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Abstract: A stochastic identification technique is proposed to estimate both the order and parameters of multi-

inputs multi-outputs vibrating structural systems. A time-series model of an over-specified order is considered. 

The extraneous modes associated with the over-specified order model are distinguished from system modes by 

applying a backwards approach. The poles of the extraneous modes have been shown to be canceled by the 

extra zeroes. These poles are found to be generally inside the unit circle. Simulation examples have been 

presented to illustrate the effectiveness of the present proposed identification approach. Experimental runs on 

the vibration of a flexible truss, representing the tower of an overhead tower cranes, is carried out, the data of 

which was used to identify the system order and parameters. 

Keywords: Extraneous modes, flexible structures, multi-input multi-output (MIMO) systems, stochastic system 
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I. Introduction 
Many mechanical and structural systems respond dynamically to random environmental loads, such as 

wind, wave or earthquake forces. Examples include flexible buildings vibrating due to turbulent wind loading 

and offshore structures moving as a result of combining wave and wind loading. To assess the reliability of such 

structures it is important to predict their dynamic response, at the design stage. However, whilst mass and 

stiffness parameters in the governing equations of motion can usually be computed with some accuracy, 

damping parameters are normally not quantifiable by theoretical means. 

      Vibration analyses of gantry crane system under swinging load, was studied by [1].  
A mathematical model of the system dynamics are derived and numerically solved using finite element method. 

The study showed that the flexibility of the crane framework has a significant effect on the system dynamics. 

      Modeling and parameter identifications of crane vibrating systems are essentially needed in the design 

process of their controllers for both position and swing vibration. Since the identification process of crane 

systems is, troublesome and time consuming task, a practical and intelligent control method for automatic gantry 

crane is introduced by [2]. Their fuzzy logic control method is found to be practically applicable without the 

need to have the exact crane model. 

      To identify the parameters of these systems, their order, which roughly can be considered as the 

number of these parameters, must be known, and the system must be also represented in a canonical form, [3-

11]. Otherwise, biased estimates of the parameters could be obtained, [3, 4, 7, 8]. Recently, several time domain 

identification techniques have been proposed, [3-8]. Identification accuracy is improved by increasing the model 
order. However, these over-specified models contain extraneous modes beside system modes. To distinguish 

between system modes and these extraneous modes, several techniques have been proposed, for single-input 

single output cases, [4-6]. However, the extraneous modes cannot be distinguished from system modes, unless 

physical restrictions are applied to the model. 

      In this work, a canonical form, that presents the structural dynamics, has been proposed and its 

uniqueness has been proved. The backwards approach has been applied to identify the system parameters, using 

an over-specified model.  Regarding the order identification of MIMO systems, the pole-zero cancellation 

technique has been proposed. This proposed technique is capable of identifying both the order and parameters, 

using the minimum prediction error method. Several simulation examples are studied and presented here to 

illustrate the effectiveness of the proposed technique. Thereafter experimental runs were carried on a flexible 

truss system, the data of which has been used to identify the system parameters.  

      The present paper is organized as follows. In the following section, the problem formulation, together 
with backward methods and order estimation, has been introduced. The order identification technique, for the 

considered canonical form, is proposed afterward. The importance of over-specified model is illustrated through 

several simulation examples. In the next section, the experimental data from a flexible truss, presenting an 
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overhead tower, is used to illustrate the effectiveness of the proposed approach.  The conclusions are 

summarized in the last section 

 

II. Problem Formulation 
The basic single-input single-output (SISO) discrete time-series model of a dynamic system has the 

form: 

             n-ku b + ... +1-ku b + ku b + n-ky a -...  -2-ky a  -1-ky a = - ky n10n21              (1) 

     where y(k)  is the system response at the kth discrete time, u(k)  is the system input at the kth  discrete time 

and “n”  is the model order. The a’s and b’s are the model’s parameters. This model is widely used to describe 

the dynamics of any finite-order linear system, [7]. The above representation is known as the forward form. 

Regarding the structural systems, the system response may be displacement, velocity or acceleration at any 
measuring point on the structure. Using z-transform, (1) can be written as; 
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      The denominator polynomial is the model characteristic equation, and its roots can be used to estimate 

the natural frequencies and damping factors of the structure. The problem is to estimate the unknown model 

order according to which, the model parameters can be estimated. Unfortunately, it was noted that wrong 

estimates of the order leads to wrong estimates of the parameters, [3-8]. Several investigators have proposed 

efficient techniques to identify the order and parameters for SISO systems, [4-6].  

      In general, these techniques assume that in most cases the model is of a sufficient structure or it is an 

over-specified model. This simply means that the model order, is larger than or equal to the system order. In 

another work, [8], an author of this work proposed a solution for the order and parameter identification problem, 

using the forward method. However, this technique is efficient if the order of one of the elements in every row is 

known. Otherwise, it is difficult to distinguish between system and computational modes.  

     In this work, the backward model will be implemented to overcome the above difficulty.  (1) can be written 
in the backward time-series model as follows: 

             n-ku d + ... +1-ku d + ku d + n-ky g-  -2-ky g  -1-ky g = - ky n10n21               (3) 

     The characteristic equation of the model is the same as that of the forward one, but the number of equations 

which are used for identification are effectively increased, [9]. Regarding (MIMO) systems, the problem is quite 

difficult. Considering the following MIMO system; 

           kW zBkU zG=  kY zA                                                  (4) 

      Where Y(k) is an m-dimensional vector represents the system output; U(k)  is an p-dimensional vector 

represents the input of the system; and  W(k)  is an m-dimensional zero-mean stochastic white noise with 

positive definite covariance matrix. The elements of the matrices A(z), G(z) and  B(z)  are polynomials of “z”. It 

is therefore, colored noise is considered. The parameters and order of this system are unknown. The problem is 

thus to identify both the order and parameters and to verify this identification.  

      The matrix equation, equation (4), which represents MIMO dynamic model, must uniquely represents 

the system, or in other words, the system must be in Canonical form. The conditions, under which the order and 

parameters can be identified, must be also obtained.    
      In the following section, a new Canonical form will be proposed, and its uniqueness will be proved. 

This new Canonical form will simplify the order identification problem. This is achieved by decoupling the 

identification of the whole system parameters into the identification of several smaller subsystems. An 

identification technique is also proposed to achieve the consistent estimates of the model order and parameters. 

Several examples are included to investigate the effectiveness of the proposed technique.  
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     zAzRzÂ       zGzRzĜ       zBzRzB̂ 

III. Order Identification Technique 
This section is divided into three subsections. In the first one, the present proposed Canonical form is 

introduced and its uniqueness has been proved. The identification technique for both the model order and 

parameters is introduced in the second subsection. Several simulation examples are included in the third 
subsection to illustrate the effectiveness of the proposed technique. 

 

3.1  The present proposed Canonical form 

Before proceeding with the uniqueness proof, the following conditions shall be considered; 

1. The system matrices A (z), G (z) and B (z) are relatively left prime, or in other words the Smith form of  

[A (z) : G (z)  : B (z)] is [I:0:0] is considered.  This consideration means that the every state of the system, 

(3), is controllable either from U(k)  or from W(k).   

2. The inputs U (k) and   W (k) are independent.    

3. The matrix A (z) of the system, (3), will be assumed to be diagonal. 

4. To insure that the process Y (k) is stationary and invertible, all the zeroes of the determinants of A (z) and  

 B (z) lie outside the unit circle.      

     The representation of Y (k) by (3) is ensured to be unique considering that: 
1. The system (4), is characterized by the matrices A (z), G (z) and B (z) with A (z) being diagonal.   

2. The greatest common left divisor, GCLD, of A (z), G (z) and B (z) is a uni-modular matrix (condition 1 

presented above). Proof:  See Appendix A. 

 

3.2 Present identification scheme 

The least prediction error method will be implemented to identify the system order and parameters. 

Sufficient conditions, on the model structure, will be obtained to ensure consistent estimation of the parameters. 

Also, it will be shown that the proposed Canonical form simplifies the identification problem.  

      Provided that the model is of sufficient structure, the diagonality of A (z)  makes it simple to obtain the 

greatest common left divisor, GCLD, of the estimated matrices  zÂ ,  zĜ , and  zB̂ . This is attained by 

using the simple methods of finding the common factor between the diagonal element of  zÂ  and the elements 

of the corresponding rows of  zĜ  and  zB̂ . The order is then identified after factoring this GCLD. 

 

3.2.1 Parameters Identification 

The unknown parameters of A (z), G (z) and B (z) can be estimated by minimizing the following 

prediction error loss function; 

     






1N

0k

T ,N,N
N

1
,NP                                                                                      (5) 

      Where N is the number of measured data, P is the loss function and the prediction error   ,N  is 

obtained from the following model, [10]; 

          ,kzB̂)k(UzĜkYzÂ                                                                                 (6) 

 is a vector that made up of all the unknown coefficients of the model matrices, )z(Â , )z(Ĝ and 

)z(B̂ .   Under the ergodicity assumption, it can be shown that the loss function, equation (5), converges 

uniformly in , as the number of measured data  N  increases, to a deterministic function,  P (),  with a 

probability of one, [10]. This function, P (), is the global minimum of the loss function P (N, ),  [10]. The 

above result will be used to investigate the properties of the identified matrices )z(Â , )z(Ĝ and )z(B̂ at this 

global minimum as follows: 

      Considering the system, (4), and the above model, (5) and supposing that U (k) is persistently exciting 

of order “L”, where “L” is the order of the matrix   ĜÂGAÂB̂ 111   , and the model is of sufficient 

structure, the global minimum of the asymptotic loss function P() will be corresponding to; 
                                                                                                                              (7)  

Where R(z) is a diagonal matrix representing the GCLD between the matrices  )z(Â , )z(Ĝ  and

)z(B̂ . 
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3.2.2 System Modes and Extraneous Modes 

The properties of the system modes and extraneous modes will be discussed. For backward method, the 

system poles are outside the unit circle.  If the data is noise-free, the minimum norm solution will imply a 

minimum phase system, and the computational or extraneous poles will fall inside the unit circle, [11]. 

Regarding the present case, it worth noting that with stochastic systems of colored noise, the computational 

poles are sometimes found outside the unit circle.  

 

3.3 Simulation Examples 

In what follows, several simulation examples will be represented to illustrate the present identification 

scheme. The input U (k) is considered zero, while the noise sequence W (k) is taken as a sample of a Gaussian 

random vectors of zero mean and unity variance.  Therefore, the system, (4) can be written as; 

W(k) B(z)=  (k) Y (z) A                                                                                                                                    (8) 

while the model equation can be written as follows; 

        ,kzB̂kYzÂ                                                                                         (9) 

      The present identification scheme has been applied to the generated set of data.   Three different cases 

have been considered. In the first case the model was an over-specified model. In the second case, the model 
order was taken equal to the system order. The model in the third case was not of sufficient structure, and wrong 

estimates of the parameters had been obtained. 

3.3.1 Case 1, over-specified model 

In this case, the system matrices are considered as follows; 


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The matrices of the identified model are taken as; 
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The estimated values of the above matrices are considered as; 
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These matrices can be written according to equation (7) as; 



























z542.010

0z8.01

z5.410

0z21
)z(Â  
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Therefore, the GCLD, R (z), between these identified matrices can be written as;  
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System matrices,    zBandzA , can be estimated as; 
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Which are a good estimate of the system matrices, A(z) and B(z). 

 

3.3.2 Case 2, model order is almost known 

Sometimes, the number of the parameters of an element of the system matrices is known beforehand.  

Hence, there is common factor to be sorted at the row of this element. In the present case, the system matrices 

will be considered as follows; 
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The number of the system parameters of the matrix will be considered to be known beforehand, and 

hence the matrices of the identified model are taken as; 
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and the estimate of the system matrices, A z B z( ), ( ) , can be written as; 
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The extra elements are almost zero, and the estimates are in good agreement with the system matrices. 

 

3.3.3 Case 3, model order is not sufficient 
In this case the number of model parameters is less than that of the system. This will lead to wrong 

estimates of the parameters. The system matrices will be considered as follows; 
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The estimated values of the above matrices are written as; 
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Wrong estimates have been obtained, and this illustrates that the system must be of sufficient structure.  

 

IV. Experimental verification of the present identification technique 
Experimental data is used to verify the effectiveness of the present identification approach. A test rig 

was set up to experimentally investigate the vibration of a flexible structure representing the tower of an 

overhead tower cranes. An aluminum truss 12 m long and 0.55 m square cross section, the layout of which is 

shown in Fig. 1, was constructed.  

 

 

 

 
       

 

 

 

Figure1 Layout of the present vibrating structure 

      The truss is vertically flexibly fixed at its end near point B. It is disturbed using two shakers of 1 N and 

20 N forces at points A and B, 1.5 m apart of each truss end, respectively. A stochastic loading condition is 

applied through driving the two shakers by random wave generators. The velocities at points A and B are 

considered as inputs to the vibrating system and velocities at points D and C, 3.5 m apart of the truss center at 

each side, are considered as the system response. Velocities have been recorded using piezo-electric 

accelerometers with charge amplifiers that are provided with active integrating circuits to measure the velocity 
at the specified points. The data are collected at a sampling rate of 130 Hz, and transferred to be processed by a 

personal computer through data acquisition system. 

             Fig. 2 and Fig. 3 illustrate a sample of the velocities at points B, input signal, and C, system response, 

respectively.  
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Figure 2 Sample of velocity input signal measured at point B 

 

 
Figure 3 Sample of system velocity response measured at point C 

 

      A computer soft ware program was developed to apply the proposed identification technique to 

estimate the order and the parameters of the vibrating truss shown in figure 1. The program utilizes the Powell’s 

minimization method and considers the minimum error as the norm of the errors at points C and D. The program 

starts with a model order of four and increases the order by a step of two. The results of the present 

identification scheme are illustrated in Table 1 below. 

 

Table 1:  The results of the present identification scheme 

Model  

Order 

Minimum  

Error 
Identified  Frequencies 

Common Frequency 

GCLD 

10 0.2 ***** ***** 

12 0.05 88 ,  175 , 250  rad/s ***** 

40 0.049 88 ,  175 , 250  rad/s 55  rad/s 

50 0.0485 88 ,  175 , 250  rad/s 55  ,   150  rad/s 

80 0.032 88 ,  175 , 250, 8, 14  rad/s 150,   230,   200  rad/s 

 

      The above results illustrate that the system frequencies cannot be identified if the model order is less 

than twelve. The minimum error also is a sensitive indicator to the system frequencies. For example, it has been 

decreased to 25% of its value when identifying the highest natural frequencies, 88, 175 and 250 rad/s. On the 

other hand, negligible changes in the minimum error have been noticed when identifying the common 

frequencies, as they are canceled by the identified numerator part according to the pole-zero cancellation 

technique.  

      However, some of the extraneous poles lie outside the unit circle. This can attributed to the noise 

associated with the measured input data. The results of, [11] show that the extraneous poles lie inside the unit 

circle if the data is noise free. 
      The experimental velocity data at points A and B are used as online inputs to the identified model 

derived for the present flexible truss. The system responses at points C and D are calculated by the model and 

compared to the corresponding measured results. This is done to verify the effectiveness of the present model. 

The verification of velocities data from 2 - 3 seconds is illustrated in Fig. 4. The figure shows both the 

calculated and experimental data plotted on the X and Y axes respectively. It is clear that the dispersion of the 

best fit line of the data from the 45o line, equal data values of both axes, is very small.  This verifies the 

effectiveness of the present identified model.  
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Fig. 4 Verification of the identified model, from t = 2 - 3 sec. 

 

V. Conclusions 

The following conclusions may be drawn regarding the present identification technique for MIMO 

systems and the proposed canonical form. 

1. The implementation of the proposed canonical form simplifies the identification problem by decoupling the 

identification of the whole system into the identification of several smaller subsystems. 

2. The increase of the model order produces extra identified modes, often associated with a decrease of the 

minimum prediction error. 
3. The simulation examples illustrate the effectiveness of the proposed method.  It is found that the extraneous 

modes can be distinguished from the system modes by the factorization method. 

4. The extraneous modes, generally, lie inside the unit circle.   

5. The results of the identified model have been verified using actual experimental measured data for a flexible 

structure. The extra modes have been identified, and a small dispersion, from the actual data, has been found 

by the verification.  

 

Appendix A 

In what follows, it will be proved that the model, proposed in section 3.1 of this work, uniquely 

represents the system. The proof will carried out using the contradiction concept.  

      Assume that the matrices A (z), G (z) and B (z) and Ao (z), Go (z) and Bo (z) are two representations for 

the considered system, with A(z) and being diagonal. Denote the GCLD of [A (z), G (z) and B (z)] and [Ao (z), 
Go (z) and Bo (z)] by the unimodular matrices, P and Po, respectively. It can be proved that there exist two 

diagonal matrices H and K such that; 

H A = K Ao  H B = K Bo  H G = K Go                                                            (A.1)  

      Since P and Po, the uni-modular of [A (z), G (z) and B (z)] and [Ao (z), Go (z) and Bo (z)] respectively, 

are represented according to the Smith form [7], as; 

U [A (z), G (z) and B (z)]     V = [I, O, O],       Uo [Ao (z), Go (z) and Bo (z)]   Vo = [I, O, O]         (A.2) 

      Where U and Uo are square unimodular matrices of dimension m, and V and Vo are unimodular 

matrices of dimension (2m+p).  Now the above equations can be written as; 

]0,0,KU[
VV
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]0,0,UH[
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






                                               (A.3) 

     This gives the following result; 
1

o11
1

UKVUH
   and 12V = 0                    (A.4) 

     Since  11V  and  22V  are uni-modular matrices, the above equation can be written as; 

0
UKH                                                                                                                                                        (A.5) 

     Where, 
0

U  is a diagonal unimodular matrix 

Because of that H and K are diagonal matrices and since A(0)=I,  (A.1) gives the following result;   

H = K and Therefore,    A = Ao     B = Bo G = Go                                                           (A.6)  

And thus the present Canonical form is a unique representation for the system. 
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Abbreviations 

SISO  single-input single-output 

MIMO  multi-inputs multi-outputs 
GCLD  greatest common left divisor 
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