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Abstract: In this Paper we discussed the unsteady magneto hydro dynamic flow of an electrically conducting 
viscous incompressible non-Newtonian Bingham fluid through a porous medium bounded by two parallel non-

conducting porous plates with heat transfer considering the hall current effects into account. The fluid is driven 

by a uniform pressure gradient parallel to the channel plates and the entire flow field is subjected to a uniform  

magnetic field of strength Ho with the normal to the boundaries in the transverse xz-plane. An external uniform 

magnetic field is applied perpendicular to the plates and the fluid motion is subjected to a uniform suction and 

injection. The lower plate is stationary and the upper plate moves with a constant velocity and the two plates 

are kept at different but constant temperatures. Numerical solutions are obtained for the governing momentum 

and energy equations taking the Joule and viscous dissipations into consideration. The effects of the Hall term, 

the parameter describing the non-Newtonian behaviour, and the velocity of suction and injection on both the 

velocity and temperature distributions is studied. 

Keywords: Hall effects, unsteady flows, non-Newtonian flows, porous medium, Heat transfer, uniform suction 

and injection. 

 

I.   Introduction 

The study of Couette flow in a rectangular channel of an electrically conducting viscous fluid under the 

action of a transversely applied magnetic field has immediate applications in many devices such as magneto 

hydro dynamic (MHD) power generators, MHD pumps, accelerators, aerodynamics heating, electrostatic 

precipitation, and polymer technology, and petroleum industry, purification of crude oil and fluid droplets 

sprays. Channel flows of a Newtonian fluid with heat transfer have been studied with or without Hall currents 

by many authors [1, 2, 5-7, 9, 10-13, 15, 19 and 20-24]. These results are important for the design of the duct 

wall and the cooling arrangements. The fluids that are used extensively in industrial applications are exhibiting a 

yield stress 0 , that has to be exceeded before the fluid moves. As a result, such fluids cannot sustain a velocity 

gradient unless the magnitude of the local shear stress is higher than this yield stress. Fluids that belong to this 

category include cement, drilling mud, sludge, grease, granular suspensions, aqueous foams, slurries, paints, 

food products, plastics and paper pulp [24]. Due to the growing use of these non-Newtonian materials in various 

manufacturing and processing industries, considerable efforts have been directed towards understanding their 
flow and heat transfer characteristics. Many of the yield non-Newtonian fluids encountered in chemical 

engineering processes, are known to follow the so-called „„Bingham model‟‟. A Bingham fluid is a material 

with a finite yield stress, followed by a linear curve at a finite strain rate. Many authors [4, 14, 16, 17 and 25] 

studied the flow or/and heat transfer of a Bingham fluid in different geometries. Attia [10] has studied the 

influence of the Hall current on the velocity and temperature fields of an unsteady Hartmann flow of a 

conducting Newtonian fluid between two infinite non-conducting horizontal parallel and porous plates. The 

extension of such problem to the case of Couette flow of non-Newtonian Bingham fluid is done in the present 

study. The upper plate is moving with a uniform velocity while the lower plate is stationary. The fluid is acted 

upon by a constant pressure gradient, a uniform suction from above, and a uniform injection from below and is 

subjected to a uniform magnetic field perpendicular to the plates. The Hall current is taken into consideration 

while the induced magnetic field is neglected by assuming a very small magnetic Reynolds number [21]. The 
two plates are kept at two different but constant temperatures. This configuration is a good approximation of 

some practical situations such as heat exchangers, flow meters, and pipes that connect system components. The 

Joule and viscous dissipations are taken into consideration in the energy equation. The governing momentum 

and energy equations are solved numerically using the finite difference approximations. The inclusion of the 

Hall current, the suction and injection, and the non-Newtonian fluid characteristics leads to some interesting 

effects on both the velocity and temperature fields. Recently, H.A.Attia [8] the unsteady magneto hydro 

dynamic flow of an electrically conducting viscous incompressible non-Newtonian Bingham fluid bounded by 

two parallel non-conducting porous plates is studied with heat transfer considering the Hall Effect.  
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II.    Formulation and Solution of the problem: 
We consider an incompressible viscous and electrically conducting non Newtonian Bingham fluid in a 

parallel plate channel bounded by a loosely packed porous medium. The fluid is driven by a uniform pressure 

gradient parallel to the channel plates and the entire flow field is subjected to a uniform magnetic field of 

strength Ho with the normal to the boundaries in the transverse xz-plane. The physical geometry of the problem 

is shown in Fig. 1. The fluid is assumed to be laminar, incompressible and obeying a Bingham model and flows 

between two infinite horizontal plates located at the hy   planes and extend from x = 0 to   and from z = 0 

to  . The upper plate moves with a uniform velocity U0 while the lower plate is stationary. The upper and 
lower plates are kept at two constant temperatures T2 and T1 respectively, with T2 > T1. The fluid is acted upon 

by a constant pressure gradient 
dx

dp
 in the x-direction, and a uniform suction from above and injection from 

below which are applied at t = 0. A uniform magnetic field B0 is applied in the positive y-direction and is 
assumed undisturbed as the induced magnetic field is neglected by assuming a very small magnetic Reynolds 

number. The Hall Effect is taken into consideration and consequently a z-component for the velocity is expected 

to arise. The uniform suction implies that the y-component of the velocity is constant. Thus, the fluid velocity 

vector is given by 

kji ),(),(),( 0 tywvtyvtyv 
   

 

It should be noted that the problem comes out to be a linear problem. In the hydrodynamic case without 

suction–injection, the problem reduces to Poiseuille problem [18] the classical hydro dynamic linear problem. 

Without suction–injection and by neglecting the Hall current, it reduces to Hartmann-Poiseuille problem [21]; 

the classical MHD linear problem. The inclusion of the constant suction-injection as well as the Hall term [10] 

preserves linearity. So obviously does changing the Newtonian fluid to a non-Newtonian one in the present 

study. The classical problems (Poiseuille and Hartmann-Poiseuille) of channel flow and the related pipe flow of 

Newtonian fluid are known to be attainable in practice and to give results in excellent agreement with 

experiments. The fully developed profiles are observed away from the inlet and the side-walls of the channel. 

Using a non-Newtonian fluid is not expected to cause a problem.  
The fluid motion starts from rest at t = 0, and the no-slip condition at the plates implies that the fluid 

velocity has neither a z nor an x-component at hy  . The initial temperature of the fluid is assumed to be 

equal to T1. Since the plates are infinite in the x and z-directions, the physical quantities do not change in these 

directions.  

 

 
Fig. 1: The Physical configuration of the problem 

 

The flow of the fluid is governed by the momentum equation 

0).( BJ pv
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                (1) 

where  is the density of the fluid and   is the apparent viscosity of the model and is given by 
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where K is the plastic viscosity of a Bingham fluid,  0τ is the yield stress. If the Hall term is retained, the 

current density J is given by 

  ,)( 00 BJBVJ                   (3) 

where   is the electric conductivity of the fluid and   is the Hall factor [21]. The equation (4.2.3) may be 

solved in J to yield 
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where m is the Hall parameter and 0Bm  .  

Thus, the two components of the momentum equation (4.2.1) becomes 
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The energy equation with viscous and Joule dissipations is given by 
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Where pc  and k are, respectively, the specific heat capacity and the thermal conductivity of the fluid. 

The second and third terms on the right-hand side represent the viscous and Joule dissipations respectively. We 

notice that each of these terms has two components. This is because the hall effect brings about a velocity w in 

the z-direction. The initial and boundary conditions of the problem are given by 

0 wu  at  0t  ,                  (8) 

0w    at y = -h  and  y = h  for 0t                (9) 

u=0    at  y = -h  for  t > 0,  u=U0  at  y=h for t >0                                                                      (10) 

T=T1  at  0t ,                               (11) 

T=T1 at y = h   , T=T2 at y = -h   for  t > 0                         (12) 

That the boundary conditions do not show dependence on x suggests that the problem has a fully 

developed solution of the form,  

u= u(y, t),  v=v0 , p=P+Gx     
where P is the pressure at x= 0 (constant), G is the constant pressure gradient (negative). Under these conditions 

the continuity equation 0
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is automatically satisfied. It is expedient to write the above equations in 

the non-dimensional form. To do this, we introduce the following non-dimensional quantities 
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Making use of the above non-dimensional variables, the equations from (5) to (12) and (2) are, respectively, 

written as (where the asterisks are dropped for convenience) 
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Corresponding the initial and boundary conditions are  

0 wu  at  0t  ,                (16) 

0 wu    at y = -1                                                   (17) 
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u=1, w=0  at   y =1 for  t > 0,              (18) 

0  for  0t  ,    and   0    at y = -1 , 1    at y = 1 for  t > 0                              (19) 
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is the inverse Darcy parameter  

Eqs. (13), (14) and (20) represent coupled system of non-linear partial differential equations which are 

solved numerically under the initial and boundary conditions (16, 17 and 18) using the finite difference 

approximations. The Crank–Nicolson implicit method is used [3]. Finite Difference equations relating the 

variables are obtained by writing the equations at the midpoint of the computational cell and then replacing the 

different terms by their second order central difference approximations in the y-direction. The diffusion terms 

are replaced by the average of the central differences at two successive time-levels. In equations (13) and (14) 

the non-linear terms are first linearized and then an iterative scheme is used at every time step to solve the 

linearized system of difference equations using Thomas algorithm to determine the velocity distributions. The 

values of the velocity components are substituted in the right-hand side of equation (15) which is solved 

numerically under the initial and boundary conditions (19). The computational domain is divided into meshes 

each is of dimension t and y   in time and space respectively as shown in Fig. 2.  

 

 
Fig. 2. Mesh diagram 
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The variables with bars are given initial guesses from the previous time steps and an iterative scheme is 

used at every time to solve the linearized system of difference equations. Then the finite difference form for the 

energy equation (4.2.15) can be written as 
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Where, DISP represents the Joule and viscous dissipation terms which are known from the solution of 

the momentum equations and can be evaluated at the midpoint (i, j) of the computational cell. Computations 

have been made for (dp/dx)=5, Pr=1, Re=1, 3/   and Ec=0.2. Step sides t =0.0001 and y =0.005 for 

time and space respectively, are chosen and the scheme converges in almost 7 iterations at every time step. 

Smaller step sizes do not show any significant change in the results. Convergence of the scheme is assumed 

when every one of u, v, w, B,   and H for the last two approximations differ from unity by less than 10-6 for all 

values of y in -1 < y < 1 at every time step. Less than seven approximations are required to satisfy this 

convergence criteria for all ranges of the parameters studied here. In order to examine the accuracy and 

correctness of the solutions, the results of the time development of the velocity components u and w at the 

centre of the channel for the Newtonian case is compared and shown, as depicted Table 1, to have complete 

agreement with those reported by Attia [10]. This ensures the satisfaction of all the governing equations; mass 

continuity, momentum and energy equations.  
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t The values of u The values of w 

 Present 

Results 

Attia [8] Attia [10] Present 

Results 

Attia [8] Attia [10] 

0.1 0.5448 0.4673 0.4669 0.0445 0.0603 0.0619 

0.2 0.6326 0.8094 0.8089 0.0842 0.2060 0.2056 

0.3 0.6815 1.0165 1.0160 0.0912 0.3692 0.3687 

0.4 0.7968 1.1254 1.1251 0.1321 0.5177 0.5171 

0.5 0.8411 1.1709 1.1708 0.5201 0.6375 0.6370 

0.6 0.8665 1.1791 1.1791 0.6642 0.7264 0.7260 

0.7 0.8925 1.1681 1.1682 0.7745 0.7876 0.7872 

0.8 0.9962 1.1494 1.1495 0.7902 0.8266 0.8263 

0.9 1.0000 1.1295 1.1297 0.8326 0.8466 0.8491 

1.0 1.0001 1.1120 1.1122 0.8523 0.8693 0.8607 

Table 1: Comparison of the present results and the known results of Attia [8] and Attia [10] for Newtonian fluid 0Dτ for 

M=2, 2/  , m=1, S=1 and y=0. 

 

Graphs and Tables: 

        

 Fig 1 & 2: The velocity profile for u, w and Temperature   against Dτ  with 1.0t , S=1, MD-1=1000, m=1 

  

Fig 4, 5 &6: The velocity profile for u, w and Temperature   against M with 1.0t , S=1, 05.0
D
τ  D-1=1000, m=1 

        

       Fig 7,8&9: The velocity profile for u, w and Temperature   against D-1 with 1.0t , S=1, 05.0
D
τ  M=2, m=1 



Hall Effects on unsteady MHD flow of a Non-Newtonian fluid through a Porous medium with ….. 

www.iosrjournals.org                                                    61 | Page 

 
Fig 10,11&12 : The velocity profile for u, w and Temperature   against m  with 1.0t , S=1, M=2, 05.0

D
τ D-1=1000 

 

Fig 13,14&15: The velocity profile for u, w and Temperature  against S with 1.0t , m=1, M=2, 05.0
D
τ D-1=1000 

     

Fig 16, 17 & 18: Time development of the velocity component u, v & 
 
for m=1, M=2, 05.0

D
τ   D-1=1000, S=1 

Dτ  I II III IV V VI VII VIII IX 

0.05 0.4323 0.5143 0.5574 0.8450 0.9310 1.1531 2.4567 0.0521 0.0243 

0.1 0.4531 0.5312 0.5983 0.9312 1.0831 1.3342 3.4531 0.0632 0.0752 

0.15 0.4874 0.5575 0.6334 1.5244 1.6350 2.3423 4.4524 0.0834 0.0963 

0.2 0.5210 0.5896 0.6987 1.6250 1.8554 2.5542 5.0023 0.0986 0.1012 

 

 I II III IV V VI VII VIII IX 

M 2 5 8 2 2 2 2 2 2 

D-1 1000 1000 1000 2000 3000 1000 1000 1000 1000 

m 1 1 1 1 1 2 3 1 1 

S 1 1 1 1 1 1 1 2 3 

Table. 1: The Nusselt number (Nu) at y=1 level 
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Dτ  I II III IV V VI VII VIII IX 

0.05 0.0312 0.0402 0.0518 0.1452 0.2844 0.3562 0.5223 0.0052 0.0043 

0.1 0.0542 0.0631 0.0754 0.2564 0.4312 0.4872 0.6556 0.0072 0.0052 

0.15 0.0630 0.0743 0.0831 0.3784 0.5755 0.6674 0.8596 0.0084 0.0071 

0.2 0.0751 0.0841 0.0986 0.4007 0.6633 0.7884 1.0024 0.0096 0.0083 

 

 I II III IV V VI VII VIII IX 

M 2 5 8 2 2 2 2 2 2 

D-1 1000 1000 1000 2000 3000 1000 1000 1000 1000 

m 1 1 1 1 1 2 3 1 1 

S 1 1 1 1 1 1 1 2 3 

Table. 2: The Nusselt number (Nu) at y=-1 level 

III.     Results and Discussion: 

The flow governed by the non-dimensional parameters Dτ   
Bingham number, Re Reynolds number, M 

Hartmann number, D
-1

 inverse Darcy parameter, Pr Prandtl number, Ec the Eckert number and S suction 

parameter. Figs. (1–18) present the profiles of the velocity components u and w and the temperature   

respectively for fixed value of time t and for 05.0,0Dτ  and 0.1. The figures are evaluated for M=2, m=1, 

and S=1. It is clear from figures (1-3) that increasing the yield stress Dτ  decrease the velocity components u 

and increase the velocity component w and the time at which they reach their steady state values as a result of 

increasing the viscosity. The figures show also that the velocity components u and w do not reach their steady 

state monotonically. This behaviour is more pronounced for small values of the parameter Dτ  and it is clearer 

for u than for w. Figure (3) shows that the temperature profile reaches its steady state monotonically. It is 

observed also that the velocity component u reaches the steady state faster than w which, in turn, reaches the 

steady state faster than . This is expected as u is the source of w, while both u and w act as sources for the 

temperature. Figures (4-6) depict the variation of the velocity components u and w and the temperature  at the 

centre of the channel respectively for various values of the Hartmann parameter M and for 05.0,0Dτ  and 

0.1. In these figures m=1 and S=1. Both the velocity components u and w and the temperature   reduces with 

increase the intensity of the magnetic field throughout the fluid region. The similar behaviour has observed in 
the figures (7-9) with increase in the inverse Darcy parameter D-1. Lower the permeability of the porous medium 

lesser the fluid speed as observed in the entire fluid region. Figures (10–12) depict the variation of the velocity 

components u and w and the temperature  at the centre of the channel (y=0) with time respectively for various 

values of the hall parameter m and for 05.0Dτ  . In these figures M=2 and S=1. Fig. 10 shows that u 

increases with increasing m as the effective conductivity 








 21 m

σ
 decreases with increasing m which reduces 

the magnetic damping force on u. It is observed also from the figure that the time at which u reaches its steady 

state value increases with increasing m while it decreases when Dτ  increases. The effect of Dτ  on u becomes 

more pronounced for large values of m. In Fig. 11 the velocity component w increases with increasing m as w is 
a result of the Hall effect. On the other hand, at small times, w decreases when m increases. This happens due to 

the fact that, at small times w is very small and then the source term of w is proportional to 








 21 m

mu
which 

decreases with increasing m (m > 1). Figs. 10 and 11 indicate also that the influence of Dτ  on u and w depends 

on m and becomes more clear when is m large. An interesting phenomenon is observed in Figs. 10 and 11, 

which is that, when m has a non-zero value the component u and, sometimes, w overshoot. For some times they 

exceed their steady state values and then go down towards steady state. This may be explained by stating that 

with the progress of time, u increases and consequently w increases according to equation (4.2.14) until w 

reaches its maximum value. The increase in w results in a small decrease in u according to equation (4.2.13). 

This reduction in u may, in turn, result in a decrease in w according to equation (4.2.14) which explains the 

reduction after the peaks. The time at which overshooting occurs decreases with increasing Dτ . Fig. (12 and 18) 
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shows that the influence of m on  depends on t. Increasing m decreases   at small times and increases it at 

large times. This is due to the fact that, for small times, u and w are small and an increase in m increases u but 

decreases w. Then, the Joule dissipation which is also proportional to 








 21

1

m
 decreases. For large times, 

increasing m increases both u and w and, in turn, increases the Joule and viscous dissipations. This accounts for 

the crossing of the curves of   with time for all values of Dτ . It is also observed that increasing Dτ  
decreases 

the temperature   for all values of m. This is because increasing Dτ  decreases both u and w and their 

gradients which decrease the Joule and viscous dissipations. The figure shows also that the time at which   

reaches its steady state value increases with increasing m while it is not greatly affected by changing Dτ . 

Figures (13–15) show the effect of the suction parameter S on the development of the velocity components u 

and w and the temperature   at y=0 with time respectively for various values for 05.0Dτ . In these figures 

M=2 and m=1. Figure (13) shows that u at the centre of the channel decreases with increasing S for all values of 

Dτ  due to the convection of the fluid from regions in the lower half to the centre, which has higher fluid speed. 

Figure (14) shows that w increases with increasing S for all fixed values of  governing parameters as a result of 

decreasing u which affects the source term of w. The figure presents also the influence of S on the reduction of 

the overshooting in w especially for small values of Dτ . Figure (15) indicates that increasing S decreases the 

temperature at the centre of the channel for all fixed values. This is due to the influence of the convection in 

pumping the fluid from the cold lower half towards the centre of the channel. Figures (16-18) represent the time 

development of the velocity components u, w and the temperature . Both the velocity components u and w 

and the temperature   increases with all fixed values of governing parameters throughout the fluid region. The 

tables (I-II) represent the Nusselt number on 1y  and 1y  levels. We notice that the rate of heat transfer 

increases with increase in Dτ , M, m and D-1, decreases with increases in S at 1y  level. The similar 

behaviour is observed at 1y  level. 

 

IV.    Conclusions 
The transient Couette flow of a Bingham non-Newtonian fluid under the influence of an applied 

uniform magnetic field with the normal to the boundaries in the transverse xz-plane is studied considering the 

hall effect. The effects of the Bingham number Dτ , the Hartmann number M, the inverse Darcy parameter D-1,  

the Hall parameter m, and the suction parameter S on the velocity and temperature distributions are studied.  

1. The hall term affect the main velocity component u in the x-direction and gives rise to another velocity 

component w in the z-direction. An overshooting in the velocity components u and w with time due to the 

Hall effect is observed for fixed value of Dτ .  

2. The flow index Dτ  has an apparent effect in controlling the overshooting in u or w and the time at which it 

occurs.  

3. The results show that the influence of the parameter Dτ  on u and w depends on m and becomes more 

apparent when m is large.  

4. It is found also that the effect of m on w depends on t for all values of Dτ  which accounts for a crossover in 

the w–t graph for various values of m.  

5. The effect of m on the magnitude of   depends on n and becomes more pronounced in case of small Dτ .  

6. The time at which u and w reach the steady state increases with increasing m, but decreases when Dτ  

increases.  

7. The time at which   reaches its steady state increases with increasing m while it is not greatly affected by 

changing Dτ . 

8. The magnitude of the velocity components u, w and   reduces with increases M and   D-1.  

9. Lower the permeability of the porous medium lesser the fluid speed as observed in the entire fluid region. 
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10. The rate of heat transfer increases with increase in Dτ , M, m and D-1, decreases with increases in S at 

1y  and 1y  levels. 
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