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Abstract: The interaction between the foundation and the deformable soil calculated by finite element method 

is based on various models representing terrain behavior. Of these models, most commercial calculation 

programs implemented in their content models Winkler and Pasternak. Article shows the influence of these 

computing models on conventional rigid hydraulic construction. It was calculated  the stiffness matrix structure 

and deformations developed, by considering these two models.  
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I. Introduction 

 The traditional method for simulation the mathematical load-deformation response of a beam in 

uniaxial bending is a differential equation (Horvath 2002) [1]. The basic form of the matrix formulation for 

beam flexure is 

    S d q          (1) 

where: 

[S] = stiffness matrix; {d} = displacement vector; {q} = load (force) vector. 

The relevance of equation (1) is that all of the variations in beam behavior can be explained as variations solely 

in the formulation of the stiffness matrix, [S].  

In Winkler model (Fig.1) the flexural behavior of this beam is given by  equation (2) 

V e r t ic a l s o il s p r in g  (p = k  w )

B e a m  (E , I )

lo a d   q
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Fig. 1 The Winkler model 
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where subgrade reaction in one (x-axis) direction only is 

( ) ( )
w

p x k w x  

kw = Winkler coefficient of subgrade reaction 

E = elasticity modulus of beam 

I = beam moment of inertia  

Solving ecuation (2) by FEM is expressed by relation (3) 

        e w
S S d q          (3) 

 wherein elastic stiffness matrix expression [Se] and subgrade reaction matrix [Sw] are determined with 

the following shape function(4) according to Cook [2] Chang [3] Teodoru [4] 

   

   

2 3 2 3

1 22 3 2

2 3 2 3

3 42 3 2

3 2 2
1   ;    ;

3 2
       ;    .

x x x x
N x N x x

ll l l

x x x x
N x N x

ll l l

     

    

     (4) 

Stiffness matrix are: 
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In Pasternak model (fig.2) The flexural behavior of this beam is given by  equation (7) 
4 2

4 2

( ) ( )
( ) ( )

d w x d w x
E I p x g q x

d x x
         (7) 

where g =  the shear stiffness of the shear layer.  Solving ecuation (7) by FEM is expressed by relation (8) 

        e w g
S S S d q   

 
       (8) 

 wherein elastic stiffness matrix expression [Se] is subgrade reaction matrix [Sw] are the same like those 

from relations (5) and (6) and matrix [Sg] is given by equation (9) 
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      (9) 

 The introduction of second parameter for soil (shear stiffness) have the same effect like siffness grovth 

of the beam (the terms of stiffness matrix is increase)  
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Fig. 2 The Pasternak model 

Stiffness matrix is obtained considering continuum bearing on soil like in fig. 3 
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Fig. 3 Stiffness matrix calculation by continuum bearing 
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II. Stiffness Matrix Calculation By Punctual Bearing Of The Beam 
 In beam on elastic foundation calculus by FEM, subgrade reaction matrix of Winkler spring was given 

by  Bowles [5] in configuration (10)  
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 This expression is direct suggestion by calculus scheme from fig. 4, where can be see that only 

elements S11 and S33 of stiffness matrix have values different of zero values. (There's an element stiffness matrix 

Sij is generalized force that develops on i direction when in the direction of j is imposed on movement or 

rotation unit) 
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Fig. 4 Stiffness matrix calculation by nodal bearing 

 

 In ecuation (7) apart from term which include Winkler springs and  for which  stiffness matrix member 

S11 and S33 are easy to find (intuit) , apear and terms which  include shearing efect for which  stiffness matrix 

intuition is not simple. The term of the equation that considers the earth shear, contain second derivative of 

beam deformation(d2w/dx2). To calculate the stiffness matrix expressing shear earth [Sg] in case of nodal 

bearing, on use similar functions to those for calculating matrix form [Sw] 

 

Relation (10) for [Sw] rezult by solving with Galerkin method of differential ecuation  (7)  

Seeing that expression we(x) = N1(x)w1+N2(x)θ1+N3(x)w2+N4(x)θ2   (11) 

is an approximal solution of differential ecuation (7) it rezult an residuum 
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e e
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x E I g kw x q x

d x x
           (12) 

in which k=kw·1 considering an unitar width beam or k=kw·B for a beam of B width; after Chung [6] 

With this reziduum on form balanced reziduum functionals with shape functions 
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 From first integral of expresion (13) on obtain nodal force vector and elastic stiffness matrix of the 

beam(5). From the third  integral obtain subgrade reaction matrix of Winkler spring, considring relation (11) 

write in form: w(x)=[N(x)]{de}, cu {de}={w1  θ1  w2  θ2} 
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Following stiffness matrix became 
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In relation (15) if accepted for shape function the relations(16)  
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subgrade reaction matrix of Winkler spring become 
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 In this way was find the same subgrade reaction matrix of Winkler spring, like that given by 

Bowles(1996) 

Folowing on use shape function for matrix [Sg] calculation 

 If from ecuation (13) using the first two integral and consider shear stress attached to g parameter , 

after Zhaohua apud Teodoru [4] 
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From ecuation (18) the last member give stiffness matrix wich simulate shear stres in soil 
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Forward stiffness matrix become 
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where („) denotes differentiation with respect to x 
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 If using shape functions (16) like those used for subgrade reaction matrix of Winkler spring 

calculation, [Sw] (17) ,  shear matrix is [Sg] = 0 

If using for matrix [Sw] calculation linear shape function (21) 
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it obtain the folowing stiffness matrix 
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 Stiffness matrix obtained with relation (22) and (23)  as well those given by (17) and Sg=0 are very  

approximal because of rough shape function expresion used (16) and (21).  

In folowing example on use the interaction model with continuum bearing. The goal of calculus example is to 

find stiffness matrix and displacements for a special structure with large rigidity 

 

III. Calculus Example 
3.1. Design structure and calculus schedule 

 The structure is bottom discharge at an earth dam(Ibaneasa dam from Botosani county – Romania). 

The conduit is made by steel concrete with polygonal cross section (fig. 5) - internal quadratic and external 

trapezoid. 
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S id e  s e e p a g e  s to p

 
Fig. 5 Cross and longitudinal section by bottom discharge (concrete steel) 

 

 The conduit is separated in 9m length transom. It shall be calculate a central transom of bottom 

discharge. 

 The load and bearing schedule is in fig. 6. It shall be consider a sigle beam finit element between two 

joints with length l 

 

3.2. Earth (soil) and beam (conduit) parameters 

 The conduit parameters are: 

A=5.36 m2; Ib=6.67 m4; Eb=26 GPa (for C12/15 concrete) 

 The ground under conduit 

Each node will be thought of as a spring with its elasticity determined according to Chung [ ] by :  

ks = B· k  in which 

B = 3.2 m is the width of the conduit 
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Fig. 6 Beam loading schedule 

  

 The marginal nodes will have the same coefficient of subgrade reaction as the other ones according to  

Bowles  

Coefficient of subgrade reaction according to Vesić apud Bowles [5] 
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Ground parameters are (silty clay): 

Ep=35 MPa; μp=0,35; γp=19 kN/m3 
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ks = 3.2 · 5875 = 28 200 kN/m;  

Shear modulus for shear layer in foundation is 
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
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 = 13 Mpa        (25) 

gs= B· g 

Foundation parameters k and g may be calculated according Horvath [7] with following relations 

p
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k
H

           (26)  

2 (1 ) 2

p

p

E H
g





         (27) 

where H is depth to effective rigid base 

 The effective rigid base is defined as the depth at which settlements caused by the structure can be 

taken to be zero. For decades it has been assumed that the “depth of influence” for settlement equivalent 

conceptually to the effective depth to rigid base is twice the width of a square loaded area and four times the 

width of an infinite strip-Colasanti and Horvath [8]  

With this assumptions H=6,4 m ; k=5468 kN/m2;  g=41,5 MPa 

 Earth load on conduit may be consider uniform distributed (crown width is 6 m and conduit beam 

length is 9 m).  

Earth load together with self weight of conduit is q=826 kN/m 

With this parameter it shall be calculate structure wich schedule is presented in fig 6 

 

3.3. Solving equilibrium equation sistem 

Matrix equation is (8)         e w g
S S S d q   

 
, whitch write like  (1) is   

    S D Q           

in which members are: 

     e w g
S S S S   

 
= stiffness matrix 

{D}={d} = displacement vector 

{Q}={q} = load (force) vector. 

Solving ecuation  (1) is by partitioning  matrix S; D and Q whereby it separate out free displacement for degree 

of freedom (2 and 4)  by degree of freedom with elastic bearings (1 and 3)- Jerca [9], see Fig 7 
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Fig. 7 Beam displacements (degrees of freedom) 
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are reaction in degree of freedom directions 

or (with the same result)  
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Replacing eq (30) writen like 
1
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 ,  in  eq (29) obtain 
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From last ecuation result 
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wich indroducing in first one, guide to displacement calculation  
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Displacement in free(no bearing)  degree of freedom directions(2 and 4, Fig. 6) are 

 
1

* *

n nn n
D S Q



  in wich        (34) 

* 1 * 11 1 1 1
( ) ;      ( )

n n n n n r rr rn n n n r rr r

s s s s

S S S S I S Q Q S S I Q
k k k k

 
       

 After ends of beam displacement calculation it shall be calculated middle of the beam displacement 

with next relation: 

we(x=l/2) = N1(x)w1+N2(x)θ1+N3(x)w2+N4(x)θ2     (35) 

which in matrix shape is:  

  w N d          (36) 

in which shape function for x=l/2 are (4 equations) 
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    (37) 

3.4. Results 

a) Continuum bearing and soil stiffness considering (Pasternak) 

Stiffness matrix of structure is: (obtained with Mathcad software) 
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End of beam displacements are (calculated with eq. 34; 33 and 30) 
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Middle of the beam displacement, calculated with eq. 36 for x=l/2, is: w= - 0.0563 m 

b) Continuum bearing and without soil stiffness considering (Winkler) 

Stiffness matrix are obtained with Mathcad software:  

     e w
S S S   

S
e

2.855 10
6



1.285 10
7



2.855 10
6



1.285 10
7



1.285 10
7



7.708 10
7



1.285 10
7



3.854 10
7



2.855 10
6



1.285 10
7



2.855 10
6



1.285 10
7



1.285 10
7



3.854 10
7



1.285 10
7



7.708 10
7





























 



Soil Structure Interaction Calculus, For Rigid Hydraulic Structures, Using FEM 

DOI: 10.9790/1684-12546068                                    www.iosrjournals.org                                             68 | Page 

1

1

2

2

w

w





 

 
 

  

 

 
 

m

r a d

m

r a d

 

 

 

 

 
 

S
w

6.285 10
4



7.977 10
4



2.175 10
4



4.713 10
4



7.977 10
4



1.305 10
5



4.713 10
4



9.789 10
4



2.175 10
4



4.713 10
4



6.285 10
4



7.977 10
4



4.713 10
4



9.789 10
4



7.977 10
4



1.305 10
5





























 

S

2.917 10
6



1.293 10
7



2.833 10
6



1.28 10
7



1.293 10
7



7.721 10
7



1.28 10
7



3.844 10
7



2.833 10
6



1.28 10
7



2.917 10
6



1.293 10
7



1.28 10
7



3.844 10
7



1.293 10
7



7.721 10
7





























 
End of beam displacements are 
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Middle of the beam displacement is: w = -0.0571 m 

 

IV. Conclusions 
 Displacements in those two calculus hypothesis are very close (2% difference ) 

Shear stiffness of the soil considering in Pasternak hypothesis is inconsequent because of structure particulars. 

This is possible due to the overall rigidity of the structure. The rigidity of one section is according to Gorbunov 

Posadov [10] Paulos [11]  
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Given this data, we have t=0,0007<<1 so the conduit is (very)rigid. 

 The explanation lies in the rigidity of the bottom-discharge conduit structure. Thus the elastic stiffness 

matrix of the structure is a little modified of rigidity matrix resulted by taking into consideration the specific 

earth stiffness of the Pasternak model. 

 So for rigid structures, earth stiffness change (increase) settled by Pasternak hypotthesis and many 

other researchers (Thangaraj [12], Tiwari [13]) is not suitable. 
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