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Abstract: This paper presents a comprehensive investigation on vibrations of cracked beam structures and 

methodology for crack identification. Here the crack is modelled as transverse crack using mass-less rotational 

spring and it is assembled with the other discretized elements using FEM techniques. Using this model, 

vibration analysis of simply supported, fixed-fixed, free-free and cantilever solid rectangular beams, withcrack 

is carried out. The fundamental vibration modes of damaged beam are analyzed using Hilbert-Huang transform 

(HHT). The location of crack is determined by the sudden changes in the spatial variation of the transformed 

response. The results in the simulation mode and experiments show that HHT appears to be a more effective 

tool for the analysis. The proposed technique is validated both analytically and experimentally thus the results 

shown have a good agreement with the established model. 

Keywords: Crack Detection, Beam, FEM, Hilbert- Huang Transform (HHT), structural health monitoring 

(SHM). 

 

I. Introduction 
Damage in engineering systems is defined as intentional or unintentional changes to the material and 

geometric properties of these systems, including changes to the boundary conditions and system connectivity, 

which adversely affect the current and future performance of that system.Engineering structures deteriorate due 

to wear. The occurrence of damage in a structure produces changes in its global dynamic characteristics such as 

its natural frequencies, mode shapes, modal damping, modal participation factors, impulse response and 

frequency response functions thereby weakening the structural strength. 

During the last decades vibration based damage detection methods have attracted utmost attention due 

to their simplicity for implementation. Structural damage identification using dynamic parameters of the 

structure has become an important research area.M. Bezhad et al. [1] in their paper presented a simple method 
for crack detection of multiple edge cracks in Euler – Bernouli beams having two different types of cracks based 

on energy equations. Crack were modelled as a massless rotational springs using Linear Elastic Fracture 

Mechanics. X. B. Lu et al. [2] introduced a two-step approach based on mode shape curvature and response 

sensitivity analysis for crack identification in beam structure. The difference between the mode shape curvature 

of cracked beam before and after crack determines crack location. A. P. Adewuyi et al. [3] analyzed 

performance evaluation for practical civil structural health monitoring by using displacement modes from 

accelerometers and long gauge distributed strain measurements through computer simulation and experimental 

investigation. P. F. Rizo et al. [4] described about the measurement of flexural vibrations of a cantilever beam 

with rectangular cross section having a transverse surface crack extending uniformly along the width of the 

beam to relate the measured vibration modes to the crack location and depth. M. Cao et al. [5] studied 

fundamental mode shape and static deflection for damage identification in cantilever beams. The results 
proposed provides a theoretical basis for optimal use for damage identification in cantilever beams.  

The dynamic responses of the system are used for crack prediction. D. Guo et al. [6] discussed startup 

transient response of a rotor with a propagating transverse crack using Hilbert-Huang transform. The rotor with 

a growing crack was modelled by finite element method. The rotating frequency vibration components were 

studied when they reached peak and decayed during startup process. The demonstration of HHT in unsteady 

transient case gave an idea of HHT and its limits. T. R. Babu et al. [7] analyzed Hilbert-Huang transform being 

applied to transient response of a cracked rotor. They found HHT comparatively better than continuous wavelet 

transform and fast Fourier transform. B. Li et al. [8] developed the novel crack identification method, HHT and 

its algorithm. The validity of mentioned method was confirmed with an experiment. The conclusion was quite 

helpful in carrying this research work. N. E. Huang, S. S. P. Shen [9] in their book explained the evolution of 

HHT and the algorithm for the transform. The development of HHT and procedure of applying the transform to 

any data was found by the author himself, N. E. Huang. 
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In the current research, a number of research papers published till now have been studied, reviewed, 

and analyzed. It is felt that, the results presented by the researchers have not been utilized so far in a systematic 

way for engineering applications and much work is not done so far using Hilbert-Huang transform. A systematic 
attempt has been made in the present study to investigate the dynamic behavior of cracked beam structure using 

finite element analysis and experimental investigation for damage identification of cracked structure.  

 

II. Crack - Model and Theory 
2.1 Finite element model for single-cracked beam and damage detection algorithm 

Beam is one of the most commonly used structural elements. It is a major part of many types of 

construction projects, be they residential, commercial or public buildings, bridges, and factories. It has also been 

observed that the presence of cracks in machine elements like beams also lead to operational problem as well as 

premature failure. A beam is a means of transferring energy; therefore any type of failure in one, such as fatigue 
cracks, causes serious damage to the system. The damage may lead to plant shutdown and great financial loss. 

Existence of structural damage in structural elements like beams and shafts leads to the modification of the 

vibration modes. Thus, an analysis of periodical frequency measurements can be used to monitor the structural 

condition. Since frequency measurements can be acquired at least cost and are reliable, the approach could 

provide an inexpensive structural assessment technique.  

Considering the crack as a significant form of damage, its modeling is an important step in studying the 

behavior of damaged structure. Knowing the effect of crack on stiffness, a beam or shaft can be modeled using 

either Euler-Bernoulli or Timoshenko beam theories. The beam boundary conditions are used along with the 

crack compatibility relations to derive the characteristic equation. Using finite element technique beam was 

modelled in MATLAB®. Following parameters were used density, Young’s modulus, length of beam, area and 

moment of inertia to compute element stiffness matrix and element mass matrix.  
[k]e = (E*I)/le3[12 6le -12 6le; 

6le 4le2 -6le 2le2;  

-12 -6le 12 -6le;  

6le 2le2 -6le 4le2]; 

[m]e = (ρ *A*le)/420[156 22le 54 -13le; 

22le 4le2 13le -3le2; 

54 13le 156 -22le; 

-13le -3le2 -22le  4le2]; 

where, ‘k’ is element stiffness matrix, ‘E’ is Young’s modulus, ‘I’ is moment of inertia, ‘le’ is element length, 

‘A’ is area of cross section, ‘ρ’ represents density of material and ‘e’ represents the element number. 

Hereafter, the crack is taken into consideration while assembling the global stiffness matrix. A massless 

spring was designed as an equivalent of crack [10]. The stiffness matrix of spring is considered according to one 
rule, if the crack is considered at the end of one element or taken at the starting of successive element, based 

upon the occurrence appropriate variables are assigned ‘ejA’ or ‘ekA’. ‘ejA’ is presumed if the crack is 

considered at the end of the beam and ‘ekA’ is presumed if the crack is modelled at the beginning of succeeding 

beam, in case of single crack, as only one crack exists, if either of the variable is assigned some value other is 

taken as zero. Next, ‘factrA = 2*E*I/(le^3*(1 + 4*ejA + 4*ekA + 12*ejA*ekA))’ is computed, it is considered 

separately in order to avoid confusion in matrix assembling. Other variables are calculated based on the value of 

‘ejA’ and ‘ekA’, those are mentioned below: 

ej1=1+ejA;     ej2=1+2*ejA;      ej3=1+3*ejA;  

ek1=1+ekA;   ek2=1+2*ekA;    ek3=1+3*ekA; 

ejkA=1+ejA+ekA;  

k=factrA      [  6*ejkA  3*le*ek2 -6*ejkA  3*le*ej2 
3*le*ek2 2*le^2*ek3 -3*le*ek2 le^2 

-6*ejkA  -3*le*ek2 6*ejkA  -3*le*ej2 

3*le*ej2  le^2  -3*le*ej2 2*le^2*ej3 ];  
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Figure 1: model for single crack 

 

(where, ‘W’ is the width of the beam, ‘l1’ is the distance of crack from one end and ‘k1’ is the stiffness of the 

spring assumed) 

The element stiffness matrix is later assembled into global stiffness matrix according to the order of 

elements discretized. In broad-spectrum the value of damping that is considered for general purpose 

computation was considered in this case as well, damping coefficient was assumed as 0.01 N-S/m. Then the 

final equation is assembled as 𝐦𝐱 + 𝐜𝐱 + 𝐤𝐱 = 𝐅𝐬𝐢𝐧(𝛚𝐭) 

The equation thus obtained is of higher order and becomes a herculean task to solve a modestly large 

matrix.  Thus, according to the type of support conditions applied to the beam, equivalent boundary conditions 

are imposed. For diverse supporting condition different type of boundary conditions are applicable.  

 
Here, ‘V’ represents the vertical displacement and ‘θ’ represents rotation, both are combined and represented as 

nodal displacement vector.  Thus, in case of boundary condition either of the term is chosen accordingly to solve 

the equation. The type of constraints applied are as follows: 
 Free – free: no constraint at any node. The beam can rotate and displace freely. 

 Fixed – free: both displacement and rotation are zero at fixed node. V1=0 and θ1=0. 

 Fixed –fixed: both displacement and rotation at first and last node are zero.V1=0 and θ1=0 and V2=0 and 

θ2=0 

 Simple supported: Displacement at initial node is zero and rotation at last node is zero. V1=0 and θ2=0 

 

From the above formulation, the matrix size gets bigger and bigger once the user chooses high number 

of elements, thereby, integration becomes time consuming when the bandwidth of the matrices becomes large. 

To improve the computational efficiency, the governing differential equation is transformed into a convenient 

form by mode superposition method, thereby reducing the bandwidth of the matrix. The differential equations 

gets decoupled from each other and each of the differential equation is of the second order (linear) and hence it 
is easy to get their solutions in the closed form. 

From the governing differential equation given by, 
 M 𝐱 +  𝐂 𝐱 + [𝐊]𝐱 = 𝐅𝐬𝐢𝐧(𝛚𝐭)      ------ 1 

{where [M] is mass matrix, [C] is damping matrix and [K] is global stiffness matrix of size n x n.}  

if [u] = [X][p]            -----

- 2  

{where [X] is matrix of size n x m of the first m eigen vector (m<<n) and [p] is a generalized displacement 

vector of size m x 1.} 
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then, substituting equation 2 in equation 1 and pre-multiplying with [X]T, we obtain,   

   p 1 + 2ξ1ω1p1  +  ω1
2p1 = f1

  (t)      
 ------ 3  

p 2 +  2ξ2ω2p2 +  ω2
2p2 = f2

  (t)     ------ 4 

  p 3 +  2ξ3ω3p3 +  ω3
2p3 = f3

  (t)     ------ 5 

   ….          …..           …..     ….. 

p m +  2ξmωmpm + ωm
2 pm = fm

  (t)    ------ 6 

 {as [X]T[M][X] is  a diagonal matrix of size (m x m) with unity in the principal diagonal, [X]T[C][X] is 

a diagonal matrix of size m x m whose diagonal elements are 2ξiωipi (i = 1, 2, 3.., m), [X]T[K][X] is a diagonal 

matrix with ω1
2 ,ω2

2 … , ωn
2 (square of natural frequency) in the diagonal and lastly, [X]T[F (t)] of size m x 1 has 

its elements as f1
  t , f2

  t … , fm
  (t) 

 When the system is excited, it responds in one or more of its natural modes of vibration, but, as the 

fundamental modes predominates, other higher order modes are neglected. By choosing ‘m’ modes only, we are 
restricting the contribution to first ‘m’ modes assuming that the rest do not contribute to the response. Thus 

impact of only first, second and third mode is only considered here. 

 

2.2 Hilbert – Huang Transform 

Hilbert-Huang Transform (HHT) is an algorithm in which the fundamental part is the empirical mode 

decomposition (EMD) method. Using the EMD method, any complicated data set can be decomposed into a 

finite and often small number of components, which is a collection of intrinsic mode functions (IMF).  

An IMF represents a generally simple oscillatory mode as a counterpart to the simple harmonic 

function. By definition, an IMF is any function with the same number of extreme points and zero crossings or at 

most differ by one in whole data set, and with its envelopes being symmetric with respect to zero or mean value 

of the envelope defined by local maxima and the envelope defined by the local minima is zero at every point, 
IMF is complete, adaptive and orthogonal representation. 

This decomposition method operating in the time domain is adaptive and highly efficient. Since the 

decomposition is based on the local characteristic time scale of the data, it can be applied to nonlinear and non-

stationary processes.  

The EMD algorithm can be summarized as follows: 

1. Initialize r0 = x(t) and i = 1; 

2. Extract the ith IMF 

a. initialize hi(k-1) = ri , k = 1; 

b. extract the local maxima and local minima of hi(k-1); 

c. interpolate the local maxima and minima by cubic spline to form upper and lower envelopes of hi(k-1); 

d. calculate mean mi(k-1) of the upper and lower envelopes of hi(k-1); 
e. let hik= hi(k-1) - mi(k-1); 

f. if hik is IMF then set IMFi = hik, else go to step ‘b’ with k = k + 1; 

3. Define ri+1 = ri – IMFi; 

4. If ri+1 still has two extreme points then go to step ‘2’ else decomposition process is completed with r i+1 as 

residue of the signal. 

After obtaining IMF, Hilbert transform is applied to each IMF data, Hilbert transform is defined as the 

convolution of a signal x(t) with 1/t and can emphasize the local properties of x(t), as follows:  

y(t) = 
P

Π
 

x(τ)

t−τ

∞

−∞
 {where ‘P’ is the Cauchy principal value} 

Coupling x(t) with y(t), we get analytic signal z(t) as: 

Z(t) = x(t) + iy(t) = a(t)eiφ(t) {where, a(t) = [x(t) + y(t)]1/2 and φ(t) = arc(tan(y(t)/x(t))) 
a(t) is the instantaneous amplitude of x(t) and φ(t) is the instantaneous phase of x(t). 

2.3. Assumptions and limitations of present study 

Certain assumptions are made in the present analysis while treating joint dynamics. They are: 

1) Each layer of the beam undergoes the same transverse deflection. 

2) There is no displacement and rotation of the beam at the clamped end. 

3) The crack is non propagating crack. 

 

III. Numerical results 
Results involve calculation of natural frequencies and rotational mode shapes for cantilever beam, 

simply supported beam, free – free beam and fixed – fixed beam. The first, second and third natural frequencies 

corresponding to various crack locations are calculated. The fundamental normalized rotational mode shapes for 

transverse vibration of cracked beams are plotted and compared. All the HHT plots show the results for 

discretized elements. When the element length (le) is multiplied with the total number of elements (N), we 
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obtain the total length (L) of the beam or alternatively, if the cracked element number is found out, then by 

multiplying the element length (le) we obtain the distance from either end. 

3.1.1 Free - Free Beam (single crack)  

 

 

 

Input conditions:   Aluminum beam E= 6.9e10 Pa, I= 160e-12 m4, L = 0.6m, A= 12e-5m2, rho=2600 Kg/m3, le = 

0.015m, N = 40, Crack location is at 18th element, ω1=170.8 rad/sec,          ω2= 480.9rad/sec, 

Figure 3: first mode shape of single cracked    Figure 4: second mode shape of single 

crackedfree - freebeam       free – free beam 

Figure 5: third mode shape of single cracked free - free       Figure 6: HHT plot of first mode of single cracked 
free –beam        free beam 

 

This proves the location of crack at 18th element in HHT plot or alternatively, from the element length it can be 

concluded that the location is 0.27m from left end.  

 

3.1.2 Cantilever Beam (single crack) 

Input conditions   Aluminum beam E= 6.9e10 Pa, I= 312.5e-12 m4, L = 0.4m, A= 15e-5m2, rho=2600 Kg/m3, le 

= 0.01m, N = 40,ω1=126.6 rad/sec, ω2= 1019.9rad/sec, ω3=2523.4 rad/sec, crack is present at element no 10, 

Figure 7: first mode shape of a single cracked  Figure 8: second mode shape of a single cracked 

cantilever beam      cantilever beam 
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Figure 9: third mode shape of a single cracked cantilever        Figure 10: HHT plot of first mode of single 
cracked beam       cantilever beam 

The presence of crack is clearly visible at element 10 in HHT plot. The corresponding location of crack is 0.1m 

from left side. 

 

3.1.3 Fixed - Fixed Beam (single crack) 

Input conditions:   Aluminum beam E= 6.9e10 Pa, I= 312.5e-12 m4, L = 0.4m, A= 15e-5m2, rho=2600 Kg/m3, le 

= 0.01m, N = 40, ω1=1025.733 rad/sec, ω2= 2642.52rad/sec, ω3=5355.328 rad/sec, crack is present at 15th 

element. 

Figure 11: first mode shape of fixed – fixed                    Figure 12: second mode shape of fixed – fixed single 

cracked beam      single cracked beam 

Figure 13: third mode shape of fixed – fixed single cracked     Figure 14: HHT of first mode of single cracked 

fixed beam        – fixed beam 

Hence, the location of crack is proved at 15th element, the location of crack is 0.15m from left end.  

 

3.1.4 Simply supported (single crack beam) 

Input conditions   Aluminum beam E= 6.9e10 Pa, I= 160e-12 m4, L = 0.6m, A= 12e-5m2, rho=2600 Kg/m3, le = 

0.01m, N = 40, ω1 = 72.2 rad/sec, ω2 = 444.3 rad/sec, ω3 = 1274.1 rad/sec. the crack is present at 20th element. 

Figure 15: first mode shape of single cracked             Figure 16: second mode shape of single cracked 

simply simplysupported beam       supported beam 
Figure 17: third mode shape of simply supported single   Figure 18: HHT plot of first mode of simply 

supported beam       supported single cracked beam 
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Thus, the crack can be comfortably located at 20th element. The location of crack is 0.2m from the left end. 

 

3.2 Experimental Results 
The pictorial view of experimental setup is shown in pictures. A 

free- free beam is suspended with the aid of a support. 

Accelerometers are firmly placed on the beam which in turn are 

connected to SCADA, this leads to computer that uses LMS test 

lab software for vibration analysis.  

The piezoelectric transducers have a micro integrated circuit 

present which converts the measured force into voltage. This 

voltage signal when received by SCADA undergoes three stage 

process, firstly it is amplified, then later the analog signal is 

converted into digital signal, and lastly, an on-board computer 

in the SCADA applies fast Fourier transform to the digital 
signal and this input is given to a computer connected to the 

SCADA. The computer coupled to SCADA uses LMS test lab 

software to view the fast Fourier transform and extract vibration 

modes from it. The beam is excited with the help of a vibration 

exciter, an impact hammer. The natural frequencies are 

measured from the function generator at the point of resonance 

under the excitation. The specimen is allowed vibrate under 1st 

and 2nd mode of vibration. The corresponding amplitudes from 

the experimental results are recorded in computer along the 

length of the beam. Experimental results for natural frequency, 

mode shape and frequency response functions (FRF) of transverse vibration at various locations along the length 

of the beam are recorded. 
3.2.1 Free – Free Beam (single crack)  

Input conditions: Aluminum beam E= 6.9e10 Pa, I= 160e-12 m4, L = 0.6m, A= 12e-5m2, rho=2600 

Kg/m3,ω1=170.177 rad/sec, ω2= 471.258rad/sec, the crack is present at 4th node 

Figure 20: first mode shape of a single crack  Figure 21: second mode shape of a single crack free - free 

beamfor experim ental case    free - free beam for experimental case 

Figure 22: HHT plot of first mode of a singlecracked free- free beam for experimental case 

Thus, the crack can be comfortably located at 4th node from the HHT plot. The crack is at 300mm from the left 

end. 

Figure 19: Experimental set up 
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For Free – Free Beam: 

    Theoretical case    Experimental case 
   1stnatfreq  2ndnatfreq      1stnatfreq  2ndnatfreq 

Un-cracked      175      484.061          174.249          484.535 

Single cracked      170.8   480.9          170.177         471.258     

First natural frequency of Free- Free beam in theoretical and experimental case matches accurately and second 

natural frequency is within 5% range of acceptance.  

 

 

IV. Concluding remarks 
Here two main contributions were made, firstly, to use a new approach for crack detection and next, to 

locate crack accurately and swiftly.  
It was observed that the natural frequency changes substantially due to the presence of cracks and 

increase or decrease in the value depends upon the location of crack. The position of the cracks can be predicted 

from the deviation of the fundamental modes between the cracked and un-cracked beam.  

The experimental analysis shows the effectiveness of the proposed methods towards the identification 

of location and extent of damage in vibrating structures, and it is observed that the changes in the vibration 

signatures become more prominent as the crack grows bigger.   

It was learnt while simulating the results that normalized slope mode shapes yield quick and accurate 

results when compared to the displacement mode shapes and the same has been implemented in this thesis. 
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