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Abstract: This paper derives the equations that describe the interaction forcesbetween two identical cylinders 

spinningaround their stationary and parallel axes in a fluid that isassumed to be in-viscous, steady, in-vortical, 

and in-compressible. The paper starts by deriving the velocity field from Laplace equation,governing this 

problem,and the system boundary conditions. It then determines the pressure field from the velocity field using 

Bernoulli equation. Finally, the paper integrates the pressure around either cylinder-surface to find the force 

acting on its axis.All equations and derivationsprovided in this paper are exact solutions. No numerical 

analysesor approximations are used.The paper finds that such identical cylinders repel or attract each other in 

inverse relation with separation between their axes, according to similar or opposite direction of rotation, 

respectively. 
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I. Introduction 

Determining the force acting on an objectdue to its existence in a fluid is an important topic, and has 

several important applications. One of these applications is evaluating the lift force acting on an aeroplane wing 

due to the flow of the air. The solution to such a problem might be analytical or numerical, depending upon the 

complexity of the system and the required level of accuracy of the solution. Cylindrical Objects in fluid-flows 

constitute one category of such problems and have vast applications. 

According to the literature reviewed, several such systems have already been studied both numerically 

and analytically,while other systems have attracted no attention. An example ofsuch studiedsystems[1]is the lift 

force acting on a cylinder rollingin aflow. Another example[2] is the interaction forces between two concentric 

cylinders with fluid internal and/or external to them. A third example[3]is the interaction forces between two 

cylinders rotating around two parallel floating axes. No study to the knowledge of both authors has been done 

on the interaction forceswhen the two parallel axes are fixed. 

This paper is dedicated to find the interaction forcesbetween two identical cylindersspinning in an ideal 

fluid (in-viscous, steady, in-vortical, andin-compressible);when their two parallel axes of rotation are made 

fixed.These forces act on both axes. The system has never been studied before. For simplicity, the cylinders are 

assumed infinitely long, so asto have a two-dimensional problem in 𝑥𝑦-plane, where rotational axes are parallel 

to the ignored 𝑧-axis. 

 

II. Problem Statement 
Fig.1 shows the top view of the system targeted by this paper. It depictstwo identical circles (for the 

two identical cylinders)of radius 𝑅. The distance between the two centres (for the two axes) is:2𝑎, where:

 𝑎 > 𝑅. 

 
Fig.1: Top view of the system targeted by this paper 
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Each circle (cylinder) is rotating around its centre (axis) with a fixed angular velocity,𝜔, in a fluid that 

is in-viscous, steady, in-vortical, and in-compressible. The aim of the paper is to derive the exact equations 

describing the forcesboth cylindersexert on their fixed axes after the entire system reached steady state. 

The next section uses the Laplace equation[4]governing such problems, to find the velocity field of the 

fluid, satisfying its boundary conditions, which are: 

1. the velocity of the fluid at the circle (i.e. the surface of the cylinder)is tangential to it, with a magnitude 

of: 𝜔 ∙ 𝑅; and: 

2. the velocity of the fluid at infinity is zero. 

 

III. Fluid Velocity 
As the governing Laplace equation is linear, super-position can be applied to simplify the solution. 

Considering Cylinder-A alone,the steady-state fluid-velocity vector: 

 

𝑉𝐴 𝑥, 𝑦 =  𝑉𝐴𝑥  𝑥, 𝑦 , 𝑉𝐴𝑦  𝑥, 𝑦  ,(1) 

 

isknown [5] to be as shown in Fig.2, where its two components are givenby: 

 

𝑉𝐴𝑥  𝑥, 𝑦 = −𝜔 ∙ 𝑅2 ∙
𝑦

𝑥 2+𝑦2, and:(2) 

 

𝑉𝐴𝑦  𝑥, 𝑦 = 𝜔 ∙ 𝑅2 ∙
𝑥

𝑥 2+𝑦2, provided:(3) 

 

𝑥2 + 𝑦2 > 𝑅2 . 

 
These velocity equations satisfyboth boundary conditions mentioned above. Furthermore, the velocity 

of the fluid due to the spinning of Cylinder-Ais seen to be directly proportional to 𝜔, and inversely proportional 

tothe distance from the cylinder axis;i.e. the further from cylinder axis, the slower the fluid is. 

Considering Cylinder-B alone, the steady-state fluid-velocity vector: 

 

𝑉𝐵 𝑥, 𝑦 =  𝑉𝐵𝑥  𝑥, 𝑦 , 𝑉𝐵𝑦  𝑥, 𝑦  ,(4) 

 

can be obtained from Eqs.2&3 (with a positive shift of: 2𝑎, along the 𝑥-axis) as: 

 

𝑉𝐵𝑥  𝑥, 𝑦 = −𝜔 ∙ 𝑅2 ∙
𝑦

 𝑥−2𝑎 2+𝑦2, and:(5) 

 

𝑉𝐵𝑦  𝑥, 𝑦 = 𝜔 ∙ 𝑅2 ∙
𝑥−2𝑎

 𝑥−2𝑎 2+𝑦2, provided:(6) 

 

(𝑥 − 2𝑎)2 + 𝑦2 > 𝑅2. 

 
Fig.2: The velocity field of the ideal fluid due to the spinning of Cylinder-A 
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 Hence, applying super-position;the fluid velocity for the system of two cylinders shown in Fig.1, can 

be found using Eqs.1-6 as: 

 

𝑉 𝑥, 𝑦 = 𝑉𝐴 𝑥, 𝑦 + 𝑉𝐵 𝑥, 𝑦 =  𝑉𝑥 𝑥, 𝑦 , 𝑉𝑦 𝑥, 𝑦  ,where:(7) 

 

𝑉𝑥  𝑥, 𝑦 = 𝑉𝐴𝑥  𝑥, 𝑦 + 𝑉𝐵𝑥  𝑥, 𝑦 = −𝜔 ∙ 𝑅2 ∙  
𝑦

𝑥2+𝑦2 +
𝑦

 𝑥−2𝑎 2+𝑦2 , and:(8) 

 

𝑉𝑦  𝑥, 𝑦 = 𝑉𝐴𝑦  𝑥, 𝑦 + 𝑉𝐵𝑦  𝑥, 𝑦 = 𝜔 ∙ 𝑅2 ∙  
𝑥

𝑥2+𝑦2 +
𝑥−2𝑎

 𝑥−2𝑎 2+𝑦2 ,provided:(9) 

 

𝑥2 + 𝑦2 > 𝑅2 , and: (𝑥 − 2𝑎)2 + 𝑦2 > 𝑅2; i.e. where fluid exists outside both cylinders. 
 

The above fluid-velocity is plotted as shown in Fig.3 below.The next section uses the fluid velocity and 

Bernoulli equation to obtain the pressure field. 

 

 
Fig.3: The velocity field of the ideal fluid due to the spinning of Cylinder-A and Cylinder-B in the same 

direction around their stationary and parallel axes 

 

IV. Fluid Pressure 
In this section, the pressure at the boundary of either cylinder is derived, in readiness to find the force 

exerted on its axes. Ignoring the effect of the gravitational force in the fluid, Bernoulli equation relates the 

pressure magnitude, 𝑃 𝑥, 𝑦 , to the velocity field, 𝑉 𝑥, 𝑦 , as: 

 

𝑃(𝑥, 𝑦) +
1

2
𝜌 ∙  𝑉(𝑥, 𝑦) 2 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡, where: 𝜌 is the density of the fluid. (10) 

 

The above equation can be read as:the summation of both static and dynamic pressures is constant 

everywhere in the fluid. In this respect, it is the square of the magnitude of the fluid velocity, |𝑉 𝑥, 𝑦 |², is what 

really matters for the fluid pressure. 

Applying Eq.10 at Cylinder-A border & infinity (where velocity diminishes), then: 

 

𝑃𝐴(𝑥, 𝑦) +
𝜌

2
∙   𝑉(𝑥, 𝑦) @ 𝐶𝑦𝑙𝑖𝑛𝑑𝑒𝑟 −𝐴 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦  

2
= 𝑃∞, where: 

 

𝑃𝐴(𝑥, 𝑦): is the pressure at Cylinder-A boundary, and: 

𝑃∞:  is the fluid pressure at ∞. Hence: 

 

𝑃𝐴 𝑥, 𝑦 = 𝑃∞ −
𝜌

2
∙   𝑉(𝑥, 𝑦) @ 𝐶𝑦𝑙𝑖𝑛𝑑𝑒𝑟 −𝐴 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦  

2
.Using Eq.7, then: 
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𝑃𝐴 𝑥, 𝑦 = 𝑃∞ −
𝜌

2
∙   𝑉2

𝑥  𝑥, 𝑦 + 𝑉2
𝑦  𝑥, 𝑦   

@ 𝐶𝑦𝑙𝑖𝑛𝑑𝑒𝑟 −𝐴 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦
. 

 

This is simplified using Eqs.8&9with: 𝑥2 + 𝑦2 = 𝑅2   to: 

𝑃𝐴 𝑥, 𝑦 = 𝑃∞ −
𝜌∙𝜔 2∙𝑅4

2
∙   

𝑦

𝑅2  +
𝑦

𝑅2−4𝑎∙𝑥+4𝑎²
 

2

+  
𝑥

𝑅2 +
𝑥−2𝑎

𝑅2−4𝑎∙𝑥+4𝑎2 
2

 . 

 

This is reduced with:  𝑥2 + 𝑦2 = 𝑅2   to: 
 

𝑃𝐴 𝑥, 𝑦 = 𝑃∞ −
𝜌∙𝜔 2∙𝑅2

2
∙  1 +

3𝑅2−4𝑎∙𝑥

𝑅2−4𝑎∙𝑥+4𝑎²
 ,where: 𝑥 ∈ Circle-𝐴. 

 

Converting to polar coordinates, with: 𝑥 = 𝑅 ∙ cos 𝜃,  then: 
 

𝑃𝐴 𝑥, 𝑦 = 𝑃𝐴 𝜃 = 𝑃∞ −
𝜌∙𝜔 2∙𝑅2

2
∙  1 +

3𝑅2−4𝑎∙𝑅∙cos 𝜃

𝑅2−4𝑎∙𝑅∙cos 𝜃+4𝑎²
 , 𝜃 ∈  0,2𝜋 .(11) 

 

𝑃𝐴 𝜃 is seen to be symmetrical about the𝑥-axis. 

 

V. Force Acting on the Rotational Axis of Cylinder-A 
The fluid pressure,𝑃𝐴 𝜃 ,expressed by Eq.11 is acting perpendicular to the surface of Cylinder-A as 

shown in Fig.4, and can be seen to cause infinitesimal repelling force, 𝑑𝐹𝐴 𝜃 , in the same direction, given by: 

 

𝑑𝐹𝐴 𝜃 = 𝑃𝐴 𝜃 ∙ 𝐿 ∙ 𝑅 ∙ 𝑑𝜃, where: 

 

𝐿: is the Length of either cylinder, which is assumed to be infinitely long. 

 

 
Fig.4: Top view of Cylinder-A showing fluid pressure 

 

 

Decomposing: 𝑑𝐹𝐴 𝜃 into two components, and ignoring its y-component due to the symmetry of 

𝑃𝐴 𝜃  about the 𝑥-axis; then: 

 

𝑑𝐹𝐴𝑥  𝜃 = −𝑃𝐴 𝜃 ∙ 𝐿 ∙ 𝑅 ∙ cos 𝜃 ∙ 𝑑𝜃.(12) 

 

Integrating 𝑑𝐹𝐴𝑥  𝜃 around Circle-A (the surface of Cylinder-A) yields the force, 𝐹, exerted on the 
axis of rotation of Cylinder-A. Hence: 

 

𝐹 =  𝑑𝐹𝐴𝑥  𝜃 
2𝜋

0
.  This is expressed using Eqs.11&12, as: 

 

𝐹 = −𝐿 ∙ 𝑅   𝑃∞ −
𝜌∙𝜔 2∙𝑅2

2
∙  1 +

3𝑅2−4𝑎∙𝑅∙cos 𝜃

𝑅2−4𝑎∙𝑅∙cos 𝜃+4𝑎²
  ∙ cos 𝜃 ∙ 𝑑𝜃

2𝜋

0
. 

The first two of the above three integrandswill integrate to zero, leaving 𝐹as: 

 

𝐹 =
1

2
∙ 𝜌 ∙ 𝐿 ∙ 𝜔2 ∙ 𝑅4 ∙ 𝐼, where:(13) 

 

𝐼 =  
3𝑅−4𝑎∙cos 𝜃

𝑅2−4𝑎∙𝑅∙cos 𝜃+4𝑎²
∙ cos 𝜃 ∙ 𝑑𝜃

2𝜋

0
. 
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VI. Solving the Integral 
 The integral, 𝐼, can be solved [6] by usingthe complex transformation: 
 

𝑧 = 𝑒𝑖𝜃 = cos 𝜃 + 𝑖 ∙ sin 𝜃, where:  𝑖 =  −1, 𝑖2 = −1, 𝑑𝜃 =
𝑑𝑧

𝑖𝑧
, and: 

 

cos 𝜃 =
𝑧+

1
𝑧

2
=

𝑧2+1

2𝑧
; 

 

whereby it converts to an integral over the closed contour, 𝐶, of the unit circle:  𝑧 = 1, in the complex 𝑧-plane. 

Hence, removing𝜃: 

 

𝐼 =  
3𝑅−4𝑎∙cos 𝜃

𝑅2+4𝑎²−4𝑎∙𝑅∙cos 𝜃
∙ cos 𝜃 ∙ 𝑑𝜃

2𝜋

0
=  

3𝑅−4𝑎∙ 
𝑧2+1

2𝑧
 

𝑅2+4𝑎2−4𝑎∙𝑅∙ 
𝑧2 +1

2𝑧
 
∙

𝑧2+1

2𝑧
∙

𝑑𝑧

𝑖𝑧𝐶
. 

 

This is simplified to: 

 

𝐼 =
−𝑖

2
 

2𝑎∙𝑧4−3𝑅∙𝑧 3+4𝑎∙𝑧2−3𝑅∙𝑧+2𝑎

𝑧2 2𝑎∙𝑅∙𝑧2− 𝑅2+4𝑎2 ∙𝑧+2𝑎∙𝑅 
∙ 𝑑𝑧

𝐶
,and can be expressed as: 

 

𝐼 =
−𝑖

4𝑎∙𝑅
 

2𝑎 ∙𝑧4−3𝑅∙𝑧3+4𝑎∙𝑧2−3𝑅∙𝑧+2𝑎

𝑧2∙ 𝑧−𝛼 ∙ 𝑧−𝛽 
∙ 𝑑𝑧

𝐶
,where: 𝛼 and: 𝛽 are the roots of: 

 

2𝑎 ∙ 𝑅 ∙ 𝑧2 −  𝑅2 + 4𝑎2 ∙ 𝑧 + 2𝑎 ∙ 𝑅 = 0, given by: 
 

𝛼 =
𝑅

2𝑎
,and:           

 (14) 

 

𝛽 =
2𝑎

𝑅
=

1

𝛼
.           

 (15) 

 

Noting that:𝑎 > 𝑅, then: 𝛼 < 1, and is inside 𝐶, while: 𝛽 > 1 , and is outside 𝐶.Hence, the 

integrand in 𝐼 has three poles within 𝐶, two at the origin and one at 𝛼. 

Using Cauchy Theorem in complex integrals[6], 𝐼 is found as: 

 

𝐼 =
−𝑖

4𝑎∙𝑅
∙  2𝜋 ∙ 𝑖 ∙    

2𝑎∙𝑧4−3𝑅∙𝑧3+4𝑎∙𝑧2−3𝑅∙𝑧+2𝑎

 𝑧−𝛼 ∙ 𝑧−𝛽 
 
′

 
@𝑧=0

+   
2𝑎∙𝑧4−3𝑅∙𝑧3+4𝑎∙𝑧2−3𝑅∙𝑧+2𝑎

𝑧2∙ 𝑧−𝛽 
  

@𝑧=𝛼
 .This gives: 

 

𝐼 =
𝜋

2𝑎∙𝑅
∙  

−3𝑅∙𝛼∙𝛽+2𝑎∙ 𝛼+𝛽 

𝛼2∙𝛽2 +
2𝑎∙𝛼4−3𝑅∙𝛼3+4𝑎∙𝛼2−3𝑅∙𝛼+2𝑎

𝛼2∙ 𝛼−𝛽 
 .Removing𝛽using Eq.15, this becomes: 

 

𝐼 =
𝜋

2𝑎∙𝑅
∙  −3𝑅 + 2𝑎 ∙  

𝛼2+1

𝛼
 +

2𝑎 ∙𝛼4−3𝑅∙𝛼3+4𝑎∙𝛼2−3𝑅∙𝛼+2𝑎

𝛼∙ 𝛼2−1 
 . 

 

Substituting for:𝛼using Eq.14, and simplifying gives:  𝐼 = −
2𝜋

𝑎
∙

2𝑎2−𝑅2

4𝑎2−𝑅2. 

Hence, putting this, in Eq.13, and simplifying gives: 

 

𝐹 = −
𝜋∙𝜌∙𝐿∙𝜔 2∙𝑅4

𝑎
∙

2𝑎2−𝑅2

4𝑎2−𝑅2, remembering that: 𝑎 > 𝑅.      (16) 

 

The negative sign means that the fluid actually repels Cylinder-A away from Cylinder-B. 

 

VII. InterpretingThe Repulsion Force 
 Considering: a, to be given as: 𝑎 =  𝑛 ∙ 𝑅,then: 𝑎 > 𝑅, implies that: 𝑛 > 1;and Eq.16 for 

the force, 𝐹, can be simplified to: 
 

𝐹 = −
𝑅

2𝑎
∙

𝑛2−0.5

𝑛2−0.25
∙ 𝑃 =

−1

2𝑛
∙

𝑛2−0.5

𝑛2−0.25
∙ 𝑃, where:  𝑛 > 1; and: 
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𝑃 = 𝜋 ∙ 𝜌 ∙ 𝐿 ∙ 𝜔2 ∙ 𝑅3 .          
 (17) 

 

When the two identical cylinders are made very near to each other, then: 𝑛 =  1+,and the 

repulsion force is:𝐹1, given as: 

 

𝐹1 = −
𝑃

3
= −0.33333𝑃. 

The maximum repulsion, 𝐹𝑝, can be found to occur at:𝑛 =  5+ 17

8
= 1.06789, with value of: 

 

𝐹𝑝 = −0.33675𝑃. 

 

As the gap between the two identical cylinders ismade: 2𝑅, then:𝑛 =  2,and the repulsion force 

is reduced to:𝐹2, given as: 

 

𝐹2 = −
7𝑃

30
= −

7

15
∙

𝑅∙𝑃

𝑎
 = −0.23333𝑃. 

 

When gap is made: 4𝑅, then:𝑛 =  3,and the repulsion force is reduced to: 𝐹3, given as: 

 

𝐹3 = −
17𝑃

105
= −

17

35
∙

𝑅∙𝑃

𝑎
= −0.16190𝑃. 

 

When gap is made:6𝑅, then:𝑛 =  4,and the repulsion force is reduced to: 𝐹4, given as: 

 

𝐹4 = −
31𝑃

252
= −

31

63
∙  

𝑅∙𝑃

𝑎
= −0.12302𝑃. 

 

As the two identical cylinders are spaced far enough (𝑛 > 4) of each other, then the repulsion force 

goes asymptotically to: 

 

𝐹𝑛 = −
𝑃

2𝑛
=  −

𝑅∙𝑃

2𝑎
 . 

 

This is an inverse relationship with the separation between axes of rotation, i.e. the identical cylinders rotating in 

the same directiontend to repel each other in inverse law with respect to their axial separation. 

 

VIII. Effect of Opposing Direction 
When Cylinder-B spins differentlyto Cylinder-A, namely in the negative sense, the fluid-velocity can 

be plotted as shown in Fig.5 below. 

 

 
Fig.5: The velocity field of the ideal fluid due to the spinning of Cylinder-A and Cylinder-B in different 

directionsaround their stationary and parallel axes 
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A similar treatment as above, gives the fluid force acting on the axis of Cylinder-A, as: 

 

𝐹 =
𝜋∙𝜌 ∙𝐿∙𝜔 2∙𝑅4

𝑎
∙

2𝑎2

4𝑎2−𝑅2, remembering: 𝑎 > 𝑅. Using Eq.17, this can be simplified to: 

 

𝐹 =
𝑅

2𝑎
∙

𝑎2

𝑎2−0.25𝑅2 ∙ 𝑃 =
𝑅

2𝑎
∙

𝑛2

𝑛2−0.25
∙ 𝑃 =

1

2𝑛
∙

𝑛2

𝑛2−0.25
∙ 𝑃 , where:  𝑛 > 1. 

 

This is an attraction force, reduced asymptotically for far enough spacing (𝑛 > 4), to: 

 

𝐹𝑛 =
𝑃

2𝑛
=  

𝑅∙𝑃

2𝑎
 .  

 

This is also an inverse relationship with the separation between axes of rotation. Since both cylinders are 

identical, thenthe results obtained are valid for both of them. 

 

IX. Conclusion 
This paper derived the force acting on twoidentical cylinders spinning atconstant angular velocity 

around their stationary and parallel axes in anin-viscid, steady,in-vortical, and in-compressible fluid.The 

obtained equations showed that each cylinder axis,in such a system,experiences a repelling or attracting force 

according to similar or opposite sense of rotation respectively.The magnitude of that force is inversely 

proportional to the separation between the axes. It is also proportional to the density of the fluid, the cylinder 

volume, its radius, and the product of the two angular velocities of the cylinders. 

 

 Nomenclature: 

This section summarizes the symbols used in the paper in alphabetical order as follows: 

 

𝜌:  Density of the fluid 

𝜔:  Angular speed of spinning of either cylinder 

𝑎:  Half the distance between axes of cylinders 

𝑑𝐹𝐴 𝜃 : Infinitesimal force acting on Cylinder-A 

𝑑𝐹𝐴𝑥  𝜃 : Component of:𝑑𝐹𝐴 𝜃 along the 𝑥-axis 

𝐹:  Interaction force acting on the axle of Cylinder-A 

𝐹1:  Value of: F when both cylinders are about to touch each other 

𝐹2:  Value of: F when both cylinders are spaced2𝑅 apart 

𝐹3:  Value of: F when both cylinders are spaced4𝑅 apart 

𝐹4:  Value of: F when both cylinders are spaced6𝑅 apart 

𝐹𝑝:  Peak value of: F 

𝐿:  Length of either cylinder 

𝑃(𝑥, 𝑦): Pressure magnitude of the fluid 

𝑃∞:  Pressure magnitude of the fluidat ∞ 

𝑃𝐴 𝑥, 𝑦 : Pressuremagnitude of the fluidat Cylinder-A boundary in 𝑥y-coordinates 

𝑃𝐴(𝜃):  Pressure magnitude of the fluidat Cylinder-A boundary in 𝑟𝜃-coordinates 

R:  Radius of either cylinder 

𝑉 𝑥, 𝑦 : Velocity vector of the fluid due to the spinning of both cylinders 

𝑉𝑥  𝑥, 𝑦 : Component of:  𝑉 𝑥, 𝑦 along the 𝑥-axis 

𝑉𝑦  𝑥, 𝑦 : Component of:  𝑉 𝑥, 𝑦 along the 𝑦-axis 

𝑉𝐴 𝑥, 𝑦 : Velocity vector of the fluid due to the spinning of Cylinder-A 

𝑉𝐴𝑥  𝑥, 𝑦 : Component of:  𝑉𝐴 𝑥, 𝑦 along the 𝑥-axis 

𝑉𝐴𝑦  𝑥, 𝑦 : Component of:  𝑉𝐴 𝑥, 𝑦 along the 𝑦-axis 

𝑉𝐵 𝑥, 𝑦 : Velocity vector of the fluid due to the spinning of Cylinder-B 

𝑉𝐵𝑥  𝑥, 𝑦 : Component of:  𝑉𝐵 𝑥, 𝑦 along the 𝑥-axis 

𝑉𝐵𝑦  𝑥, 𝑦 : Component of:  𝑉𝐵 𝑥, 𝑦 along the 𝑦-axis 
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