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Abstract: A super-convergent finite element is formulated for the dynamic flexural response of symmetric 

laminated composite beams subjected to various transverse harmonic forces. Based on the assumptions of 

Timoshenko beam theory, a one-dimensional finite beam element with two-nodes and four degrees of freedom 

per element is developed. The new beam element is applicable to symmetric laminated composite beams and 

accounts for the effects of shear deformation, rotary inertia, and Poison’s ratio. The exact closed-form solution 

for flexural displacement functions developed in this study is employed to develop exact shape functions. 

Although the present finite element formulation is developed to obtain the steady state dynamic response but can 

be also used to capture the quasi-static analysis of the symmetric laminated composite beams. Moreover, it is 

also used to extract the natural frequencies and mode shapes for flexural response. The accuracy and efficiency 

of the present finite beam element are shown through comparisons with other established exact and Abaqus 

finite element solutions. The new element is demonstrated to be free from shear locking and mesh discretization 

errors occurring in conventional finite element solutions and illustrates an excellent agreement with those based 

on finite element solutions at a fraction of the computational and modeling cost. 

Keywords: Symmetric laminates, exact shape functions, harmonic forces, super-convergent finite element, 

steady state response.   

 

I. Introductory Review on Finite Element Formulation 
A number of researchers developed the finite element models technique to study the dynamic analysis 

of composite laminated beams. Most of the models are based on two approaches. In the first approach, 

formulations are based on approximate shape functions such as the work of [1]-[7], and recently [8]. In the 

second approach, exact shape functions which are based on the static solution of the governing equilibrium 

equations, such as the work of [9]. Based on first-order shear deformation, [1] developed a finite element model 

to study the free vibration characteristics of composite laminated beams including the effects of shear 

deformation and bi-axial bending and torsion. Reference [2] presented a finite element model to investigate the 

natural frequencies and mode shapes of laminated composite beams. Reference [3] analyzed the composite 

laminated beams using a two-noded curved composite beam element with three degrees of freedom per node. 

The formulation incorporated Poisson’s effect and the coupled flexural and extensional deformations together 

with transverse shear deformation. Reference [4] developed a dynamic finite element for free vibration analysis 

of generally composite laminated beams. Their formulations incorporate the effects of Poisson’s ratio, shear 

deformation, rotary inertia and coupling of extensional-bending and bending-torsional deformations. Recently, 

[8] developed a finite element model to predict the static and free vibration analyses for isotropic and 

orthotropic beams with different boundary conditions and length-to-thickness ratios. Based on higher-order 

shear deformation theory, [5] used the conventional finite element to analyze the free vibration behavior of 

laminated composite beams by considering the effects of rotary inertia, Poisson’s effect, and coupled 

extensional and bending deformations. Reference [6] developed a two-noded C
1
 finite element of eight degrees 

of freedom per node for flexural analysis of symmetric composite laminated beams. Reference [9] developed a 

two-noded beam element with four degrees of freedom per node based on higher-order shear deformation theory 

for coupled analysis of axial–flexural–shear deformation in asymmetric laminated composite beams. The beam 

element based on exact shape function matrix which is derived by satisfying the static solution of the governing 

equilibrium equations. Recently, [7] developed a two-noded C
1
 finite beam element with five degrees of 

freedom per node to study the free vibration and buckling analyses of composite cross-ply laminated beams by 

using the refined shear deformation theory. Their formulations account for the parabolical variation of the shear 

strains through the beam depth and all coupling coming from the material anisotropy. A common feature to the 

previous studies is the use of approximate shape functions involving spatial discretization errors, and thus 

requiring fine meshes to converge to the exact results or/and exact shape functions based on static solution of 

the governing equilibrium equations. 
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Although a large number of finite element studies dealing with the dynamic analysis of composite 

laminated beams are developed, it should be noted that no work is reported in the literature on dynamic analysis 

of symmetric laminated composite beams under transverse harmonic forces using finite element formulation 

based on exact shape functions which exactly satisfy the homogeneous closed form solution of the dynamic 

flexural equations of motion. Thus, the aim of the present study is to develop such an efficient finite element 

solution based on the exact solution.  

 

II. Governing Dynamic Bending Equations 
2.1 Basic Assumptions 

The following assumptions are considered in formulating the present theory:  

o Cross-section is a rectangular section with the X axis taken as the longitudinal axis of composite beam,  

o The formulation is restricted to composite beams with a symmetric laminates,   

o The material of each layer is linearly elastic, 

o Strains and rotations are assumed small, 

o For transverse loading not involving twist, plane sections originally perpendicular to the longitudinal axis of 

the beam remain plane but not necessarily perpendicular to longitudinal axis after deformation, i.e. the 

transverse shear deformations are incorporated in the assumed kinematics (in a manner analogous to the 

Timoshenko beam theory),  

o The layers are perfectly bonded together. 

o The steady state component of the dynamic response is sought. 

 

2.2 Displacement Fields 

A straight composite beam of length L with a rectangular cross section of height h  and width b , as 

shown in Fig (1), is considered. The composite beam is composed of many laminates of orthotropic materials in 

different fibre orientations with respect to the X axis. The theoretical developments presented in this paper 

required one set of coordinate system which is the orthogonal Cartesian coordinate system ( , , )X Y Z , for which 

the Y and Z axes are coincident with the principal axes of the beam, and X axis is coincident with the centroidal 

beam axis. 

 

 

Figure (1): Geometry of a composite laminated beam 

 

The assumed displacement field for a point ( ,y, )p x z of height z from the centroidal axis of composite beam 

based on first-order shear deformation theory can be written as follows [4]: 

( , , ) ( , ) ( , )pu x z t u x t z x t                                 (1) 

( , , ) 0pv x z t                                                               (2) 

( , , ) ( , )pw x z t w x t                                        (3) 

where ( ,z, )pu x t is the longitudinal displacement of a point ( , )p x z along the X axis, ( ,z, )pv x t and ( ,z, )pw x t  

are the lateral and transverse displacements of a point ( , )p x z , while ( , )u x t and ( , )w x t  are the longitudinal and 

transverse displacements of a point located on the mid-plane ( 0)z in the X and Z directions, and ( , )x t is the 

bending rotation of the cross-section about the Y axis.   

 

2.3 Strain Relations 

The axial and shear strains of the composite beam based on small-displacement theory are written as: 
 

( , , )p
xx xx x

u x z t
z

x
  


  


                                    (4) 
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( ,z, ) ( ,z, )
( , ) ( , )

p p
xz

w x t u x t
w x t x t

x z
 

 
   

 
                   (5) 

 

where xx is the mid-plane axial strain defined by ( , )xx u x t  , and x is the bending curvature defined 

by ( , )x x t  , and the prime denotes the differentiation with respect to x . 

 

2.4 Constitutive Equations for Symmetric Laminates 

The constitutive equations of the symmetric laminates (i.e., both geometric and material symmetry with 

respect to the mid-surface), in which the extension-bending coupling coefficients 0ijB  for , 1,2,6i j , can be 

obtained using the classical lamination theory to give: 
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16 26 66
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0
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xy xy

x x

ijy y

xy xy

N A A A

N A A A B

N A A A

D D DM

B D D DM

D D DM













    
        
       

    
    
     
    

       

                                                   (6) 

where ,x yN N are the normal forces, and xyN is the in-plane force, while xM , yM are the bending moments, 

xyM is the twisting moment, xx , yy and xy are normal and shear the strains, x , y are the bending 

curvatures, xy is the twisting curvature, the extension ijA and bending ijD stiffness coefficients expressed as 

functions of laminate ply orientation  and material properties are denoted by:  

/2
2

/2

, 1, , (for , 1,2,6)

h

ij ij ij

h

A D Q z dz i j



  
                           

where ijQ for , 1,2,6i j are the transformed reduced stiffnesses and are given by Jone [10]. The effect of 

transverse shear deformation due to bending is captured by: 

     
2 2 2

55 55 13 232
cos sin

h

xz xz h
Q A A w k w G G dz    


                                                (7)  

where xzQ is the transverse shear force per unit length, k is the correlation shear factor and is taken as 5/6 to 

account for the parabolic variation of the shear stresses, and the constants 13 23,G G are the shear moduli. 

 

The laminated composite beam subjects only to axial and transverse forces and moments which cause a 

flexural deformation. In other words, forces or moments caused lateral and torsional deformations are negligible 

and set to zero, i.e., 0y xy y xyN N M M    . In order to account for Poisson’s ratio, the mid-plane 

strains yy , xy and curvatures y , xy are assumed to be nonzero. For symmetric laminated beams, the 

extensional response is uncoupled from the flexural response of the beam, i.e., the bending stiffness coefficients 

ijB are zero. Then, equation (6) is rewritten as: 

11 11

11 11

0 0

0 0

x xx

x x

N uA A

M D D



 

        
        

          

                                               (8) 

 

where 
   

 
12 66 26 16 22 26

11 11 2
26 22 66

A A A A A A
A A

A A A

 
    

 


  

 , and 

   

 
12 66 26 16 22 26

11 11 2
26 22 66

D D D D D D
D D

D D D

 
    

 


  

.  
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If Poisson’s ratio effect is ignored, the coefficients 11 11,A D given in equation (8) are then replaced by the 

laminate stiffness coefficients 11 11,A D , respectively. 

 

2.5 Expressions for Force-Moment Functions 

The laminated composite beam illustrated in Fig (2) is assumed to be subjected to axial and transverse 

harmonic forces and moments with exciting frequency . These forces are given as: 

( ), ( ), ( ) ( ), ( ), ( ) i t
z x y z x yq x,t q x,t m x,t q x q x m x e   

                        (9) 

0
( ), ( ), ( ) ( ), ( ), ( )

L i t
x z y x z yP x,t P x,t M x,t P x P x M x e                          (10) 

 

Z

Y

XL
b

qz(x,t)

my(x,t)

o

h

Pz(L,t)

Pz(0,t)My(0,t)

My(L,t)

Px(0,t)

Px(L,t)

 
Figure (2): A laminated beam subjected to harmonic forces and moments 

 

where   is the circular exciting frequency of the applied forces, 1i   is the imaginary constant, 

( , )xq x t and ( , )zq x t are the distributed axial and transverse harmonic forces, ( , )ym x t is the distributed 

harmonic bending moment, ( , )xP x t and ( )zP x,t  are the concentrated axial and transverse harmonic forces, 

( , )yM x t is the concentrated harmonic bending moment, all concentrated forces and moments are applied at 

beam ends (i.e., 0,x L ). 

 

2.6 Expressions for Steady State Displacements Functions 

Under the given transverse harmonic forces and moments, the steady state displacements are assumed 

to take the exponential form:  

 ( , ), ( , ), ( , ) ( ), ( ), ( ) ei tu x t w x t x t U x W x x                                    (11) 

where ( )U x , ( )W x and ( )x are the amplitude space functions for longitudinal, bending translation, and 

related rotation responses, respectively. As the present formulation is intended to capture only the steady state 

dynamic response of the system, the displacement functions postulated in equation (11) neglect the transient 

component of the response.  

 

III. Hamilton Variational Formulation 
The dynamic governing differential equations of motion for forced vibrations of symmetric laminated 

composite beams can be easily derived using Hamilton’s principle. According to the Hamilton’s principle the 

integration of the Lagrangian of a dynamical system on any arbitrary interval of time is stationary, i.e., 

 
2 2

1 1

0

t t

t t

Ldt T dt                                               (12)    

where T is the total kinetic energy for the symmetric laminated composite beams, given by: 

 
/2

2 2

0 /2

1

2

L h

p p

h

T u w bdzdx



                                                   

From equations (1-3), by substituting into above equation, kinetic energy can be written as: 

   
22 2

1 2

0

1

2

L

T I u w I bdx 
  

                                                                               (13)    
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in which the dot denotes the derivative with respect to time t , the densities of the composite beam 1 2( , )I I are 

given by:    
/2 2 3 3

1 2 1 1/2
1

, 1, , 3
mh

k k k k kh
k

I I z dz z z z z   


     
    , where k is the k

th
 layer mas density.  

The total potential energy of symmetric laminated beam denotes by   and is the sum of the internal strain 

energy U and potential energy V gained by the applied forces. The internal strain energy is expressed by: 

  
0

1

2

L

x xx xz xz

A

U dAdx                                  (14) 

From equations (4-5) and (8) into equation (14), the strain energy can be stated as: 

   22 2 2
11 11 55

0 0

1 1
2

2 2o

L L

x xx x x xz xzU N M Q bdx A u D A w w bdx                  
        (15) 

The potential energy V of the applied harmonic axial and flexural forces, as shown in Fig (2), can be given by: 

 

     
0

0 0 0

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

L

z x x

L L L
x e e z e e x e e

V q x,t w x,t q x,t u x,t m x,t x,t dx

P x ,t u x ,t P x ,t w x ,t M x ,t x ,t





  

  


                 (16) 

From equations (9-11), by substituting into energy expressions (13), (15) and (16), and the resulting expressions 

into Hamilton’s principle in equation (12), performing integration by parts, the governing dynamic equations are 

found to take the matric form: 

 

 

 

 

 

 

2 2
11 1

2
1 55 55

2 2 3 13 1
55 55 2 11

3 3

0 0
( )

0 ( )

( )
0

x

z

x

A I
U x q x b

I A A W x q x b

x m x b
A A I D 



  
     
     

        
     

      
  

D

D

D D

        (17)      

The boundary terms arising from integration parts of the Hamiltonian functional provide the possibly boundary 

conditions of the problem. They take the form: 

11 0 0
( ) ( ) ( )

LL
xb A U x U x P x                                          (18) 

 55 0 0
( ) ( ) ( ) ( )

LL
zbA W x x W x P x                              (19) 

11 00
( ) ( ) ( )

L L
xbD x x M x                                    (20) 

The first partition in equation (17) with equation (18) provides the governing equation for longitudinal vibration 

of the symmetric composite beam which is uncoupled from the remaining field equations and can be solved 

independently. The second partition with boundary equations (19-20) presents the coupled equations for 

bending vibration of the symmetric laminated beams. The present study thus focuses on developing an exact 

finite beam element for the steady state dynamic analysis of shear-deformable composite beams with 

symmetrical laminates provided in the second partition.  

 

IV. Exact Solution For Coupled Bending Equations 
The exact homogeneous solution of the coupled bending equations governed by the second partition in 

(18) is obtained by setting the right-hand side of the equations to zero, i.e.     0z xq x m x  . The homogeneous 

solution of the displacements is then assumed to take the exponential form: 

   
 

 
1,

2 1
2, 2 12 1

, 1,2,3,4ii m x

i

CW x
x e for i=

Cx





      
    
      

                   (22) 

in which      
1 2 1 2

x W x x
 
  is the bending displacements, and 1, 2,1 2 1 2i iC C C

 
 is a vector of 

unknown integration constants corresponding to root. From equation (22), by substituting into second partition 

in equation (18), yields: 
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 

 
 

2 2
1 55 55 1,

2 12 2 2, 2 155 55 2 11 2 2
2 2

0
0

0

i

i

m xi i i

m x
i

i i

I A m A m Ce

CeA m A I D m





                     

                  (23) 

For a non-trivial solution of equation (23), the determinant of the bracketed matrix is set to zero, leading to the 

quartic equation of the form: 

  
4 2 2 2 2

55 11 55 2 1 11 1 2 55( ) ( ) 0i iA D m A I I D m I I A                                                           (24) 

The characteristic equation (24) which depends upon section properties, orthotropic material constants and 

exciting frequency has the following four distinct roots:  

2 2 2 2
1,2 55 2 1 11 55 11 1 55 2 11 1

55 11

1
( ) 4 ( )

2
m A I I D A D I A I D I

A D

           
, and 

2 2 2 2
3,4 55 2 11 1 55 11 1 55 2 11 1

55 11

1
( ) 4 ( )

2
m i A I D I A D I A I D I

A D

           
 

For each root im , there corresponds a set of unknown constants 1, 2,,1 2 ,1 2i ii i
C C C

 
 . By back-substitution 

into the original system of bending equations, one can relate constants 1,iC to 2,iC through 1, 2,i i iC G C , 

where
2 2

55 1 55i i iG A m I A m   
 

, for 1,2,3,4i  .  

Thus, the exact homogeneous solution for the transverse displacement  W x and related bending 

rotation  x are found by: 

          
1 2 4 4 2 42 4 4 1 4 1

x G E x C x C 
    

                                     (25) 

where    
2 4 4 42 4

x G E x
 

          consists of functions which exactly satisfy the coupled dynamic bending 

equations, 
1 2 3 4

2 4 1 1 1 1

G G G G
G




        
            

        
,  

4 4
E x


   is a diagonal matrix consisting of exponential 

functions im xe (for 1,2,3,4i ), and 2,1 2,2 2,3 2,41 1
C C C C C

 
 is the vector of unknown constants. 

 

V. Finite Element Formulation 
In this section, a new finite beam element is proposed for dynamic analysis of composite shear-

deformable beams with symmetrical laminates under various transverse harmonic forces and moments. Figure 

(3) shows the proposed two-noded finite composite beam element with four degrees of freedom per element. A 

family of shape functions which exactly satisfy the homogeneous solution of the coupled dynamic bending 

equations is used to formulate the exact stiffness and mass matrices as well as the load potential vector. 

 

5.1 Formulating of Exact Displacement Functions  

In the present formulation, the vector of unknown integration constants  
4 1

C


can be expressed in 

terms of the nodal displacements 1 1 2 21 4 1 4N x xS W W
 
   by enforcing the conditions   10W W , 

  10 x  ,   2W L W  and   2xL   , (Fig. 3), one obtains:  

 
 

 

 

 
     

2 1 2 4

1 1 1
2 1 2 4

4 1 4 4

(0) (0)

( ) ( )
NS C C

L L

 

 

 

  
 

 

  
       

     

                                                      (26) 

From equation (26), by substituting into equation (25), yields: 

           
1

1 2 2 4 2 41 1
( ) ( ) ( )N Nx x S H x S 



    
                       (27) 
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in which      
1

2 4 2 4
( ) ( )H x x



  
  is a matrix of eight shape functions for the bending response, where 

  1, 2,4 2 4 2
( ) ( ) ( )

TT
j jH x H x H x

 
  

. It is noted that the interpolation shape functions provided in equation 

(27) exactly satisfy the homogeneous solution of the coupled bending equations are dependent on the beam 

span, cross-section geometry, and the exciting frequency of the applied harmonic forces. 

 

Node i Node j

Wi Wj

 ϕxi

Z

h
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X

b

Z

Y

Cross-section

 ϕxj

 
Figure (3): Composite Shear-deformable two-noded beam element 

 

5.2 Energy Expressions in Terms of Nodal Displacements 

The variations of the total kinetic energy T , internal strain energy U , and work done by the applied 

harmonic forces V for symmetric laminated composite beam are, respectively, obtained in terms of nodal 

degrees of freedom using equation (27) as: 

     2
4 2 4 21 10

( ) ( )
L T i t

N m NT S H x Y H x dx S e   
  

          
                                (28) 

       

     

4 2 2 4 4 2 2 41 0

4 2 1

( ) ( ) ( ) ( )

( )

L T T
m sN

T i t
s r N

U S H x Z H x H x Z H x

H x H x dx S e

 
     


 

           

      


               (29) 

and, 

       1 4 4 2 4 21 10 0

LL T T i t
N F CV S H x Q dx H x Q e  

   

               
                    (30) 

in which  1 2mY diag bI bI


    ,  1155mZ Diag bA bD


   
    ,   550sZ Diag bA


  
  ,    

       1, j 2, j4 1 4 1

TT
sH x H x H x

   

       
,         55 2, j 1, j4 1 4 1rH x bA H x H x

   

       
, 

11F z xQ q m


 and 
1 1

z xCQ P M
 

 .  

 

 

5.3 Matrix Formulation 

From equations (28-30), by substituting into Hamilton’s principle in (13), performing integration by 

parts, one obtains:  

        2
1 1e e N eK M S F

   

 
  
 
 

                                               (31) 

in which the element stiffness matrix  eK


is given by: 

              4 2 2 4 4 2 2 4 4 20
( ) ( ) ( ) ( ) ( )

L T T T
m se s rK H x Z H x H x Z H x H x H x dx

      
             . 

The element mass matrix  4eM


is obtained as: 

      4 2 4 20
( ) ( )

L T
e mM H x Y H x dx

  
     

and, the element load vector  
1eF


is given by: 
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          1 1 10 0

LL T T
e F CF H x Q dx H x Q x
   

            . 

 

VI. Numerical Examples And Discussion 
In this section, two examples are presented in order to show the validity, accuracy and applicability of 

the new finite element developed in the present study. The new finite beam element can (a) capture the quasi-

static response when adopting a very low exciting frequency  compared to the first bending natural 

frequency 1 of the given beam (i.e., 10.01 ), and (b) predict the bending natural frequencies and mode 

shapes of the composite beam under harmonic force from the  steady state dynamic response.  The present finite 

element formulation is based on the shape functions which exactly satisfy the exact homogeneous solution of 

the coupled bending field equations. This treatment offer two advantages: (1) it eliminates mesh discretization 

errors arising in conventional interpolation schemes used in the finite element solutions and thus converge to the 

solution using a minimal number of degrees of freedom, and (2) it leads to elements that are free from shear 

locking. As a result, it is observed that, the of the present results obtained based on a new finite beam element 

using a single two-noded finite element per span yielded the corresponding results which exactly matched with 

those based on the exact closed-form solutions provided by Hjaji et al. [11] up to five significant digits. The 

results based on the present finite beam element (with two degrees of freedom per node) which accounts for 

shear deformation, rotary inertia, Poisson ratio and fibre orientation are compared with exact solutions available 

in the literature and Abaqus finite beam B13 element (with six degrees of freedom per node, i.e., three 

translation and three rotations) which accounts for the effects of shear deformation effects. The examples are 

investigated for symmetric laminated cross-ply and angle-ply composite beams with a rectangular cross-section 

and a variety of loading and boundary conditions.  

 

6.1 Example 1 – Cantilever Beam under Distributed Harmonic Force - Verification 

A 3000mm composite cantilever beam with symmetric four cross-ply (0 ,90 ,90 ,0 )o o o o
laminates 

subjected to distributed transverse harmonic force ( , ) 8.0 i t
zq x t e kN / m  , as shown in Fig (4), is considered. 

The cantilever beam has a rectangular cross-section of width 100b mm  and height 200h mm . The details 

of the orthotropic composite properties are: 11 22144.9 , 9.65E GPa E GPa  , 12 13 4.140G G GPa  , 

23 3.450G GPa , 
31389 /kg m  , and 12 0.30  . For verification purposes, it is required to (a) extract the 

flexural natural frequencies from a steady state dynamic analysis, (b) conduct a quasi-static analysis by adopting 

a very low exciting frequency 10.01 , and (c) investigate the steady state dynamic response for an exciting 

frequency 11.68 , where the first natural frequency of the beam is 1 33.38Hz  . 

The symmetric cross-ply composite cantilever is modelled in Abaqus by using 100 beam elements B31 

along the longitudinal axis of the cantilever beam (606 dof) to yield the accuracy of this example. In contrast, 

the present finite beam element uses a single beam element (4 dof) to approach the exact solution. 

 

b

h Y

Zqz(x,t)=8.0e
iΩt

 kN/m

L

X

Z

0o

90o

90o
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Figure (4): Symmetric cross-ply laminated cantilever beam under distributed harmonic force 

 

6.1.1 Extracting Flexural Natural Frequencies and Mode Shapes 

Under the distributed transverse harmonic force, the flexural natural frequencies are extracted from the steady 

state dynamic response analyses in which the exciting frequency   varying from nearly zero to 700Hz. The 

flexural natural frequencies are extracted from the peaks of the displacement-frequency relationships. The nodal 

transverse displacement 2W and bending rotation 2x at the cantilever tip against the exciting frequency are 

shown in Fig (5). For comparison, Abaqus model based on 100 beam B31 elements are plotted on the same 

diagrams. Peaks on both diagrams indicate resonance and are then identify the natural flexural frequencies of the 

given cantilever composite beam. Thus, the first three flexural natural frequencies extracted from the peaks are 

given in Table 1. Table 1 provides the first three non-dimensional flexural natural frequencies extracted from the 
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steady state dynamic analyses of symmetric cross-ply (0 ,90 ,90 ,0 )o o o o
laminated composite cantilever beam, 

in which the non-dimensional relation used is defined by
2

11L E h   . The present finite element model 

based on a single beam element (4 dof) predicts the flexural natural frequencies in excellent agreement with 

those based on Vo and Inman [10], Shi and Lam [12] and Marur and Kant [13] and Abaqus beam model using 

B31 elements (606 dof). This is a natural outcome that the finite element developed in the present study based 

on the exact shape functions eliminates the mesh discretization errors. 
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Figure (5): Natural flexural frequencies for symmetric cross-ply laminated beam under harmonic force 

 

 

Table 1: The first three non-dimensional flexural natural frequencies   of symmetric laminated beam 

Mode Vo and Inam 
[10] 

Shi and Lam 
[12] 

Marur and  Kant  
[13] 

FE Abaqus 
(606 dof) 

Present FE 
(4 dof) 

1 0.9222 0.9199 0.9214 0.9238 0.9240 

2 4.9165 4.9054 4.8919 4.8860 4.8924 

3 11.600 11.489 11.476 11.419 11.439 

 

The first three steady state transverse displacement and related bending rotation modes for symmetric 

four-layered cross-ply (0 ,90 ,90 ,0 )o o o o
laminated composite cantilever beam  subjected to distributed 

transverse harmonic force using three different exciting frequencies at the peaks (i.e., 1 33.38Hz  , 

2 176.7Hz  , 3 413.2Hz  ) are shown in Figs (6a) and (6b), respectively. The normalized steady state 

flexural modes based on the present solution (8 beam elements with 18 dof are used for comparison purpose) 

and those based on Abaqus beam model plotted on the same diagrams exhibit excellent agreement. 
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Figure (6): Steady state flexural modes for symmetric cross-ply cantilever under harmonic force 

 

6.1.2 Quasi-Static Flexural Solution 

Table 2 shows the quasi-static flexural response results for the maximum displacement 

max 2( )W W and bending rotation max 2( )x x  . Results based on the finite beam element developed in the 

present study are observed to exactly match with those based on the Abaqus beam model. As a general 

observation, the present finite element is successful at capturing the quasi-static response of the given beam. 

 

6.1.3 Steady State Flexural Dynamic Solution  

The steady state flexural response for symmetric cross-ply (0 ,90 ,90 ,0 )o o o o
laminated composite 

cantilever beam under the distributed harmonic force with exciting frequency 11.68 56.08Hz  is 

presented in Table 2. The nodal flexural displacement and bending angle results at the cantilever tip based on 

the present formulation are compared with those based on Abaqus beam model solution. It is observed that 

results obtained from the finite element formulation developed using one beam element with 4 dof provide 

excellent agreement with Abaqus beam model using 100 B31elements (606 dof). 

 

Table 2: Quasi-static and steady state analyses of symmetric laminated cantilever under harmonic force 

Type of Response Variable Abaqus FE [1]  

(606 dof) 

Present FE [2] 

(4 dof) 

%Difference 

=[1-2]/1 

Static 
maxW  (mm) -10.04 -10.01 0.33% 

10.01   xmax  (10-3 rad) 4.212 4.194 0.43% 

Steady state 
maxW  (mm) 5.783 5.779 0.07% 

11.68   xmax  (10-3 rad) -2.692 -2.698 -0.20% 

6.2 Example 2-Clamped-clamped symmetric composite beam - Finite Element Formulation  

This example is presented to demonstrate the ability of the finite element developed in the present 

study by comparing the results for quasi-static and dynamic responses with those based on the Abaqus solution.  
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A clamped-clamped composite beam with symmetric (0 ,90 ,0 ,90 ,0 )o o o o o
cross-ply laminates under various 

harmonic transverse forces; 1(2 , ) 1.0 i t
zP m t e kN , 2 (4 , ) 2.0 i t

zP m t e kN and 3(6 , ) 4.0 i t
zP m t e kN , 

and uniformly distributed force ( , ) 4.0 /i t
zq x t e kN m  is considered as shown in Fig. (7). The composite 

beam has a rectangular cross-section of width 100b mm  and height 100h mm , while the mechanical 

composite properties are: 11 37.41E GPa , 22 13.67E GPa , 12 13 5.478G G GPa  , 23 6.666G GPa , 

12 0.30   and 
31969 /kg m  . It is required to assess the accuracy and efficiency of the present finite 

element in evaluating the nodal degrees of freedom for quasi-static and steady state analyses of the composite 

beam under the given harmonic forces with exciting frequencies 10.01 and 11.80  are investigated, 

respectively. The first natural frequency of the system is 1 6.619Hz  .  
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iΩt

 kN
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1 2 3 41 2 3 4 5
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Pz2=4.0eiΩt kNPz3=4.0eiΩt kN

 
Figure (7): Clamped-clamped symmetric laminated beam under various transverse harmonic forces 

 

In order to demonstrate the accuracy and capability of the finite element developed in the present study, 

the nodal degrees of freedom results for static and steady state transverse dynamic response are obtained and 

compared against the results based on Abaqus beam solution. Under the present finite element solution, the 

clamped-clamped composite beam is analyzed based on four beam elements with a total of 10 degrees of 

freedom, while in Abaqus beam solution, the model is consisted of 200 B31 elements with 1206 dof.. 

 

Static and Steady State Dynamic Flexural Solutions 

The quasi-static and steady state dynamic results for the nodal transverse displacement and related 

bending rotation plotted against the beam coordinate axis are presented in Figs. (8a-b) and (8c-d), respectively. 

It is observed that, the developed finite element solution results based on four beam elements with 10 degrees of 

freedom shows an excellent agreement with those results based on Abaqus model using 200 beam B31 elements 

with 1206 degrees of freedom. 
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Figure (8): Static and dynamic analyses for clamped-clamped symmetric beam under harmonic forces 

 

VII. Conclusions 
 A super-convergent finite beam element is developed for symmetric composite laminated beams subjected 

to transverse harmonic forces. The finite element is based on the exact shape functions which exactly satisfy 

the homogeneous form of the transverse field equations.  

 The new beam element is based on the first order shear deformation theory in which the formulation 

captures the effects of shear deformation, rotary inertia, Poison’s ratio. 

 The present finite element formulation successfully captures the quasi-static and steady state flexural 

dynamic responses of symmetric composite laminated beams under various transverse harmonic forces. The 

solution is also able to capture the eigen-frequencies and eigen-modes of the composite beams. 

 The new beam element contains no discretization errors and usually provides excellent results with Abaqus 

beam solution while keeping the number of degrees of freedom a minimum. 

 Comparison with exact solutions and established finite element Abaqus solutions shows the validity and 

accuracy of the present finite element formulation. 
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