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Abstract: We present a mechanical system model of the inertial type vibrocompactor used in railroad building. 

In the paper we examine forced vibrations of the mechanical system excited by inertial disturbance. Using a 

dynamical model of the mechanical system and applying numerical methods, frequency response and frequency 

relations are found. 
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I. Introduction 
Vibrocompacting of bulk materials is widely used in the construction, repair, and maintenance of 

automobile and rail-roads. This ensures that the road’s overlays are dense enough for the needed strength of the 

road. 

Vibrocompacting is a dynamic process that creates a specific level of density of the bulk materials 

through regulating the different parameters — frequency, amplitude, and force/pressure. 

The dynamical modelling of the vibrating machine of inertial type enables to study working regimes 

depending on different frequencies of disturbance action.  

The results of the study of the dynamical model are vital in the construction of vibrocompactors. 

 

II. Dynamical model 
The inertial vibrocompactor can be represented as a two-mass system (Fig. 1) with two degrees of 

freedom, that performs forced oscillations generated by an inertial disturbance [1]. The parameters of the system 

are focused — it has been assumed that the motion is only along one of the principal axes. 

 

 
Fig.1. Dynamical model of a vibrocompactor of inertial type 

 

The second kind Lagrange equation is used to describe the forced fluctuations from the stable state of 

the mechanical system in the presence of potential and dissipative forces.  

The system of differential equations, describing the model, follows: 

zxxx
  CBM                                                                               (1)                                                      
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III. Natural frequencies and frequency response 
1. The natural frequencies are determined for the free vibrations of the undamped system [2]: 

0 xCxM


                                                                                           (2)    

 

The harmonic solutions for x mean that it has the form x = Xsinωt and substitution into the equation of 

motion (2) gives: 

 

  02  XCM                                                                                       (3) 

 

The natural frequencies are found by solving the eigenvalue problem: 

 

  0det  MC  , where λ = ω
2
 (λ>0, λR).                                                 (4) 

 

The natural frequencies follow as ii   . 

 

Using MATLAB and the values of the parameters listed in the appendix, the following natural 

frequencies are calculated:  

 

 ω1 = 138.8 s
-1

 and   ω2 = 929.5 s
-1

. 

 

2. Frequency response is determined for the forced damped system [2] after a Laplace transformation of 

equation (1) has been performed: 

 

     ssss2
zXCBM   or      ssss

12
zCBMX


 , where  s = iω and therefore: 

 

      iii
12
zCBMX


                                                                  (5) 

 

The frequency response function (fig.2) is built using (5) in MATLAB. 
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Fig.2 Frequency response of the damped system 

 

IV. Numerical analysis 
We show the numerical analysis of the system for four cases: free vibrations (ω = 0), dynamic 

multiplication (ω = ω1,     ω = ω2), beating regime (ω is close to ω1) and regime with frequency inbetween 

natural frequencies [3]. 

The numerical solutions are found in MATLAB (see the values of machine’s parameters are in the appendix). 
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Fig.3 Free Vibrations at ω = 0 
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Fig.4 Forced Vibrations at ω = ω1 =138,8 s

-1
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Fig.5 Forced Vibrations at ω = ω2 =929,5 s

-1
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Fig.6  Forced Vibrations at ω =130 s

-1
 (close to ω1) 
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Fig.7 Forced Vibrations at ω = 400 s

-1
 

 

In all cases, during the stationary regime, there are steady harmonic vibrations. At frequencies 130 s
-1

  

and 400 s
-1

  (fig. 6, fig. 7) the non- stationary processes are poly harmonic duе to the beat on  both coordinates 

x1 and x2.  

 

V. Conclusions 
The examination of vibrations of the inertial type vibrocompactor prove that the machine can work 

steady and properly inside a wide range of frequencies except these ones in the area near the first natural 

frequency where the beat breaks up steady work in non- stationary regimes. 

Such examination could take part in the process of constructing of new machines or improve the 

performance of the existing ones. 

 

Appendix 
Parameter Value dimension Parameter Value dimension 

Mass of vibrator incl. unbalanced 
mass – m1 

40 kg Damping coefficient of the 
gravel – b2 

1900 Ns/m 

Mass of the tampers – m2 60 kg Damping coefficient of the 

suspension – b1 

200 Ns/m 

Stiffness coefficient of the suspension 
– c1 

2.106 N/m Force - F 10 kN 

Stiffness coefficient of  the gravel – c2 21.106 N/m Radius of the unbalanced 

mass - r 

0.05 m 
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