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Abstract:The paper deals withthe analysis of structural system that built gradually such that the structural 

stiffness varies with time of construction. The analysis of such structural system is carried out by applying finite 

element method. First, all of the finite elements are included in the computation of number of degrees of 

freedom. Then, the analysis is initiated by considering all of elements and the numbering of degrees of freedom 

are carried out. Assembled elements are denoted by assigning the value of modulus elasticity, and absent 

elements are denoted by assigning zero modulus of elasticity. Nodal degrees of freedom that are located in 

absent elements are suppressed from the global equilibrium equation. Hence, the analysis is performed with 

changing global structural stiffness. A computer package program in FORTRAN is written for the analysis. The 

new package program is applied in the analysis of several study cases. 
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I. Introduction 
A structural system ussually is built by assembling its components gradually. Hence, the structural total 

number of degrees of freedom and the structural stiffness vary according to the assembling process. For 

example, in case of multi-storey building, the system is built gradually by positioning columns of first storey 

and then beams of the next floor above. The same process is carried out for storeys. This case is particularly true 

for the case of structural system made of precast components. 

Before the structural system is completed to its final configuration, the temporary system has to be 

capable of sustaining external forces. In this case, the total number and the numbering of degrees of freedom 

and hence the structural stiffness vary with time. So, the total number and numbering of degrees of freedom 

have to be carried out for each construction step. 

The paper proposes a method in which the numbering of degrees of freedom is carried out for 

completed form of the structure. It means that the total number and numbering of structural degrees of freedom 

are kept constant during all construction steps. In a particular construction step, assembled components are 

indentified and given real values of modulus elasticity, and absent components are indentified and given zero 

values of modulus elasticity. By doing so, total number and numbering of degrees of freedom are kept constant 

for all construction steps. After stiffness and load assemblage, row and column members of stiffness matrix 

pertaining to the degrees of freedom belong to absent components would be all zero and this will make the 

stiffness matrix ill condition. To remedy this problem, the degrees of freedom may be suppressed from the 

equilibrium equation. If the suppressed degree of freedom is inside of the displacement vector, the suppression 

of the degree of freedom will decrease the total number of degrees of freedom and the new numbering of 

degrees of freedom has to be carried out. This kind of remedial step may take long  execution time. 

Another way to handle inactive degree of freedom is to retain the degree of freedom in the matrix form 

of equilibrium equation. All elements of row and column of stiffness matrix pertaining to the degree of freedom 

are set to zero, and the diagonal element of the stiffness matrix pertaining to the degree of freedom is set to 

some value. The element of load vector pertaining to the degree of freedom is set to zero. Therefore, the total 

number and the numbering of degrees of freedom are kept constant and the solution of global equilibrium 

equation results in zero displacements of inactive degrees of freedom.  

 

II. Finite Element Method 
To begin with, in this chapter, finite element method is resumed by formulating stiffness matrices and 

load vectors of some types of elements; i.e., grid element and eight load isoparametric plane element  [3,4]. The 

development of the two elements are described in the following.  
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2.1 Grid Element 

Grid element model is depicted in Fig. 1. The element consisting of two nodes, each node has one torsional 

rotation, and one bending rotation. That three displacements correspond to shear, torsion and bending moments. 

Hence, the element has six degrees of freedomand the matrix reads 

 
Figure1: Grid Element 
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For uniform element load q, the element load vector reads  
 𝑝 =   𝑝1 𝑝2 𝑝3 𝑝4

𝑝5 𝑝6  (2) 

in which 

𝑝1 = 0;  𝑝2 = +
𝑞𝐿2

12
 ;  𝑝3 = −

𝑞𝐿
2 ;  𝑝4 = 0;  𝑝5 = −

𝑞𝐿2

12
 ;  𝑝6 = −

𝑞𝐿
2  (3) 

  

1.1. Rectangular Bending Element 

 

Rectangular bending element shown in Fig. 2 possessess for corner nodes, each node has three degrees of 

freedom; i.e., one vertical displacement and two bending rotations. Hence, there are twelve degrees of freedom, 

arranged in vector form 

 𝑢 =   𝑤1 𝜃𝑥1 𝜃𝑦1 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 𝑤4 𝜃𝑥4 𝜃𝑦4  (4) 

Figure 2: Rectangular Kirchhoff Bending Element 

 

The stiffness matrix of rectangular bending element is derived by means of Kirchhoff bending rule. The form of 

the stiffness reads  
 𝑘 =  𝐷𝑏  𝑘𝑏1  𝑘𝑏2  𝑘𝑏3  𝑘𝑏4   (5) 

in which  

𝐷𝑏 =
𝐸ℎ3

12 (1−𝑣2)
 (6) 

 

where υ is the Poisson’s ratio, Eelasticity modulus and hplate thickness. The matrices in Eqn. 3 read 
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and 

(7) 

 

(8) 

 

(9) 
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in which a is plate length in x direction and b is plate width in y direction. For uniform element load q, the 

element load vector reads  
 𝑝 =   𝑝1 𝑝2 𝑝3 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 𝑝10

𝑝11 𝑝12  (11) 

in which 
2 2
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2 2
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2 2
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2 2
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/ 24;  / 24;  / 4;  
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     

     

     

     
 

 

(12) 

2.2 Plane Eight Node Isoparametric Element 

The formulation of grid and rectangular plane bending elements are described in previous sections. In 

this section the formulation of plane eight node isoparametric element will be discussed. Isoparametric 

formulation enables the use of distorted shape of element.Element model shown in Fig. 3 possesses eight nodes, 

four corner nodes and four mid-side nodes. Hence, the element has eight nodes, each node has displacements in 

x and y direction and the element has sixteen degrees of freedom.  

Figure 3: Plane Eight Node Isoparametric Element 

 

The displacement vector is arranged in the form 

   
116882211 ......ˆ

x
vuvuvuu   (13) 

and nodal coordinates in the form 

   
116882211 ......ˆ

x
yxyxyxx   (14) 

In isoparametric formulation, element displacement and coordinates are interpolated from nodal displacement 

and coordinates with the same shape functions 

(10) 
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and 
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in which 
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In the formulation of element stiffness, some partial diferentiations are needed; i.e.,  
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with the summation are carried out for 1 until 8. The Jacobian matrix then reads  
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and the determinant is  

jjiijjii xNyNyNxN    ,,,,,,J  (20) 

and 

iiiiiiii xNJxNJyNJyNJ    ,22,21,12,11    ;;   ;  (21) 

The ][B matrix relating displacement vector to straint vector is 
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The elements in Eqn. 23 are  

 ,22,21,12,11    ; jjjjjj NJNJbNJNJa   (24) 

in which 

 ,

8

1

.,

8

1

,,

8

1

.,

8

1

,   ; j

i

iiji

i

ijj

i

iiji

i

ij NxNNxNbNyNNyNa 


                       (25) 

Stiffness matrix of element may be formed by using formulation 

]]][[][[][ dVBEBk i

T

i

V

i   (26) 

In the process, elements ja and jb in matrix  B  are in quadratic forms in  and  such the integrand in 

qubical forms in respective  and . Therefore, the form in Eqn. 26 has to be integrated by means of Gauss 

integration with the number of integration points 22/)13( m  in respective x and y direction. The 

location of integration points is shown in  ...577350269.0 ii  . Then the stiffness matrix becomes 
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For the vertical load𝑡 , the equivalent element load takes the form 
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Considering the order of ),( t  in and , while ),( iN  are in quadratic form in  and , then the 

number of integration Gauss points m and 
m in  and  directions may be computed, and element 

equivalent load vector becomes 

    ),(),(),(
1 1

jiji

Tm

j

m

i

jijie JtNwwp 
 


 

  (29) 

 

III Computer Programming 
Several computer package programs are constructed based on the finite element method described in 

the previous chapter. One computer package program is constructed for grid structural system, and another 

computer program is for plane half medium system. The computer packages follow standard formation of 

FORTRAN computer program. The new feature that incorporated in both programs are the suppression of 

inactive degrees of freedom. If displacement component 𝑈𝑖  is suppressed, then global equilibrium equation is 

modified by zeroing all row and column elements 𝐾𝑖𝑗 = 𝐾𝑗𝑖 = 0  and setting 𝐾𝑖𝑖 = 1.0 and 𝑃𝑖 = 0. For example, 

if U3is suppressed, then 

 

 𝐾  𝑈 =
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0 0 1
0
0

0 0

 
 
 
 
 

 
 
 

 
 

𝑈3

 
 
 

 
 

=  

 
 
 

 
 

0

 
 
 

 
 

 (30) 

 

The solution of Eqn. 30 will result in zero for U3. 

  

IV  Case Study 
 In the study, two cases are performed; i.e., a bridge structure as a grid system and a half plane space with 

a tunnel. The first case is a bridge consisting of several girders positioned initially, then some diapraghms are 

installed. The second case consists of half plane medium with own weight of the medium, and a houle is digged 

beneath the soil surface. 

 

4.1. Bridge Structure with Inserted Diapraghm 

As a first case, a bridge structure shown in Fig. with span 40.0 meters and width 18 meters is 

considered [2]. The bridge consists of  girders made of post-tensioned concrete system, floor slab, and cross 

beams at supports. Bridge cross section, depicted in Fig 5, consists of  five girders. The girder is made of I beam 

with the height 2.0 meters, flange width 2.0 meters, flange thickness 0.3 meter, and thickness of web 0.3 meter. 

The height of diapraghm is 0.6 meter and the width is 0.3 meter. The thickness of floor slab is 0.3 meter. The 

concrete is made of material with characteristic compression strength fc’ = 40 MPa and elastic modulus E = 

20,000 MPa. The loading considered consists of structural own weight qc= 24.0 kN/m
3
, uniform live load 7.83 

kN/m
2
 and line live load 49.0 kN/m.  
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Figure 4: Bridge Grid System 

 

 
Figure 5:Bridge Cross Section 

 

Finite element meshing of the bridge is shown in Fig. 6. The discrete model consists of 28 grid element 

representing girders, 16 rectangular bending plate element representing floor slab and 12 beam element 

representing diapraghms. Two cases of loading is considered; i.e., (1) dead load only, and (2) dead load with 

uniform live load at plate elements 42, 43, 46 and 47, and line live load at diapraghm 22, 23, 24, 27 and 28. 

Beside, three structural sub cases are considered, i.e., (1) the bridge without diapraghm in all loading cases , 

denoted by T-T, (2) the bridge without diapraghm in  load case 1 and with diapraghm in load case 2, denoted by 

T-D, and (3) the bridge with diapraghm in all load cases, denoted by D-D. 

 

 
Figure 6: FiniteElement Meshing of Brigde 

 

The analysis was carried out with a package program specially written for the algorithm. 

Displacements and stresses within the structure were all computed; but due to limitation of space, only 

displacements are disscused for load case 2 and for structural case T-D. The displacements at mid span 

diapraghm is shown in Fig. 7. The maximum differential vertical displacement between two adjacent girders in 

case T-T is 0.0039 meter. In this sub-case, the differential vertical displacement could not withstood by floor 

slab and wide cracks developed at floor slab.  

The floor slab cracking was then remedied by insterting diapraghms in the existing adjacent girders. 

The diapraghms were made of precast concrete. The displacement for structural case T-D was recorded at mid 

span diapraghm. The maximum differential vertical displacement between two adjacent girders in case T-D is 

0.0016 meter. The cracks in floor slab were then filled by epoxy. The insertion of the diapraghms overcame the 

crack problem of floor slab. 
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     Figure 7: Plot of Displacement at Bridge Mid Span Cross Section 

 

4.2. Plane Medium with Tunnel 

A soft medium resting on hard layer is considered in this second case [1]. The region considered is the 

medium portion with width 20.0 meters and thickness 20.0 meters. The region is represented by a discrete 

model with 100 eight node isoparametric elements shown in Fig. 8. Two loading cases are considered; i.e., (1) 

own wieght of medium only, and (2) own weight of medium plus uniformly distributed load at medium surface. 

Four structural cases are considered; i.e., (1) Medium without tunnel at all loading cases, denoted by T-T, (2) 

medium with opening in load case 2, denoted by T-B, (3) medium with tunnel in load case 1 and then closed in 

load case 2, denoted by B-T, and (4) medium with tunnel in all load cases, denoted by B-B. Uniform distributed 

load is performed in three load steps, i.e., 0.0, 1,000.0 and 2,000.0 kN/m. 

 

 
Figure 8: Finite Element Meshing of Medium 
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The tunnel dimension is 4.0 meters x 4.0 meters represented by 2 x 2 = 4 elements. The tunneling depth 

is denoted by α. Displacements, strains and stresses are computed for all cases, but due to limitation of  space, 

only displacements are considered. Three observations are made; i.e., (1) the vertical displacment at node 228 

for structural cases T-T, T-B, B-T and B-B; (2) the vertical displacment at node 228 in structural case T-B due 

to sequence of opening of the four elements and (3) the vertical displacement at nodes 100, 196 and 292 

according to tunneling depth. 

 

Table 1:Displacements at Node 228 for the Four Structural Case 

 
 

For observation 1, displacements at node 228 are given in Table 1 and drawn in Fig. 9,  The smallest 

displacement occurs in structural case T-T, the largest displacement occurs in case B-B, while the displacements 

in case T-B and B-T are the same.  

 

 
Figure 9:Displacement Curves at Node 228 

 

For observasion 2, two cases of digging sequence are considered; i.e., (1) sequence 65, 55, 66 and 56; and (2) 

sequence 66, 65, 55 and 56, shown in Fig. 10.  

         (a) sequence 1 (b) sequence 2 

Figure 10: Sequence of Tunneling 

 

TT BB TB BT

0 0 0 0 0

1000 -0.2114 -0.3222 -0.2114 -0.3222

2000 -0.4228 -0.6444 -0.5336 -0.5336

Displacement(m)
Step Pembebanan(kN)
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The displacements at node 228 are tabulated in Table 2 and drawn in Fig. 11 for loading levels. The 

displacement in sequence 2 is slightly larger than that of sequence 1 since sequence 2 causes larger decrease of 

structural stiffness.  

 

Table 2: Displacement at Node 228 According to Tunneling Sequence  

Load Step (kN) 
Displacement (m) 

Sequence 1 (65-55-66-56) Sequence 2 (66-65-55-56) 

0.0 0.0000 0.0000 

1000.0 -0.2114 -0.2114 

2000.0 -0.4459 -0.4462 

3000.0 -0.6873 -0.7544 

4000.0 -1.0040 -1.0720 

5000.0 -1.3270 -1.3940 

 

 

 
Figure 11: Displacement Curves at Node 228 According to Tunneling Sequence 

 

The third observation deals with the influence of the tunneling depth with respect to displacement of 

node 100, 196 and 292. These nodes are the nodes at mid side of upper side of tunnel hole. The displacements at 

these nodes are tabulated in Table 3. Since node 292 is closest to medium surface, then the largest displacement 

occurs here. Since node 100 is farest to medium surface, then the smallest displacement occurs there. 

 

Table 3:Displacements at Node 100, 196 and 292 According to Tunneling Depth  

 

V  Conclusions 
A computer package program was prepared for the analysis of sructural systems with changing 

geometry. Several cases are capable of analyzed; i.e., structural system with constant elements, structural system 

with reducing components, structural system with adding elements. In all cases, all elements and hence all nodes 

are included in computation of total number and numbering of structural degrees of freedom. For the case of 

reducing components, inactive components are not taken into account by setting zero value for modulus of 

elasticity, and degrees of freedom of nodes pertaining to inactive elements are suppressed. 

 

Load Step (kN) 
Displacement (m) 

α = 1 m (node 292) α = 4 m (node 196) α = 7 m (node 100) 

0.0 0.0000 0.0000 0.0000 

1000.0 -0.4691 -0.2835 -0.1816 

2000.0 -0.9382 -0.5669 -0.3632 
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Figure 12:Displacement Curves at Node 100, 196 and 292 According to Tunneling Depth  

Two cases are considered; i.e., bridge structure with and without diapraghms and plane medium with 

tunnel. In the first case, the decrease or increase of elements results in the decreace or increase of structural 

stiffness which in turn affects the displacements, strains and stresses. In the second case, the computer results 

may demonstrate the influence of the size and the depth oftunneling. 
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