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Abstract: The turbine, propeller, helicopter blades are idealized as rotating cantilever beams in the analysis of 

its different characteristics. The motive of this paper is to find the natural frequency of rotating composite 

beams. In the present work a rotating composite beam is considered and the natural frequencies of the beam are 

determined using dynamic stiffness matrix method. The Dynamic Stiffness matrix method developed for the 

homogeneous cantilever beams is implemented to composite cantilever beams. First the effective young’s 

modulus is determined for the composite material. The effective young’s modulus is used to predict the 

frequency of rotating composite beam for various parameters. The results obtained, indicates how the natural 

frequency is influenced by various parameters such as speed, hub radius and number of layers in composite. 

Key words:Dynamic stiffness matrix method, Effective young’s modulus, Rotating Composite Beam, Various 

parameters. 

 

I. Introduction 

The importance of cantilever beams as the application of engineering structures is mostly seen in gas 

and steam turbine blades, rotor blades of helicopter and spinning space crafts. The analysis of vibration 

characteristics provides useful information in designing and modeling of mechanisms. Abundance of literature 

is available in the free vibration of beams. Free vibration analysis of uniform beam are discussed in [1] by finite 

element method of formulations. Compared to the beams in the stationary state, the natural Frequencies and 

mode shapes vary significantly with the rotating speed caused by the additional bending stiffness of the beam. 

The development of methods in free vibration  from the past are [2] deals with the Rayleigh-Ritz method, [3] 

Sinc Galerkin method, [4] Hamilton’s principle and Lagranges method,[5] method of Carrera Unified 

Formulations , [6] Newmark direct integration method, [7] Variational Iteration Method (VIM) and  

Parameterized Perturbation Method (PPM), in[9,10,11,12] presented various approaches to DSM among these 

methods Dynamic Stiffness Matrix Method is considered as advanced and elegant method as compared to finite 

element formulations because it gives exact results for all natural frequencies and mode shapes, without making 

any approximation enroute andthe results are independent of the number of elements used in the analysis. It 

appears to be no work was done on rotating composite beams based on the formulations of Dynamic Stiffness 

Matrix method and the paper helps to fill the gap and extend the further scope of research. The prime motive of 

this paper is to apply the dynamic stiffness matrix method for composite beams by using the same formulations 

developed for homogeneous materials without any necessity of separate formulations for composite structures. 

To derive the dynamic stiffness matrix of a rotating Bernoulli-Euler beam Analytical and 

computational efforts are required. Starting from the basic governing deferential equations in free vibration, the 

dynamics stiffness matrix of a uniform rotating Bernoulli-Euler beam [9] is derived in the paper with the effects 

of hub radius. The vibrational characteristics of static composite beams are discussed [13] by mixed finite 

element method, [14, 17] studies CUS (circumferentially uniform stiffness), CAS (circumferentially asymmetric 

stiffness) and synergistic effects by ANSYS, and It is known that the Young's modulus of a multi-layered 

composite beam with respect to fiber orientation may be obtained by measuring the moduli in three basic modes 

of deformation: longitudinal, transverse and longitudinal shear. In practical applications, most of the laminas are 

sufficiently thin to assume that a state of plane stress exists within each lamina. However, significant inter 

laminar shearing occurs in the flexure of thick laminates. For this reason, formulations have been developed for 

inter laminar shearing, while keeping with the assumption that the state of stress within the lamina remains that 

of plane stress. Effective flexural modulus obtained for the composite beams[18] is used in the dynamic stiffness 

matrix method for the prediction of effective young’s modulus of composite by the in-plane flexural stiffness 

coefficients Dijand the vibrational response of the rotating composite beams are obtained. The derived 

formulations are validated for cantilever beam results with reference [1] and the frequencies for three 

composites (boron epoxy, glass epoxy and graphite epoxy) are presented with respect to variation in speed, hub 

radius and number of layers. 
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II. Theoretical Formulations 
From the usual assumption of plane stress conditions for a thin composite beam, it follows that the 

normal to the undeformed planes in the beam would remain normal and undeformed in the deformed planes 

with the implication that the in-plane strains in the plate are linear functions of thickness. Qijrefers to the 

reduced stiffness matrix of the k
th

 layer; and h is the thickness of the beam. The matrices Aij, Bij and Dijare 

referred to as the in-plane modulus, bending-stretching coupling modulus and the flexural modulus, respectively 

The kth layer stiffness matrix, Qij , is a function of both material properties and ply orientation. 

 

 
Figure 1  shows layered composite with orientation of fibers 

 

𝐴𝑖𝑗 =  𝑄𝑖𝑗
𝑘 ∗  𝑍𝑘 − 𝑍𝑘−1 

𝑛
𝑘=1 …………………………………..……… (a) 

𝐵𝑖𝑗 =
1

2
 𝑄𝑖𝑗

𝑘 ∗  𝑍𝑘
2 − 𝑍𝑘−1

2  𝑛
𝑘=1 ………………………………………… (b) 

𝐷𝑖𝑗 =
1

3
 𝑄𝑖𝑗

𝑘 ∗  𝑍𝑘
3 − 𝑍𝑘−1

3  𝑛
𝑘=1 …………………………………………..(c) 

 𝑍𝑘 − 𝑍𝑘−1 =𝑑𝑘 𝑖, 𝑗 =  𝑥, 𝑦, 𝑠  
Reduced stiffness matrix Qijis obtained from the given relation: 

 
𝑚2 n2 −2mn
n2 𝑚2 2mn
𝑚𝑛 −𝑚𝑛  𝑚2 − 𝑛2 

 * 

𝑄11 𝑄12 𝑄16

𝑄21 𝑄22 𝑄26

𝑄61 𝑄62 2𝑄66

 * 
𝑚2 n2 2mn
n2 𝑚2 −2mn

−𝑚𝑛 𝑚𝑛  𝑚2 − 𝑛2 
 = 

𝑄𝑥𝑥 𝑄𝑥𝑦 2𝑄𝑥𝑠

𝑄𝑦𝑥 𝑄𝑦𝑦 2𝑄𝑦𝑠

𝑄𝑠𝑥 𝑄𝑠𝑦 2𝑄𝑠𝑠

 = [𝑄𝑖𝑗 ] 

……..……………………………………..……… (d) 

𝑄11= 
𝐸1

1−𝜇12∗𝜇21
  

𝑄12= 
𝐸2∗𝜇12

 1−𝜇12∗𝜇21 
  

𝑄66=𝐺12                            conditions for ply stiffness of[isotropic plies]S laminates; 

𝑄16  = 𝑄26= 0 

𝑄22= 
𝐸2

1−𝜇12∗𝜇21
  

 

The flexural modulus, Dij, is given by (c). In this equation, the reduced stiffness matrix Qij, is 

independent of thickness within the k
th 

lamina.  Where N is the total number of layers; and Zk, Zk-1 are the upper 

and lower co-ordinates of the k
th

 layer.For the case where the layers are of the same thickness, Z0. 

 

𝐷∗ = 𝑖𝑛𝑣 𝐷 ……..………………………………………………………..……… (e) 

Effective flexural modulus is given [18] as  

𝐸𝑒=12
 𝑕3 ∗ 𝐷∗ 1,1   …………………………….……………….………..…… (f) 

Figure.2 shows the axis system of a typical Bernoulli-Euler beam element of length¸ with its left-hand 

end at a distance rifrom the axis of rotation. Note that rimay or may not be equal to the hub radius rh, and also L 

may or may not be equal to the total length LT shown in the figure. The beam is assumed to be rotating at a 

constant angular velocity Ω and has a doubly symmetric cross-section such as a rectangle or a circle so that 

thebending and torsional motions as well as the in-plane and out-of-plane motions areuncoupled. In the right-

handed Cartesian co-ordinate system chosen, the origin is taken tobe at the left-hand end of the beam as shown 

the Y-axis coinciding with the neutral axisof the beam in the undeflected position. The Z-axis is taken to be 
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parallel (but notcoincidental) with the axis of rotation while the X-axis lies in the plane of rotation. Theprincipal 

axes of the beam cross-section are, therefore, parallel to X and Z directions. Thesystem is able to flex in the Z 

direction (flapping) and in the X direction (lead-lag motion).These two motions can be coupled only through 

Coriolis forces, but for the system shownfor the present analysis this coupling is ignored. 

 

 
Figure 2 Co-ordinate system and notation for a rotating Bernoulli-Euler beam. 

 

The dynamic stiffness development which follows concerns the out-of-plane free vibration of the beam 

so that the displacements are confined only in the YZ-plane as shown in Figure 3 The beam element is assumed 

to be undergoing free natural vibration with circular (angular) frequency u in the YZ-plane, the derived dynamic 

stiffness matrix can be assembled to study the free-vibration characteristics of a beam with a uniform 

distribution of structural properties. In order to derive the equilibrium equations the forces acting on an 

incremental length dyat an instant of time t are shown in Figure 4. The senses shown for these forces constitutea 

positive sign definition in this paper for axial force (T), bending moment (M) and shearforce (S) respectively. 

The governing differential equations of motion of the beam element can now be derived using Newton's second 

law by considering the equilibrium of the infinitesimal length dyof the beam element shown in Figure 3.  

 

 
Figure 3 Out-of-plane vibration of a rotating beam element of length L [9] 

 
Figure 4 The forces acting in an incremental element dyduring out-of-plane vibration. [9] 
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Referring to Figure 4, the centrifugal tension T(y) at a distance y from the origin is given by [9] 

𝑇(𝑦) = 0.5𝑚Ω2(𝐿2 + 2𝐿𝑟𝑖 − 2𝑟𝑖𝑦 − 𝑦2)…………………….……..… (1) 

 

Where m is the mass per unit length of the beam and X is the rotational speed in radian per second. 

Consideration of equilibrium of an infinitesimal element shown in Figure 4 in the Y and Z directions gives 
𝑑𝑇

𝑑𝑦
+ 𝑚𝛺2(𝑟𝑖 + 𝑦) = 0……………………………..…………………… (2) 

 
𝑑𝑇

𝑑𝑦
+ 𝑚𝜔2z(y) = 0……………………………………………………… (3) 

 

Finally, rotational equilibrium of the element about the X-axis gives 

𝑉 +
𝑑𝑀

𝑑𝑦
  − T y 

𝑑𝑧

𝑑𝑦
= 0…………………………………………………. (4) 

 

The Bernoulli-Euler bending moment equation is given by 

M 𝑦 = 𝐸𝐼𝑥𝑥
𝑑2

𝑧

𝑑𝑦 2………………………………………………………… (5) 

 

Where E is the Young's modulus of the beam material and Ixxis the second moment of area of the cross-section 

about the X-axis so that EIxxis the flexural rigidity of the beam in the YZ plane. Equations (1-5) can be 

combined into one differential equation and can be expressed in 

Non-dimensional form as follows: 

𝐷4𝑕  𝜍 −  0.5𝜈2 1 + 2𝜌 − 2𝜌𝜍 − 𝜍2 + 𝜂 + 𝐷2𝑕  𝜍 + 𝜈2 𝜌 + 𝜍 𝐷𝑕  𝜍 − 𝜇2𝑕  𝜍 = 0.. (6) 

 

Where 

𝐷 = 𝑑/𝑑𝜍𝜍 = 𝑦/𝐿𝑕  𝜍 = 𝑧/𝐿𝜌 = 𝑟𝑖/𝐿𝜇
2 =

𝑚𝜔2𝐿4

𝐸𝐼𝑥𝑥
  , 𝑣2 =

𝑚Ω2𝐿4

𝐸𝐼𝑥𝑥
, 𝜂 =

𝐹𝐿2

𝐸𝐼𝑥𝑥
 

Thus, the dimensionless expressions for tension, bending moment and shear force are defined as 

𝑡 𝜍 =  𝑇 𝑦 𝐿2𝐸𝐼 = 0.5𝜈2 1 + 2𝜌 − 2𝜌𝜍 − 𝜍2 + 𝜂 

𝑀  𝜍 = 𝑀 𝑦 𝐿/𝐸𝐼 

𝑆  𝜍 = 𝑆 𝑦 𝐿2/𝐸𝐼 
 

Using the Frobenius method, the solution is sought in the form of the following series 

 f ς, p =  ( an+1(p)ςp+n 
∞

n=0
………………………………………………………… (7) 

 

Where an+1 are the coefficients and p is an undetermined exponent. 

By substituting (7) in (6) the following indicial equation obtains 

𝑝 𝑝 − 1  𝑝 − 2  𝑝 − 3 = 0……………………………………………………………. (8) 

 

𝑎𝑛+5 𝑝 =
 0.5𝜈2 1 + 2𝜌 + 𝜂 

 𝑝 + 𝑛 + 4  𝑝 + 𝑛 + 3 
𝑎𝑛+3 𝑝 −

𝜈2𝜌 𝑝 + 𝑛 + 1 

 𝑝 + 𝑛 + 4  𝑝 + 𝑛 + 3  𝑝 + 𝑛 + 2 
𝑎𝑛+1 𝑝 

−
0.5𝜈2 𝑝 + 𝑛  𝑝 + 𝑛 + 1 − 𝜇2

 𝑝 + 𝑛 + 4  𝑝 + 𝑛 + 3  𝑝 + 𝑛 + 2  𝑝 + 𝑛 + 1 
𝑎𝑛+1(𝑝) 

𝑎1 𝑝 = 1 

𝑎2(𝑝) = 0𝑎3(𝑝)=
 0.5𝜈2 1+2𝜌 +𝜂 

 𝑝+2  𝑝+1 
𝑎4 𝑝 = −

𝜈2𝜌𝑝

(𝑝+3) 𝑝+2  𝑝+1 
 

𝑓 𝜍, 0 = 1 +  0.5𝜈2 1 + 2𝜌 + 𝜂 𝜍2 2 +  ( 𝑎𝑛+5(0)𝜍𝑛+4 
∞

𝑛=0
……….……………. (9) 

 

𝑓 𝜍, 1 = 𝜍 +  0.5𝜈2 1 + 2𝜌 + 𝜂 𝜍3 6 − 𝜈2𝜌 𝜍4 24 +  ( 𝑎𝑛+5(1)𝜍𝑛+5 
∞

𝑛=0
……… (10) 

 

𝑓 𝜍, 2 = 𝜍2 +  0.5𝜈2 1 + 2𝜌 + 𝜂 𝜍4 12 − 𝜈2𝜌 𝜍5 30 +   𝑎𝑛+5(2)𝜍𝑛+6 
∞

𝑛=0
……. (11) 

 

𝑓 𝜍, 3 = 𝜍3 +  0.5𝜈2 1 + 2𝜌 + 𝜂 𝜍5/20 − 𝜈2𝜌 𝜍6 40 +   𝑎𝑛+5(3)𝜍𝑛+7 
∞

𝑛=0
…...... (12) 

The general solution of the deferential equation (6) can be written as 

𝑔  𝜍 = 𝑒1𝑓 𝜍, 0 + 𝑒2𝑓 𝜍, 1 + 𝑒3𝑓 𝜍, 2 + 𝑒4𝑓 𝜍, 3 ………………………….. (13) 

 

𝑦  𝜍 = 𝑕 ′ = 𝑒1𝑓′ 𝜍, 0 + 𝑒2𝑓′ 𝜍, 1 + 𝑒3𝑓′ 𝜍, 2 + 𝑒4𝑓′ 𝜍, 3 …………………………... (14) 
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𝑀  𝜍 = 𝑕 ′′ = 𝑒1𝑓′′ 𝜍, 0 + 𝑒2𝑓′′ 𝜍, 1 + 𝑒3𝑓′′ 𝜍, 2 + 𝑒4𝑓′′ 𝜍, 3 ……………………..... (15) 

 

𝑆  𝜍 = −𝑕 ′′′ 𝜍 + 𝑡 𝜍 𝑕 ′ 𝜍 = − 𝑒1𝑓
′′′ 𝜍,0 + 𝑒2𝑓

′′′ 𝜍,1 + 𝑒3𝑓
′′′ 𝜍,2 + 𝑒4𝑓

′′′ 𝜍,3  + 𝑡(𝜍){ 𝑒1𝑓
′ 𝜍,0 + 𝑒2𝑓

′ 𝜍,1 +

𝑒3𝑓
′ 𝜍,2 + 𝑒4𝑓

′ 𝜍,3 }..…………………………………………………………………..… (16) 

 

The dynamic stiffness matrix which relates the amplitudes of harmonically varying forces to the corresponding 

harmonically varying displacement amplitudes at the ends of the element can now be derived by imposing the 

end conditions for displacements and forces. The end conditions for displacements and forces of the element 

(see Figure 5) are, respectively, 

 
Figure 5 End conditions for displacements and forces of the beam element. 

 

Displacements: 

At end 1(𝜍 = 0): 𝑕 = 𝑈1
   ,𝑦 = 𝑌1

  

At end 2(𝜍 = 1): 𝑕 = 𝑈2
   ,𝑦 = 𝑌2

          ...…………………….. (17) 

 

 

Forces: 

At end 1(𝜍 = 0): 𝑆 = −𝑆1
 ,𝑀 = −𝑀1

     

At end 2(𝜍 = 1): 𝑆 = 𝑆2
 , 𝑀 = 𝑀2

     ……………………….. (18) 

 

 

 

 

𝑓 0,0 = 0 , 𝑓 0,1 = 1, 𝑓 0,2 = 0, 𝑓 0,3 = 0 

𝑓 ′(0,0) = 0 , 𝑓′ 0,1 = 1, 𝑓′ 0,2 = 0, 𝑓′ 0,3 = 0 

 

By substituting 17&18 in equations in 13, 14, 15&16  

 
 
 
 
 
𝑈1
   

𝑌1
 

𝑈2
   

𝑌2
  

 
 
 
 

 =   

1 0 0 0
0 1 0 0
𝑐31

𝑐41

𝑐32

𝑐42

𝑐33 𝑐34

𝑐43 𝑐44

  

𝑒1

𝑒2
𝑒3

𝑒4

          =>𝑈 = 𝐶𝑒…………………. (19) 

 

𝑐31 = 𝑓 1,0 , 𝑐32 = 𝑓 1,1 , 𝑐33 = 𝑓 1,2 , 𝑐34 = 𝑓 1,3 , 
𝑐41 = 𝑓′ 1,0 , 𝑐42 = 𝑓′ 1,1 , 𝑐43 = 𝑓′ 1,2 , 𝑐44 = 𝑓′ 1,3 , 

𝑓 ′′′ 0,0 = 0, 𝑓 ′′′ 0,1 =  0.5𝜈2 1 + 2𝜌 + 𝜂 , 𝑓 ′′′ 0,2 = 0, 𝑓 ′′′ 0,3 = 6, 𝑡 0 = 0.5𝜈2 1 + 2𝜌 + 𝜂𝑓 ′′ 0,1 

= 0, 𝑓 ′′ 0,2 = 2, 𝑓 ′′ 0,3 = 0, 𝑡 0 = 𝜂 

 

 
 
 
 
 
𝑆1
 

𝑀1
    

𝑆2
 

𝑀2
     

 
 
 
 

=  

0 0 0   6
𝑑21 0 −2 0
𝑑31

𝑑41

𝑑32

𝑑42

𝑑33 𝑑34

𝑑43 𝑑44

  

𝑒1

𝑒2
𝑒3

𝑒 3

         =>𝐹 = 𝐷𝑒………………… (20) 

𝑑21 = − 0.5𝜈2 1 + 2𝜌 + 𝜂 , 𝑑31 = 𝜂𝑓 ′ 1,0 − 𝑓 ′′′ 1,0 , 𝑑32 = 𝜂𝑓 ′ 1,1 − 𝑓 ′′′ 1,1 , 𝑑33

= 𝜂𝑓 ′ 1,2 − 𝑓 ′′′ 1,2 , 𝑑34 = 𝜂𝑓 ′ 1,3 − 𝑓 ′′′ 1,3  

𝑑41 = 𝑓 ′′ 1,0 , 𝑑42 = 𝑓 ′′ 1,1 , 𝑑43 = 𝑓 ′′ 1,2 , 𝑑44 = 𝑓 ′′ 1,3  
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The dynamic stiffness matrix 𝐾 can be obtained by eliminating the constant vector 𝑒 from equations (19) and 

(20) to give the force- displacement relationship as follows: 

 

𝐹 = 𝐾 𝑈 ……………………………………… (21) 

 

 
 
 
 
 
𝑆1
 

𝑀1
    

𝑆2
 

𝑀2
     

 
 
 
 

=  

 
 
 
 
 𝑘
 

11

𝑘 21

𝑘 31

𝑘 41

𝑘 12 𝑘 13 𝑘 14

𝑘 22 𝑘 23 𝑘 24

𝑘 32 𝑘 33 𝑘 34

𝑘 42 𝑘 43 𝑘 44 
 
 
 
 

 
 
 
 
 
𝑈1
   

𝑌1
 

𝑈2
   

𝑌2
  
 
 
 
 

 

𝐾 = 𝐷𝐵−1 

𝐾 11=6 𝑐31𝑐44 − 𝑐33𝑐42 /𝛥,𝐾 12=6 𝑐32𝑐43 − 𝑐33𝑐42 /𝛥,𝐾 13= -6 𝑐33 /𝛥,𝐾 14= 6 𝑐33 /𝛥, 

𝐾 22=6 𝑐32𝑐44 − 𝑐34𝑐42 /𝛥,𝐾 23= -2 𝑐44 /𝛥,𝐾 24= 2 𝑐34 /Δ,𝐾 33= 𝑐44𝑑33 − 𝑐43𝑑34 /𝛥, 

𝐾 34= 𝑐33𝑑34 − 𝑐34𝑑33 /𝛥,𝐾 44= 𝑐33𝑑44 − 𝑐34𝑑43 /𝛥 and 𝛥 =  𝑐33𝑐44 − 𝑐34𝑐43  

 

The elements of the dimensional dynamic stiffness matrix K can now be recovered from the elements of 𝐾  so 

that 

 

S1

M1

S2

M2

 =  

 
 
 
 
𝑘11

𝑘21

𝑘31

𝑘41

𝑘12 𝑘13 𝑘14

𝑘22 𝑘23 𝑘24

𝑘32 𝑘33 𝑘34

𝑘42 𝑘43 𝑘44 
 
 
 
 

𝑈1

𝑌1

𝑈2

𝑌2

  

𝑘11 = 𝑋3𝑘 11 , 𝑘12 = 𝑋2𝑘 12 ,𝑘13 = 𝑋3𝑘 13 ,𝑘14 = 𝑋2𝑘 14 ,𝑘22 = 𝑋1𝑘 22 ,𝑘23 = 𝑋2𝑘 23 ,𝑘24 = 𝑋1𝑘 24 ,𝑘34 =
𝑋2𝑘 34 ,𝑘33 = 𝑋3𝑘 33 ,𝑘33 = 𝑋3𝑘 33 ,𝑘44 = 𝑋1𝑘 44 ……………………………………………. (22)           

 

where 

𝑋1=
𝐸∗𝐼𝑥𝑥

𝐿
𝑋2=

𝐸∗𝐼𝑥𝑥

𝐿2 𝑋3=
𝐸∗𝐼𝑥𝑥

𝐿3 ……………………………….……… (23) 

 

In above equations value of E is taken as the Effective flexural modulus (Ee) value which was calculated from 

equation (f) for the concerned composite material. 

 

III. Numerical Results 
To validate the present work it is compared with previous literature. The natural frequencies are 

obtained by taking the dimensions and the material properties for a uniform fixed free beam (cantilever beam) 

studied in [1] are: Material of beam = Al, Total length (L) = 0.5 m, width (B) = 0.045 m, height (H) = 0.005 m, 

Young’s Modulus (E) = 70 x 10
9
, mass density = 2700kg/ m

3
. Table 1 shows the comparison of frequencies and 

it shows a good agreement with numerical results presented by Chopade [1]. 

 

Table 1 comparison of frequencies to reference paper with present work results 
Mode Reference [1]  

(Hz) 

Present work 

(Hz) 

1 16.45 16.45 

2 103.06 103.09 

3 288.52 288.68 

 

Problem Definition: 

To determine the natural frequency of rotating composite beam the following dimensions are assumed. 

Total length (L) = 1000 mm, width (B) = 20 mm, height (H) = 20 mm, A Composite beam with four layers and 

the stacking Sequence is [45/-45/-45/45] is considered. The table 2 represents the material properties. 

 

Table 2: Material Properties of Composite Materials 

Properties 
Boron Epoxy 

(B5.6/5505) 

Glass Epoxy        

(E-glass) 

Graphite Epoxy 

(Gy-70/934) 

Young’s modulus in longitudinal direction E1 (GPa) 201 41 294 

Young’s modulus in transverse direction E2 (GPa) 21.7 10.4 6.4 

Density ρ (Kg/m3) 2030 1970 1590 

Modulus of rigidity G12(GPa) 5.4 4.3 4.9 

Poisson’s ratio 0.17 0.28 0.23 
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IV. Results and Discussion 

The present work deals with the effect of Rotating Speed, hub radius ratio and number of layers of the 

composite on Natural frequency of the rotating Composite beam. The effect of rotating speed on natural 

frequency of the rotating composite beam of various material are obtained and first three natural frequencies are 

plotted in Fig 6, Fig 7 and Fig 8. From these figures it is concluded that the increase in speed leads to increase 

in frequency. This is due to increase of stiffness (centrifugal force) with rotating speed. 

 

 

Fig. 6 Variation of first natural Frequency with respect to speed    

Fig. 7 Variation of Second natural Frequency with respect to speed   

Fig. 8 Variation of Third natural Frequency with respect to speed 

 

To study the effect of hub radius on natural frequency of the rotating composite beam of the three composites the 

natural frequencies are obtained by taking hub radius from 0 to 200 with step increament of 50 at speeds 5, 50 and 

100 Rps. First three natural frequencies obtained at 5 Rps speed are plotted in Fig 9, Fig 10 and Fig 11. The First 

three natural frequencies of composite beam at moderate speed (50 Rps) are plotted in Fig 12, Fig 13 and Fig 14. 

The First three natural frequencies of composite beam at higher speed (100 Rps) are obtained and plotted in Fig 

15, Fig 16 and Fig 17. From these figures it is concluded that the hub radius affects the frequency in medium and 

higher speeds. This is due to increase centrifugal force is very less in lower speeds irrespective of hub radius ratio. 

At higher speeds increase in hub radius ratio leads to increase in centrifugal force causes increment in frequency. 

 

Fig 9 Variation of first natural frequency with respect to hub radius ratio at 5 Rps 

Fig 10 Variation of Second natural frequency with respect to hub radius ratio at 5 Rps 

Fig 11 Variation of Third natural frequency with respect to hub radius ratio at 5 Rps 

 

Fig 12 Variation of first natural frequency with respect to hub radius ratio at 50 Rps. 

Fig 13 Variation of Second natural frequency with Respect to hub radius at 50Rps 

Fig 14 Variation of Third natural frequency with respect to hub radius ratio at 50 Rps 
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Fig 15 Variation of first natural frequency with respect to hub radius ratio at 50 Rps 

Fig16 Variation of Secondnatural frequency with respect to hub radius ratio at 50 Rps 

Fig 17 Variation of Third natural frequency with respect to hub radius ratio at 50 Rps 

 

To determine the effect of number of layers on natural frequency of the rotating composite beam the frequencies 

are obtained for 4 layers, 8 layers and 12 layers with same total thickness for various materials with respect to 

speed. Fig. 18, Fig 19 and Fig 20 shows the variation of first three natural frequency of Glass Epoxy Beam with 

respect to speed for different number of layers. Fig. 21, Fig 22 and Fig 23 shows the variation of first three 

natural frequency of Boron Epoxy Beam with respect to speed for different number layers. Fig. 24, Fig 25 and 

Fig 26 shows the variation of first three natural frequency of Graphite Epoxy Beam with respect to speed for 

different number of layers. From these figures it is observed that frequency does not affect with respect to 

increase in layers. This is due to total thickness is constant for all cases. Considering various composite 

materials graphite epoxy exhibits the higher natural frequency compared with other materials due to high 

stiffness. 

 

Fig 18 Variation of First natural frequency with respect to speed at different layers of E Glass Epoxy 

Beam 

Fig 19 Variation of Second natural frequency with respect to speed at different layers of E Glass Epoxy 

Beam 

Fig 20 Variation of Third natural frequency with respect to speed at different layers of E Glass Epoxy 

Beam 

 

Fig 21 Variation of First natural frequency with respect to speed at different layers of Boron Epoxy Beam 

Fig 22 Variation of Second natural frequency with respect to speed at different layers of Boron Epoxy 

Beam 

Fig 23 Variationof Third natural frequency with respect to speed at different layers of Boron Epoxy 

Beam 
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Fig 24 Variation of First natural frequency with respect to speed at different layers of Graphite Epoxy 

Beam 

Fig 25 Variation of Second natural frequency with respect to speed at different layers of Graphite Epoxy 

Beam 

Fig 26 Variation of Third natural frequency with respect to speed at different layers of Graphite Epoxy 

Beam 

 

V. Conclusion 
In this study, free vibration analysis of rotating composite beam is performed. The effective young’s 

modulus for composite beam is obtained and natural frequencies are presented using dynamic stiffness matrix 

method. The present model is validated with available literature and results shows good agreement. In the 

present work the application of the dynamic stiffness matrix for the rotating composite beam and focussed on 

the three composite materials. The effect of rotating speed, hub radius ratio and number of layers on natural 

frequencies are investigated. Results show that the natural frequencies are increased with increase of rotating 

speed due to increased centrifugal force. The hub radius affects the natural frequencies only at higher speeds. It 

is observed that there is no influence of increasing number of layers on natural frequency due to constant total 

thickness. Compared with different composites, graphite epoxy exhibit higher natural frequencies due to high 

stiffness. 
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