The discrete model consists of 28 grid element
representing girders, 16 rectangular bending plate element representing floor slab and 12 beam element
representing diapraghms. Two cases of loading is considered; i.e., (1) dead load only, and (2) dead load with
uniform live load at plate elements 42, 43, 46 and 47, and line live load at diapraghm 22, 23, 24, 27 and 28.
Beside, three structural sub cases are considered, i.e., (1) the bridge without diapraghm in all loading cases ,
denoted by T-T, (2) the bridge without diapraghm in load case 1 and with diapraghm in load case 2, denoted by
T-D, and (3) the bridge with diapraghm in all load cases, denoted by D-D.

k4%~ %— £ _
Figure 6: FiniteElement Meshing of Brigde

The analysis was carried out with a package program specially written for the algorithm.
Displacements and stresses within the structure were all computed; but due to limitation of space, only
displacements are disscused for load case 2 and for structural case T-D. The displacements at mid span
diapraghm is shown in Fig. 7. The maximum differential vertical displacement between two adjacent girders in
case T-T is 0.0039 meter. In this sub-case, the differential vertical displacement could not withstood by floor
slab and wide cracks developed at floor slab.

The floor slab cracking was then remedied by insterting diapraghms in the existing adjacent girders.
The diapraghms were made of precast concrete. The displacement for structural case T-D was recorded at mid
span diapraghm. The maximum differential vertical displacement between two adjacent girders in case T-D is
0.0016 meter. The cracks in floor slab were then filled by epoxy. The insertion of the diapraghms overcame the
crack problem of floor slab.
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PERPINDAHAN VERTIKAL PADA DIAFRAGMAAKIBAT LOAD STEP 2
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Figure 7: Plot of Displacement at Bridge Mid Span Cross Section

4.2.

Plane Medium with Tunnel

A soft medium resting on hard layer is considered in this second case [1]. The region considered is the
medium portion with width 20.0 meters and thickness 20.0 meters. The region is represented by a discrete
model with 100 eight node isoparametric elements shown in Fig. 8. Two loading cases are considered; i.e., (1)
own wieght of medium only, and (2) own weight of medium plus uniformly distributed load at medium surface.
Four structural cases are considered; i.e., (1) Medium without tunnel at all loading cases, denoted by T-T, (2)
medium with opening in load case 2, denoted by T-B, (3) medium with tunnel in load case 1 and then closed in
load case 2, denoted by B-T, and (4) medium with tunnel in all load cases, denoted by B-B. Uniform distributed
load is performed in three load steps, i.e., 0.0, 1,000.0 and 2,000.0 kN/m.
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Figure 8: Finite Element Meshing of Medium
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The tunnel dimension is 4.0 meters x 4.0 meters represented by 2 x 2 = 4 elements. The tunneling depth
is denoted by a. Displacements, strains and stresses are computed for all cases, but due to limitation of space,
only displacements are considered. Three observations are made; i.e., (1) the vertical displacment at node 228
for structural cases T-T, T-B, B-T and B-B; (2) the vertical displacment at node 228 in structural case T-B due
to sequence of opening of the four elements and (3) the vertical displacement at nodes 100, 196 and 292
according to tunneling depth.

Table 1:Displacements at Node 228 for the Four Structural Case

Displacement(m)
Step Pembebanan(kN) T BB TB BT
0 0 0 0 0
1000 -0.2114 -0.3222 -0.2114 -0.3222
2000 -0.4228 -0.6444 -0.5336 -0.5336

For observation 1, displacements at node 228 are given in Table 1 and drawn in Fig. 9, The smallest
displacement occurs in structural case T-T, the largest displacement occurs in case B-B, while the displacements
in case T-B and B-T are the same.

N
&
o

i
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\,\/\x\\\\
\\\ —~<—BT

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
Displacement (m)

="
8
<

Beban (kN)

/;
o
o
o

Figure 9:Displacement Curves at Node 228

For observasion 2, two cases of digging sequence are considered; i.e., (1) sequence 65, 55, 66 and 56; and (2)
sequence 66, 65, 55 and 56, shown in Fig. 10.

74 |258 75 (261 7¢ 20477 -?4'258?5 261l 7¢ |26477
'225I "227225230[226 23323123

64 |22 65 |22966 3267
1195 1&&193 196 2014199 20
T%ss 00s7

54 |194 55

163 TRI Ihn 164 169 167 17,
144 [162 45 |165 46 |16847

(a) sequence 1 (b) sequence 2
Figure 10: Sequence of Tunneling
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The displacements at node 228 are tabulated in Table 2 and drawn in Fig. 11 for loading levels. The

displacement in sequence 2 is slightly larger than that of sequence 1 since sequence 2 causes larger decrease of
structural stiffness.

Table 2: Displacement at Node 228 According to Tunneling Sequence

Displacement (m)
Load Step (kN) Sequence 1 (65-55-66-56) Sequence 2 (66-65-55-56)
0.0 0.0000 0.0000
1000.0 -0.2114 -0.2114
2000.0 -0.4459 -0.4462
3000.0 -0.6873 -0.7544
4000.0 -1.0040 -1.0720
5000.0 -1.3270 -1.3940
6000
5000
=
=
s 3000
_E —4— Komb1(65-55-66-56)
[-a]
—— Komb2(66-65-55-56)
-1.5 -1 0.5 )
Displacement (m)

Figure 11: Displacement Curves at Node 228 According to Tunneling Sequence

The third observation deals with the influence of the tunneling depth with respect to displacement of
node 100, 196 and 292. These nodes are the nodes at mid side of upper side of tunnel hole. The displacements at
these nodes are tabulated in Table 3. Since node 292 is closest to medium surface, then the largest displacement
occurs here. Since node 100 is farest to medium surface, then the smallest displacement occurs there.

Table 3:Displacements at Node 100, 196 and 292 According to Tunneling Depth

Load Step (kN) Displacement (m)
a =1 m (node 292) o =4 m (node 196) a =7 m (node 100)
0.0 0.0000 0.0000 0.0000
1000.0 -0.4691 -0.2835 -0.1816
2000.0 -0.9382 -0.5669 -0.3632

V  Conclusions
A computer package program was prepared for the analysis of sructural systems with changing
geometry. Several cases are capable of analyzed; i.e., structural system with constant elements, structural system
with reducing components, structural system with adding elements. In all cases, all elements and hence all nodes
are included in computation of total number and numbering of structural degrees of freedom. For the case of
reducing components, inactive components are not taken into account by setting zero value for modulus of
elasticity, and degrees of freedom of nodes pertaining to inactive elements are suppressed.
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Figure 12:Displacement Curves at Node 100, 196 and 292 According to Tunneling Depth
Two cases are considered; i.e., bridge structure with and without diapraghms and plane medium with
tunnel. In the first case, the decrease or increase of elements results in the decreace or increase of structural
stiffness which in turn affects the displacements, strains and stresses. In the second case, the computer results
may demonstrate the influence of the size and the depth oftunneling.
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