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Abstract: This paper proposes an analytical scheme for stability analysis in turning process by considering the 

motion of tailstock-supported workpiece using a compliance model of tool and work. A dynamic cutting force 

model based on relative motion between the cutting tool and workpiece is developed to study the chatter 

stability. Linear stability analysis is carried out in the frequency domain and the stability charts are obtained 

with and without considering workpiece flexibility. Variations of stability limits with workpiece dimensions and 

cutter position as well as the effects of cutting tool dynamics are studied and wherever possible results are 

compared with existing models. Experimental analysis is conducted on tailstock-supported workpiece to 

examine the correctness of the proposed stability model. 

Keywords: Chatter stability, Regeneration, Compliance, Two-degree model, Critical parameters 

 

I. Introduction 
Many engineering components manufactured using casting, forming and other processes often require 

machining as their end operation. Machining or metal cutting is an important manufacturing process. With the 

modern trend of machine tool development, accuracy and reliability are becoming prominent features. To 

achieve higher accuracy and productivity, it requires consideration of dynamic instability of cutting process. 

When there is a relative motion present between the tool and work piece, the performance of the operations may 

not be satisfactory. The machine tool vibrations have detrimental effect on tool life which in turn lowers the 

productivity and increases cost of production. The process of cutting in turning exhibits complicated and 

interesting dynamics. During the cutting operation, several types of vibrations influence the chip flow-rate and 

final work surface. Compared to free and forced vibrations, self-excited vibrations are more detrimental to the 

finished surfaces and cutting tools. Self-excited vibrations are developed at one of the natural modes of cutting 

system as a result of dynamic interaction between the structure and cutting process. This may result in large 

amplitudes of relative motion between the cutter and work-piece. Such a phenomenon also known as ‘chatter’ 

can in general result from one or more of the following: regenerative effects, mode coupling, loss-of-contact 

dynamics, and friction, structural and other sources of nonlinearities. Of all these, regenerative chatter has more 

influence on the stability of cutting. The regeneration is due to interaction of cutting force and work-piece 

surface undulations reduced by the preceding tool passes. It occurs when the cuts overlap and cut produced at a 

time t leaves small waves in the material that are regenerated during each subsequent pass of the tool. If 

regenerative vibrations becomes large enough so that the tool does not be in contact with work-piece, another 

type of chatter known as multiple regenerative chatter occurs. Machine tool can vibrate due to cutting process 

itself under some particular conditions. The excitation is supplied by the cutting process itself. Boothroyd & 

Knight[1] and Astkhov[2] stated that machine tool vibrations may be divided into the three types i.e. free 

vibration, forced vibration, and self-excited vibration. These authors defined self excited vibrations as free 

vibrations with negative damping. In the middle of the twentieth century, Arnold[3] demonstrated the negative 

damping effect using his experimental studies and analytical modeling. Andrew & Tobias[4] discussed and 

compared two current theories of machine tool chatter considering differences in their basic assumptions and 

their theoretical structure. Gurney & Tobias[5] found that the regeneration is due to variations in the uncut chip 

thickness from one revolution to another. They presented a method of analysis of machine tool stability during 

turning operation.Tlusty & Polacek[6] presented the stability of machine tool against self-excited vibration in 

turning operation with and without coolants. Tlusty[7] presented a method to analyse the stability of the 

machine tool in turning operation and explained about the various cutting parameters and its effect on stability. 

Tobias, and Fishwick[8] explained the structural dynamics of the machine tool and the feedback between the 

subsequent cuts on the same cutting surface, and thus modulation in the chip thickness. Tarng et al.[9] presented 

another analytical model of chatter vibration in metal cutting. The basic cutting mechanics adopted in this model 

is derived from a predictive machining theory based on a shear zone model of chip formation. In this model the 

variation of undeformed chip thickness and rake angle due to the machine tool vibration are measured. Altintas 

and Weck[10] presented orthogonal chatter stability law and lobe diagrams for single point machining 

operations where the process is one dimensional and time invariant. Here various stability models are compared 
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against experimentally validated time domain simulation model results. Chen and Tsao[11] analyzed the 

stability of the cutting system in terms of the work-piece length, radius, natural frequency, deflection, 

slenderness ratio, cutting point, and material. The relationship between the critical chip width and the cutter 

spindle speed is investigated under a range of cutting and work-piece conditions. The analytical results for the 

flexible work-piece are compared with those for a rigid work-piece. It is found that the critical chip width of the 

flexible work-piece is always greater than that of the rigid body.  Ganguli et al.[12] demonstrated the effect of 

active damping on regenerative chatter instability for a turning operation. Here an active damping is proposed as 

a strategy to enhance the stability limits of the system. It is shown that different spindle speeds cause changes in 

the system damping, resulting in different levels of stability limits at different spindle speeds. Practically, the 

regeneration is a nonlinear phenomenon. The various forms of nonlinearity are considered in the analytical 

models. The popular way is to treat the cutting force as a nonlinear function of time varying chip width or feed. 

This nonlinear force-feed relation leads to a different stability states. Most nonlinear chatter models consider 

either nonlinearity in the structure and cutting force or nonlinearity due to friction depending on the cutting 

speed. Insperger et al.[13] analysed non-linear dynamics of a state-dependent delay model of the turning 

process. The size of the regenerative delay is determined not only by the rotation of the workpiece, but also by 

the vibrations of the tool. The numerical analysis of their model revealed that Hopf bifurcations depend on the 

feed rate. Landers and Ulsoy[14] presented a nonlinear force feed model to illustrate the practical machining 

simulations in turning and milling operations. Here machining chatter analysis techniques are mainly examine 

the stability of the closed-loop model of the machining operation to determine the stable process parameter 

space. In metal removal operations, much of the research work has been carried out in the past and many are 

continuing for the purpose of decreasing production cost and to increase the product quality. Thomas et al. [15] 

had shown the effect of tool vibration on surface roughness during dry turning at different cutting parameters 

and tool angles. 

 
II. Analytical Models 

Stability lobe diagrams indicate the critical operating parameters necessary to avoid unstable cutting 

conditions. For every cutting operation, there is one such diagram which takes into account several features such 

as varying tool wear, work-piece supporting conditions, range of operating speeds, tool overhang lengths and so 

on. To draw the stability-lobe diagram involving many cutting states, it is quite tedious to perform the 

experiments several times. Analytical models on the other hand help to obtain the status of stability by 

incorporating several features in dynamic equations. However, care should be taken during modeling to 

incorporate all practical cutting constraints to maximum possible extent.  

 

2.1 Compliant Dynamic Model of Cutting Tool and Workpiece 
The dynamic stability of a machine tool in the turning process depends essentially on the compliance of 

the lathe structure, as well as on the properties of the cutting process. However, the design of the machine tool, 

the material(s) employed for its manufacture and their mechanical properties are extremely important for the 

dynamic behaviour of the machining system (comprising the entire lathe and the work material). The main input 

parameters affecting the machining system vibrations are: work material, work material geometry, tool material, 

tool geometry, lathe rigidity, cutting conditions (cutting speed, feed rate, and depth of cut) and tool wear. The 

behaviour of the machining system during vibration is a major output parameter. 

Basically, the turning tool is represented with a single degree for freedom spring-mass system working 

over a rigid workpiece. Cutting parameters such as cutting speed, feed, depth of cut, and tool overhang length 

have been accounted in the models to understand their effects on chatter stability in terms of critical chatter 

length. Different models are presented in the literature for development of analytical techniques for stability 

analysis. In the first case, the stability analysis in turning process is presented with a compliant dynamic model 

of cutting tool and workpiece. Effect of cutting tool position, workpiece dimensions, tool stiffness and damping 

on the dynamic stability is presented with the proposed dynamic model. Tool and workpiece are modeled as two 

separate single degree of freedom spring-mass damper systems. The model allows selection of different 

operating conditions with and without a tailstock support by accounting the fundamental natural frequency of 

the workpiece. Overall transfer matrix is derived from the equations of motion in the Laplacian domain and the 

expressions for critical parameters of cutting process in stable conditions are obtained analytically. Effect of 

workpiece parameters such as linear and lateral dimensions and cutter positions as well as influence of 

flexibility and damping of cutter on the stability is studied. In verifying the proposed model, experimental 

analysis is conducted on an engine lathe with a tail stock-supported AISI 1045 steel workpieces under various 

operating conditions. Dynamic cutting forces are recorded with a lathe tool dynamometer.  
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2.2 Dynamic modeling 

In most of the turning operations, workpiece is considered as a rigid member and the chip thickness is 

assumed to be affected only by the dynamic parameters of cutting tool. This one-dimensional second order 

orthogonal cutting model shown in Figure.1 is represented with the following governing equation: 

 1 1 1m x(t) c x(t) k x(t) F(t)cos t     (1) 

Here, x(t) is chip thickness (variation in depth of  cut) at a time t and the parameters m1,c1 and k1 are the 

equivalent mass, damping, and stiffness of the cutting tool and tool holder, θ is a constant cutting angle and  F(t) 

is cutting force, which is given by: 

 F(t)=Cbh(t)  (2) 

Where C is cutting coefficient obtained from experiments and b is depth of cut or chip width. The instantaneous 

chip thickness h(t) can be written from Figure 1 as:  

 h(t)= h0-x(t)+x(t- τ) (3) 

here, x (t−τ) is chip thickness in previous cut ;  h0 is nominal chip thickness resulting from feed mechanism and 

the term x(t)−x(t−τ) represents the regenerative chatter. Time delay τ represents the period for successive 

passages of tool, which is equal to time required for one revolution of workpiece in turning. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 Cutting tool model with rigid workpiece 

 

Substituting Eqs.(2) and (3) in Eq.(1) and taking Laplace transforms on both sides, the dynamic equation in 

Laplacian(s) domain becomes: 

 
2 s

1 1 1 0(m s c s k )X(s) Cb(H (s) X(s) e X(s))       (4) 

Thus the overall transfer function becomes  

 
)e1)(s(bCG1

)s(bCG

)s(H

)s(X
s

0




 

(5) 

where  
2

1 1 1

cos
G(s)

m s c s k




 
 (6) 

In practice, operating spindle speeds are well below the natural frequency of workpiece. Hence, in the flexibility 

considerations, the first mode of vibration is considered as significant and the workpiece is represented as 

another single degree of freedom spring mass damper system as shown in Figure 2. 
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                                   a) model of cutting tool                  (b) model of workpiece 

Fig.2 Proposed Compliant Model  

 

For this combined system, the equations of motion can be written in terms of tool and workpiece 

deformations x1(t) and x2(t) at a time t as follows:  
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 m1 1x (t) + c1 1x (t) + k1x1(t) = –F(t) cos  (7) 

 m2 2x (t) + c2 2x (t) + k2x2(t) = F(t) cos  (8) 

Here m2, c2, and k2 respectively represent mass, damping coefficient, and stiffness of the workpiece. F(t) is 

dynamic feed force which can be expressed in terms of the present and previous relative motion of cutting tool 

with respect to work-piece:  (x1(t) − x2(t)) and (x1(t − τ) − x2(t − τ)). That is force  

 F(t) = Cb{h0 – (x1(t) – x2(t)) + (x1(t – τ) – x2(t – τ))}    (9) 

When the above force term F(t) in Eq.(9) is substituted in Eqs.(7) and (8) and writing k1/m1 = ω
2
n1 , k2/m2 = ω

2
n2, 

c1/m1 = 2ξ1 ωn1 , c2/m2 = 2ξ2 ωn2 , these  two equations become coupled dynamic equations in terms of the 

variables x1 and x2 as follows. 

 

2

1 1 n1 1 n1 1 0 1 2 1 2

1

Cbcos
x (t) 2 x (t) x (t) {h (x (t) x (t)) (x (t ) x (t ))}

m


              

  

    
(10) 

 

2

2 2 n2 2 n2 2 0 1 2 1 2

2

Cbcos
x (t) 2 x (t) x (t) {h (x (t) x (t)) (x (t ) x (t ))}

m


                

    (11) 

Here ωn1,ωn2 and ξ1,ξ2 are natural frequencies and damping ratios of the cutter and work piece, respectively. 

 In Laplacian domain, Esq.(10) and (11) can be written as :  

 
2 2

1 1 n1 1 n1 1s X (s) 2 sX (s) X (s)          

  

1

Cbcos

m


  {H0(s) – (1 – e

–s
)X1(s) + (1 – e

–s
)X2(s)} (12) 

 

2 2

2 2 n 2 2 n 2 2
s X (s) 2 sX (s) X (s)      

  

2

Cbcos

m


 {H0(s) – (1 – e

–s
)X1(s) + (1 – e

–s
)X2(s)} (13) 

These can be simplified and a vector of transfer functions can be written of the form: 

 1

0

X(s)

H (s) [A] {B}   (14)
 

where 
1

2

X (s)
X(s)

X (s)

 
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 (15) 

 

s s
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  

     
 (16) 

 

2

1

pm
{B}

pm

 
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(17) 

and 

1 2

Cbcos
p

m m


   (18) 

The functions )2s( 1n
2

1n1

2

1   and 
2 2

2 2 n2 n2(s 2 )      are defined for convenience. 

 

2.3 Stability analysis 

The stability can be analyzed by considering the characteristic equation of the system and studying the 

relationship between the spindle speed N and chip width b.  

For rigid work-piece analysis from Eq.(5) the characteristic equation is obtained  by equating denominator to 

zero. That is : 

 

s

2

1 1 1

(1e )cos
1 bC 0

m s c s k

 
 

 
 (19) 

Substituting s = jω, separating real and imaginary terms, and solving for τ and b yields the following critical 

values:  
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* 1

2

1 1

c2
(n 1/ 2) a tan

m k

   
     

     
 (20) 

where n = 0,1,2……. 

 
* 1

*

c
b

Ccos sin


 

 
 (21) 

Here ω is the chatter frequency. Spindle speed in revolution per second is computed as N = 1/τ
*
. It can be seen 

that Eq.(20) has multiple solutions due to different values of n. Thus, Esq. (20) and (21) define the stability 

limits of this system.  

In the case of compliant model development the stiffness of work-piece has to be defined in terms of 

cutter location and supporting length. In turning operation, the cutting is often performed with and without 

tailstock supports. As shown in Fig.3(a), when there is no tailstock support for workpiece, it can be treated as a 

cantilever beam of stiffness k2= 3L

EI3
. Here I and L are the moment of inertia and overhang length of work-

piece respectively. E is Young’s modulus of work-piece material. While modeling, the tailstock supported work-

piece, the work can be considered as propped cantilever beam as shown in Fig.3(b). When cutting is performed 

at any location L1 on a tailstock-supported workpiece, the corresponding cutting force causes the workpiece to 

deflect. The maximum deflection in between the supports defines the stiffness of the is accounted as stiffness of 

workpiece in the proposed model. Thus  

 

 
(a) Without tailstock support 

     
(b) With tailstock support 

 

Fig.3 Deflection of tailstock-supported workpiece 

Using the expression for stiffness of propped-cantilever beam: 

 

3

2 2 2 2 2 2

1 2 2 1 2

12L EI
k

L L {3L(L L ) L (3L L )}




  
 (22) 

The fundamental natural frequency of workpiece:n2=
AL

k2


is obtained. Here,  is material density; L is 

total length between the supports and A is the cross-sectional area of workpiece. From Eqs. (14), (15), (16), (17) 

and (18), the characteristic equation for flexible model can be expressed as:  

 
s

1 2 1 1 2 2p(1 e )( m m ) 0              (23) 

Substituting s = jω and expanding Eq. (23) and separating real and imaginary terms, it result in: 

     1 2 1 2a a b b p 1 cos A Bsin 0        (24) 

               1 2 2 1a b a b p 1 cos B Asin 0        (25) 
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F cos 

y 

L2= (L-L1) 
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where 
2 2 2 2

1 n1 1 1 n1 2 n2 2 2 n2a ( ),b 2 ,a ( ),b ,               

 1 1 2 2 1 1 2 2A (m a m a ),B (m b m b )     

Eliminating p from Esq. (24) and (25) and defining D = (a1a2 – b1b2) and E = (a1b2 – a2b1), the phase shift can be 

written as :  

 
sin 1 BD AE

tan tan n
1 cos 2 2 AD BE

tan
2

     
            

 (26) 

This equation gives the critical time 
*
 as:  

 
* 1 BD AE

n a tan
2 2 AD BE

      
           

         (27) 

where n = 0, 1, 2, …. 

Also the critical chip width is:   

 
1 2m m D

b*
Ccos Bsin A(1 cos *)

 
  

     
 (28) 

The equations (27) and (28) define the stability limits for a cutting tool and work-piece. Thus the dynamic 

characteristics of work-piece and cutting tool are used to obtain the stability lobe diagram.  

 

III. Experimental Analysis 
In order to verify the analytical models, several tests are conducted to collect the required data through 

measurements which are done before, during and after the cutting tests. In the first two cases of experiments 

dynamic cutting forces are only measured in order to know the effects of workpiece flexibility and nonlinear 

force feed respectively on the cutting stability. In the third case, influence of secondary parameters like tool 

overhang length and flank wear on the cutting dynamics are studied by measuring the static cutting force data, 

workpiece surface roughness, tool wear as well as critical chatter lengths. In machining practice cutting force 

signals carry good amount of information regarding dynamics of cutting. When stability is lost, the feedback 

between the displacement and cutting forces begins, which results in an erratic cutting force histories. These 

cutting force histories are often recorded by means of lab-view equipped tool post dynamometers. Fig.4 

illustrates the arrangement for dynamic cutting force measurement using lathe tool-dynamometer.  

 

 
 

Fig.4 Arrangement for dynamic force measurement 

 

For testing the effects of work flexibility and compliance between work and tool, a series of cutting 

experiments are conducted on a 7.5 KW engine lathe with tailstock supported work-pieces. The cutting tools are 

carbide inserts and cutting is performed orthogonally. Work material is AISI 1045 steel. The cutting variables 

like depth of cut and spindle RPM are varied and cutting force histories are obtained. The major cutting 

conditions employed are depicted in Table 3.1. 
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Table.1 Major cutting conditions in experiment-1 
Feed(mm/rev) 0.246 

Depth of cut (mm) 1.47, 1.525, 1.58 

Spindle speed(RPM) 110, 550, 770 

 

Feed is adjusted with auto setting; depth of cut is measured and given by a dial gauge, while spindle 

speeds are selected by changing lever positions according to the manufacturer’s tables. In order to measure 

output forces Kistler-9121 three-component piezoelectric dynamometer is employed. There is an associated 

5070 multi-channel charge amplifier connected to PC employing Kistler Dynoware force measurement post 

processing software. The cutting force measurements in each case are made over a specified time span. 

Computer incorporating menu driven Dynoware software continuously plots cutting forces in X, Y and Z 

directions over the time span. User can vary the sampling frequency rate. The measured cutting forces are 

digitized and saved in the post processor files. This time domain data can be translated into a text file and time 

histories are drawn using EXCEL or MATLAB so as to obtain the corresponding FFT spectrums. Prior to the 

cutting force measurements, modal data of cutting tool and work-piece are obtained from impact hammer 

testing, as the natural frequencies and damping ratios of work-piece and tool are required first. Then stiffness of 

tool and work-piece are also measured on the same set-up by measurement of amplitude of deflection for given 

amplitude of tip impact hammer excitation. Work-pieces of 60 mm diameter and set-over length of 250 mm are 

used under various operating conditions. Fig.5 shows the experimental set-up used for measurement of modal 

parameters along with the dynamometer arrangement.  

 

 
Fig.5 Experimental set-up for finding modal data 

 

The impact hammer contains a quartz force sensor mounted on the striking tip of the hammer head. 

That quartz force sensor is used to transfer impact force into electrical signal for display and analysis. Signals 

generated by impact hammer and the accelerometer are traced in the signal analyzer using amplifiers. In the 

present task, Kistler 9724A impact hammer is used to excite the work-piece and cutting tool. To measure the 

vibratory response, small piezoelectric accelerometers (model Kistler 8632C50) are mounted in two lateral 

directions of workpiece. Here 5134A microprocessor-controlled coupler provides power and signal processing.  

 

IV. Results And Discussion 
This section presents the results of various analytical models proposed in the work along with the 

experimental validations wherever necessary. Initially, the output stability results of multi-degree of freedom 

tool and work compliance model are described. The second model comprising of nonlinear force-feed effect is 

illustrated with an oblique cutting process. Both the stability lobe diagrams and time-domain solutions are 

obtained from the model. Finally the results of experiments carried-out in knowing the influence of secondary 

parameters such as tool overhang on the output parameters like cutting forces are presented for four different 

work materials. These experimental results are employed further to develop a cutting model using radial basis 

neural networks. Finally the optimization results of cutting process are derived from this neural network model 

using binary coded genetic algorithms. Results are shown in the form of graphs and tables. 
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4.1  Compliance between Cutting Tool and Work 

 The analytical model described earlier is used to draw the stability lobe diagram under some preset 

conditions.  

Table 2. Cutting tool and work-piece data [25] 
Component / parameter Tool Work-piece( steel) 

m (kg) 50 -- 

c (kg/s) 2103 -- 

K (N/m) 2107 -- 

C (N/m2) 2109 -- 

Θ 70o -- 

E (Gpa) -- 180 

 (kg/m3) -- 7850 

L (m) -- 0.25, 0.5 

r (m) -- 0.025, 0.03, 0.035, 0.04, 0.05 

 

4.2  Effect of work-piece dynamics 

 When cutting force deflects the work-piece, the effect of work deflections on stability of cutting 

process are shown in Figure 6.  

 
Fig.6 Comparative lobe diagram for rigid and flexible work-pieces 

(r = 0.03 m, L = 0.3 m and L1 = 0.6L) 

 

This figure shows the relationship between the critical chip width and the spindle speeds for work-

pieces of length 0.5 m and radius 0.03 m. For comparison purpose, the results for both the rigid (dashed line) 

and flexible work-piece cases (solid line) are presented. It is seen that critical chip-width at higher spindle 

speeds is considerably larger when the work-flexibility is considered. The results reveal that for a constant 

spindle speed, the critical chip width is consistently higher when the work-piece deformation is taken into 

consideration. Figure 7 shows the variation of percentage difference of chip-width in both cases as a function of 

spindle speed. It can be seen that maximum percentage deviations are noticed at the right side of the diagram. 

This diagram is very much coinciding with the published work, where the authors considered the work-piece as 

a continuous cantilever beam simply supported at the free end.  

 
Fig.7 Percentile difference of chip-width verses speed between rigid and flexible work-piece models 
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Figure 8 shows variation of percentage difference in the critical chip-width as a function of spindle 

speed for four different work-pieces of constant length 0.5 m with different radii. A single lobe at higher speeds 

is only shown for clarity. As noticed from earlier works, here also the percentage difference of chip-width 

decreases progressively with increase in radius.  

 
Fig.8 Variation of percentage difference in chip-width  

(L = 0.5m) as a function of radius 

 

Figure 9 shows the variation of percentage difference in critical chip-width as a function of spindle 

speed for two work-pieces of constant radius 0.03 m, with two different lengths.  

 
Fig.9 Percentage difference in chip-width versus speed for  

work-piece of constant radius (r = 0.03m)  

 

From the diagram it can be observed that larger work-piece has more deflection and critical chip-width. 

In all the above cases, the position of cutting tool is considered at L1=0.6L. The damping ratio for all work-piece 

conditions is taken as 0.025, since it normally varies from 0.01 to 0.05. Figure 10 shows the influence of cutter 

position on chatter stability.  
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Fig.10 Effect of position of cutting in tailstock supported work-piece 

 

 Here a work-piece of 0.5m length and 0.03m radius is subjected to different tool forces at points: 

L1=0.2L,0.4L, 0.6L and 0.8L. These analytical results suggest that the magnitude of the critical chip-width 

difference should decrease as the force is applied successively at 0.2, 0.4.0.6 and 0.8L respectively. As seen 

from the figure, critical chip width increases for some length (L1=0.6L) as the tool moves towards the tailstock 

and then it decreases again. Here the cutting position (L1) is accounted in terms of change in natural frequency 

of work-piece. 

 

4.3 Effect of cutting tool dynamics 

Fig.11 shows the chatter stability limits, when cutting tool stiffness k1 changes from 0.510
7
 N/m to 

210
7
 N/m at constant values of work-piece length L=0.5 m and radius r=0.035 m. From the diagram it is 

observed that as the tool becomes more flexible, critical chip width increases.  

 

 
Fig.11 Effect of stiffness of cutting tool at high speeds (L = 0.5m, r = 0.035m) 

 

Fig. 12 shows the effect of cutter-damping on the chatter stability for a cutter stiffness k1=0.510
7
 N/m, 

along with work-piece dimensions: L=0.5m and r=0.035m. When damping increases in the cutter the stable 

depths of cut increase at the same spindle speeds. 
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Hz 

Hz 

 
Fig.12 Variation of chip-thickness with spindle speeds as a function of damping ratio of tool(L = 0.5m, r = 

0.035m) 

4.4 Experimental Results 

In order to validate the present model the experimental analysis is conducted as described in section 3. 

Various parameters of the cutting process and that of tool and     work-piece are first obtained experimentally so 

as to draw the analytical lobe diagram from the proposed compliance model. The modal parameters namely, 

natural frequencies and damping ratios of work and tool are obtained from the conventional impact hammer test.  

Initially, the force and corresponding acceleration histories are directly recorded in the analyzer and the 

data is further employed to obtain the frequency response curves using a MATLAB program. The Fourier 

transforms gives the frequency spectrum. Fig. 13 shows the transformed values of accelerometer readings for 

the cutting tool and work-piece. 

 

 
 

(a) Cutting tool 

 

 

 
 

(b) Tailstock supported work-piece (accelerometers in 2 radial directions) 

Fig.13 Modal testing spectrums 

 

As seen from the amplitudes of the spectra, the fundamental natural frequency of the tool as 2560 Hz while the 

work-piece is around 612 Hz. For finding the experimental stability states, the predicted modal parameters are 

listed in Table-4.2. 
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Table 3. Major cutting conditions 
Cutting Tool  (carbide insert) Work-piece (AISI 1045 steel) 

Natural frequency n1=2560Hz Natural frequency n2=612 Hz 

Damping ratio 1=0.015 Damping ratio 2=0.023 

Stiffness k1=1.2107 N/m Stiffness k2=6.5106 N/m 

 

 The cutting force coefficient (C) calculated from orthogonal data of AISI 1045 steel work-piece using 

shear stress, shear angle and friction angle with orthogonal transformations and it is found to be 700 MPa. Tool 

with coated-carbide insert employed during cutting has straight cutting edge without nose radius. In this test, 

AISI 1045 steel work-pieces are used. The metallurgical and mechanical properties of the workpiece material 

are presented in Table 4.3. The workpiece for the turning tests is a round bar of 60 mm of diameter and 250 mm 

of length.  
 

Table 4.3 Metallurgical and Mechanical properties of AISI 1045 steel  
Metallurgical properties Mechanical properties 

Component Wt. % Property Quantity 

C 0.37-0.44 Hardness, Brinell 149 

Fe 98.6-99 Tensile Strength, Ultimate 515 MPa 

Mn 0.6-0.9 Modulus of Elasticity 200 Gpa 

P Max 0.04 Poisson's Ratio 0.29 

S Max 0.05 Shear Modulus 80 GPa 
 

Dynamic cutting force has a characteristic pattern in each cutting state of continuous chip formation 

and generation of chatter. The dynamic cutting forces are often small in amplitude when the chips are 

continuous. The generation of chatter affects mostly the main cutting forces. That is Z-component. Hence the 

dynamic component of the main cutting force is expected to be relatively large in amplitude among the three 

components. Also the amplitude of this force is expected to be larger than the amplitude of the same component 

force with continuous chip formation. However, when chatter occurs in the radial and feed directions also, it 

leads to irregular distribution of chip-thickness along the cutting edges. In such cases, X and Y components 

(thrust and feed force) would be relatively large. These suggest the patterns can be classified by monitoring the 

dynamic components of the three cutting forces. Altogether 9 different experiments are conducted at a constant 

feed rate of 0.246 mm/rev. Fig. 14 shows the dynamic components of three cutting forces in two different 

cutting states. As seen, the stable cutting is characterized by the lower amplitudes of dynamic component Fz and 

unstable process has wide amplitude variation in all force components. 
 

 
(a) Stable state (b=1.47 mm and N=770 rpm) 

 

 
(b)  Unstable state (b=1.58 mm and N=770 rpm) 

Fig.14 Experimentally obtained dynamic cutting forces in 2 different states. 
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Some of the experimental states at a cutting speed of 770 RPM (12.83 rev/s) are superimposed over the 

analytical lobe diagram and is shown in Figure 15. 

 

 
Fig.15 Analytical stability lobe diagram with experimental cutting states. 

 

It can be seen that the predicted experimental states are in excellent agreement with the proposed analytical 

model. 

V. Conclusions 
In this work, stability analysis in turning process has been presented with three coupled dynamic 

models of cutting tool and workpiece. In this case, while studying the compliance between the workpiece and 

cutting tool, the spring mass models have been employed and the relative deformations were considered in 

cutting force expressions. The methodology was presented with tailstock supported workpiece operated with 

cutting tool in orthogonal turning operation. Effect of cutting position, workpiece dimensions, cutter flexibility, 

and cutter damping on the dynamic stability have been presented with the proposed dynamic model. The 

deviations of stable depths of cut measured by present model and existing one-dimensional rigid workpiece 

model have been found to be in close agreement with available work in literature. The experimental chatter 

predictions have revealed that the proposed compliance model establishes the stable states accurately in rough 

turning operations. 
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