
IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) 

e-ISSN: 2278-1684,p-ISSN: 2320-334X, Volume 14, Issue 3 Ver. IV. (May. - June. 2017), PP 15-22 

www.iosrjournals.org 

DOI: 10.9790/1684-1403041522                                    www.iosrjournals.org                                          15 | Page 

 

Flow over a Finite Forchheimer Porous Layer with Variable 

Permeability 
 

M.H. Hamdan
1
, M.S. Abu Zaytoon

2 
 

2,1
Department of Mathematics and Statistics, University of New Brunswick, Saint John, N.B., Canada, E2L 4L5 

 

Abstract: The problem of flow through a Navier-Stokes channel overlying a finite Forchheimer 

porous layer of variable permeability is considered. Choices of permeability distributions that will 

bring the Forchheimer velocity to zero on the bounding solid wall are discussed and their influence 

on the resulting velocity profile in the Navier-Stokes channel and on the slip velocity are analyzed. 
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I. Introduction 
Flow over porous layers is driven by various industrial applications including lubrication mechanisms 

involving porous plates and porous linings, design of heating and cooling systems, engine cooling systems, and 

the design of porous surfaces (such as aircraft wings with porous cavities) to reduce the drag (cf. [1], [2] and the 

references therein). In addition, studies of fuel cells heavily depend on analysis of flow through and over porous 

layers. These and many other applications, together with a literature review of what has been accomplished in 

this field, have been discussed in greater details, [2], [3], [4]. 

Analysis of coupled parallel flow involves the study of flow through a free-space channel underlain by 

a porous layer of either finite or infinite depth with an interface region between a porous medium and a fluid 

where momentum and mass transfer take place. Flow through the (free-space) channel is governed by Navier-

Stokes equations, namely the following equation written here for unidirectional flow: 
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                                                                                                                                                    …(1) 

where u is the velocity in the channel,   is the viscosity, p  is the pressure, and 0/ dxdp  is the driving 

pressure gradient. 

In the porous layer, the flow is governed by an appropriate model, although the use of Darcy’s law in the porous 

sediment has been predominant. Darcy’s equation is written here for unidirectional flow as: 

0 Du
kdx

dp 
                                                                                                      … (2) 

where Du  is the uniform Darcy velocity in the porous layer and k  is the constant permeability,  

Coupled parallel flow gained interest following the experiments of Beavers and Joseph, [5], to determine the 

matching conditions at the interface between a porous medium and free-space. With their experimental 

observation that the mass flux through free-space channel is larger than that predicted by the Poiseuille flow 

when a no-slip condition is imposed, Beavers and Joseph, [5], provided an explanation in terms of a slip flow 

hypothesis at the interface 0y  and proposed the following empirical slip-flow condition that agreed well 

with their experiments: 
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where )0,( xu is the tangential velocity in the free-space channel and   is a slip coefficient that depends on 

the porous medium properties. Nield and Bejan [1] provided the range of 0.01 to 5 and reported that Beavers 

and Joseph [5] used the following values for  : 0.78, 1.45, and 4.0 for Foametal having average pore sizes 

0.016, 0.034, and 0.045 inches, respectively, and 0.1 for Aloxite with average pore size 0.013 or 0.027 inches.  

Condition (3) is also used when the flow through an infinite porous layer is governed by the following 

Forchheimer’s equation, written here for unidirectional flow: 

0 vv
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where   is the fluid density, v  is the Forchheimer velocity, and fC  is the Forchheimer drag coefficient. 

Equations (2) and (4) have been used in connection with coupled parallel flow over an infinite porous 

layer with constant permeability. These equations are marked with the absence of a viscous shear term that is 

important in the presence of a solid wall that bounds a finite porous layer, and on which a no-slip condition is 

imposed. This situation motivates the current work in which we consider parallel flow over a finite porous layer 

bounded by an impermeable wall. In order to impose a no-penetration condition on the wall and to bring the 

velocity to zero, we introduce a variable permeability function that falls to zero on the wall, and in terms of 

which the velocity in the finite layer is defined. When the permeability is zero, the velocity will fall to zero. This 

approach has been successfully implemented in the case of modelling coupled parallel flow over a Darcy layer 

with variable permeability [6]. The current work deals with a Forchheimer finite porous layer with variable 

permeability. Fluid flow through porous media with variable permeability enjoys many natural and industrial 

applications, and has been extensively studied, (cf. [7-11] and the references therein). 

For the case of constant permeability, the velocity profile in an infinite porous layer is constant, while 

the velocity in the channel is a quadratic function. At the interface, the velocity in the channel is higher than the 

velocity in the layer. Velocity continuity necessitates the concept of the slip hypothesis and the Beavers-Joseph 

condition. This slip velocity is quantified in this work for variable permeability and finite porous layer of the 

Forchheimer type. 

 

II. Problem Formulation and Solution 

II.1. Problem Formulation 
Consider the Navier-Stokes flow through a channel of depth h bounded by a Forchheimer porous layer 

of finite thickness possessing variable permeability, as shown in Fig. 1. The interface between the channel and 

the porous layer is assumed to be a sharp interface along y = 0. 

 

 
Fig. 1: Diagramatic Sketch of a Channel Bounded by a Porous Layer 

 

Flow in the channel is governed by Navier-Stokes equation (1) and flow through the porous layer is 

governed by the Forchheimer’s equation (4). Flow through the given configuration is assumed to be driven by 

the same constant pressure gradient. 

Governing equations (1) and (4) take the following dimensionless forms in the channel and in the Forchheimer 

porous layer, respectively, wherein dXdPPX / : 
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wherein we have used the following convenient dimensionless quantities 
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Dimensionless channel and porous layer extents are thus given, respectively, by 10  Y  and 01  Y . 

The sharp interface is located at 0Y , and the upper and lower bounding walls are at 1Y  and 1Y , 

respectively. 

 

II.2. Problem Solution 
It is required to solve (5) and (6) subject to the conditions of no-penetration and the vanishing of 

permeability on the solid, lower boundary; a no-slip condition on the upper boundary; and the Beavers and 

Joseph condition at the interface between the channel and the porous layer.  

In the absence of viscous shear effects in the Forchheimer equation, the vanishing of velocity V  on the 

lower boundary can be seen from equation (6) by multiplying both sides by K, and taking K = 0 on the lower 

boundary. This velocity varies in the Forchheimer porous layer due to variations in permeability. The 

dimensionless permeability K(Y) increases from 0 on the lower boundary to reach its maximum maxk  at the 

interface, Y = 0. 

Dimensionless boundary and interfacial conditions are thus stated as follows:  

)1(0)1(  VU                                                                                                                                         …(8a) 

0)1( K                                                                                                                                                      …(8b) 

max)0( kK                                                                                                                                                    …(8c) 

iUU )0(                                                                                                                                                      …(8d) 

and condition (3) is written in the following dimensionless form for Forchheimer’s case: 
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   at 0Y .                                                                                                                …(8e) 

Now, equation (6) is an algebraic equation for the Forchheimer velocity )(YV  whose non-negative solution is 

given by: 
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Forchheimer velocity at the interface is expressed in terms of maxk  and is given by: 
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Equation (5) yields the following general solution for the Navier-Stokes velocity in the channel: 
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where 21,cc  are arbitrary constants that take the following forms when conditions (8) are implemented: 
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Solution to (5) satisfying conditions (8) can thus be written as: 
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From (14) we obtain 
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and upon using condition (8d) in (14), and subsequently solving for iU , we obtain 
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Velocity distribution (14) in the channel can then be expressed in the form 

)1(

Re411

Re2
)1(

2

Re

maxmax

2

max

max

2 






















 

 Y

PkkC

kP

k

U
Y

P
U

Xf

XiX  .                          …(17) 

with iU  given by (16). Using (10) and (16) we obtain the slip velocity at the interface as: 
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By comparison, when the flow is through a channel over an infinite Forchheimer porous layer, velocity in the 

porous layer is given by equation (9) with the permeability K  being constant. This profile represents a uniform 

velocity across the infinite porous layer. Velocity in the channel in this case is given by: 
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Clearly, if maxkK   then (16) and (20) give the same value for iU , while (17) and (19) give the same velocity 

profile in the channel. While this is the case for constant permeability porous layer, the value of maxk  in the 

case of variable permeability represents the maximum permeability reached at the interface. 

 

II.3. The Case of Velocity Continuity 
In case of velocity continuity at the interface, condition (8d) is replaced by 

)0()0( VUU i  .                                                                                                                                     …(21) 

Velocity distributions in the Navier-Stokes channel and in the Forchheimer porous layer are given, respectively, 

by 
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while the velocity at the interface takes the form 
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III. Results and Discussion 
Sample results are discussed in this section for selected values of permeability, slip parameter, pressure 

gradient and Reynolds number. 

Table 1 illustrates the slip velocity, given by equation (18), and the velocity at the interface, iU , given by 

equation (16), for the case of variable permeability Forchheimer layer and shows their dependence on the slip 

parameter  , the pressure gradient and Reynolds number. A decrease in   results in an increase in the lip 

velocity, as evidenced from equation (18), while increasing Re and the magnitude of pressure gradient have the 

expected effect of increasing the slip velocity. The increase in iU  with increasing Re and magnitude of pressure 

gradient is also evident, for a given value of  . Equation (16) demonstrates how iU  increases with increasing 

 . All values are calculated at 1max k . 

Re 
XP  

  
iU  

Slip Velocity 

1 -1 1.45 0.6285116341 0.0577264597 

1 -1 0.1  0.1285725693 

5 -1 1.45 1.718056135 0.7798398970 

5 -1 0.1  1.7369161342 

5 -3 1.45 4.340032886 2.6202560769 

5 -3 0.1  5.8360248985 

10 -3 1.45 7.451925208 5.6640089004 

10 -3 0.1  12.615292551 

Table 1. Slip and interfacial velocities for different Re, XP  and  ; 1max k . 

 

For the case of infinite Forchheimer layer with constant permeability, iU  depends additionally on the value of 

the constant permeability. The effect of permeability on iU  is illustrated in Table 2 for 45.1 , Re = 1 and 

1XP . Table 2 shows that iU  decreases with decreasing permeability in the layer. 

 
K 

iU  

1 0.6285116341 

0.1 0.1702362852 

0.01 0.04160776371 

0.001 0.01165030894 

0.0001 0.003523972548 

Table 2. Interfacial velocity for different constant medium permeability; Re = 1, 1XP . 

 

In the case of using velocity continuity condition (21), velocity profiles (22) and (23) are sketched across the 

porous layer and the channel for the following variable permeability distributions  

)1()( 2

max YkYK                                                                                                                                    …(25) 

2

max )1()( YkYK                                                                                                                                     …(26) 

)2(
2

1
)( 2

max YYkYK                                                                                                                         …(27) 

)1(

max )1(
1

)( YeYk
e

YK                                                                                                                          …(28) 

)1(

max )1(
1

)( YeYk
e

YK  .                                                                                                                       …(29) 

All of these permeability distributions satisfy the variable permeability conditions (8b) and (8c), and the 

corresponding velocity profiles are illustrated in Figs. 2-6, respectively, for  1max k , 1XP , 1Re  , and 

55.0fC . These profiles show the absence of a slip velocity due to the fact that velocity continuity condition 

(21) has been used. The effect of variable permeability is to generate velocity variations in the porous layer in 

such a way that a no-slip condition is satisfied on the solid wall bounding the porous layer. Velocity then 

increases nonlinearly until it matches, at the interface, the parabolic velocity distribution in the Navier-Stokes 

channel  
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Fig. 2. Velocity profiles across the flow configuration. 

]1[)( 2

max YkYK  , 1max k , 1XP , 1Re  , 55.0fC . 

 

 
Fig. 3. Velocity profiles across the flow configuration. 

2

max )1()( YkYK  , 1max k , 1XP , 1Re  , 55.0fC . 

 
Fig. 4. Velocity profiles across the flow configuration. 
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Fig. 5. Velocity profiles across the flow configuration. 
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Fig. 6. Velocity profiles across the flow configuration. 
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IV. Conclusion 
In this work we considered the coupled, parallel flow through a channel bounded by a porous layer of 

finite thickness. Flow in the porous layer is assumed to be governed by Forchheimer’s equation. Although this 

equation is not compatible with the imposition of a no-slip condition in the presence of a solid boundary, such a 

condition is facilitated by the introduction of variable permeability in the porous layer. The no-penetration, zero 

permeability on the boundary generates a zero fluid velocity there. The velocity distributions in the channel and 

porous layer, the velocity iU  at the interface and the slip velocity at the interface have been determined for 

variable and constant permeability Forchheimer layer and are shown to depend on the pressure gradient, 

Reynolds number, the value of maxk , and the Forchheimer drag coefficient. With the exception of velocity in 

the Forchheimer layer, velocities are dependent on the Beavers and Joseph slip parameter. Velocity in the 
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porous layer depends on the permeability distribution, )(YK . Suitable permeability distributions must fall to 

zero on the lower boundary and reach maxk  at the interface.  
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