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Abstract: The main objective of this paper is to optimize design of three layer compound cylinder for a specific 

internal pressure. Optimally designed three layer cylinder has equal maximum hoop stresses at the inner 

surfaces in each cylinder. Here three important parameters are considered for optimization - interface 

diameter, interference and outside diameter, keeping other parameters such as material, internal diameter and 

internal pressure, etc. are constant. In order to shrink-fit successive shells upon one another, the outer shell 

must be expanded by heating; it may then be slipped over the inner shell or shells and allowed to cool. So a 

preheat temperature necessary to provide the required thermal expansions. This paper introduces the 

methodology for optimum design of shrink fitted three-layer compound cylinder based on maximum tensile 

stress. Then the analytical results of optimum design calculated are validated with Finite Element Analysis in 

ANSYS WORKBENCH environment. 
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I. Introduction 

 The pressure vessels are used to store fluids under pressure. Pressure vessels find wide applications in 

thermal and nuclear power plants, process and chemical industries, in space and ocean depths, and in water, 

steam, gas and air supply system in industries. The material of a pressure vessel may be brittle such as cast iron, 

or ductile such as mild steel. 

 With increasing demands from industrial processes for higher operating pressures and higher 

temperature, new technologies have been developed to handle the present day specialized requirements. 

Multilayer Pressure Vessels have extended the art of pressure vessel construction and presented the process 

designer with a reliable piece of equipment useful in a wide range of operating conditions for the problems 

generated by the storage of hydrogen and hydrogenation processes. 

 Patil has introduced optimum design of two layer compound cylinder and optimized intermediate, outer 

diameter and shrinkage tolerance to get minimum volume of two layer compound cylinders [2]. Humid Jahed et 

al. have investigated the optimum design of a three-layered vessel for maximum fatigue life expectancy under 

the combined effects of autofrettage and shrink fit [3]. 

 It is also assumed that the compound cylinder is fabricated by shrinking on each successive shell from 

the inside outwards and that after each shell is shrunk on, the outside diameter is machined to size before the 

next cylinder is shrunk-on to the inner shell or shells. In this paper three cylinders are considered. Cylinder 2 is 

shrink-fitted on cylinders 1 and cylinder 3 is shrink-fitted on cylinders 2. The stress distribution is influenced by 

shrinking radii (the outer radii of the inner cylinders and the inner radii of the outer cylinders) and shrinking 

allowances (shrink fit). The main objective of the work is to optimize the values of these parameters so that the 

minimum material volume for the three layer compound cylinder is achieved while maximum tensile stresses in 

all three cylinders are equal. 

II. Lame’s Theory 

 The method of solution for compound cylinders constructed from similar materials is to break the 

problem down into four separate effects:  

i)   shrinkage pressure 
12sP  only on the cylinder 1  

ii)   shrinkage pressure 
12sP  and 

23sP  only on the cylinder 2  

iii)   shrinkage pressure 
23sP  only on the cylinder 3   

iv)   internal pressure iP  only on the complete cylinder  

2.1 Radial and Hoop stress in Cylinder 1 

If 0iP   i.e. with no internal pressure, radial stress in cylinder 1 is given by using Lame’s equation: 
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r  is maximum at outer radius 
2r of cylinder 1 . Using equation (1): 
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Hoop stress in cylinder 1 is given by using Lame’s equation: 
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Hoop stress at outer radius 
2r  is: 
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While hoop stress at inner radius 
1r  is: 
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In the shrink-fitting problems, considering long hollow cylinders, the plane strain hypothesis (in general 0z  ) 

can be regarded as more natural. Hence as per relation: 

 z r              

the expression for the hoop strain is given by: 
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Using equations (2) and (4), assuming plane strain condition the hoop strain at the outer wall 
2r  of cylinder 1 is: 
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Radial displacement 
1r oU  is: 
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      (7) 

2.2 Radial and Hoop stress in Cylinder 2 

Contact pressure 
12sP  is acting as internal pressure and contact pressure 

23sP  is acting as external 

pressure on cylinder 2. 

Using Lame’s equation, radial stress in the cylinder 2 at inner radius 
2r  is given by: 

 2
12sr atr

P                 (8) 

While radial stress in the cylinder 2 at outer radius 
3r  is given by: 
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P                               (9)          

Hoop stress in the cylinder 2 at inner radius 
2r  is given by: 
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While hoop stress in the cylinder 2 at outer radius 3r  is given by: 
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Using equations (8) and (10), and assuming plane strain condition the hoop strain at the inner wall 2r of cylinder 

2 is: 
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Radial displacement 2r iU  : 
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Referring figure 3 and using equations (7) and (13), total interference 
12 at the contact between cylinder 1 and 2 

is: 
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Using equations (9) and (11), hoop strain in the outer wall 
3r of cylinder 2 is given by: 
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Hence radial displacement 
2r oU : 
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2.3  Radial and Hoop stress in Cylinder 3 

Contact pressure 23sP is acting as internal pressure on cylinder 3 and external pressure  
oP  is zero.  

Radial stress in the cylinder 3 at inner radius 
3r  is given by: 
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P                                     (17) 

Hoop stress in the cylinder 3 at inner radius 
3r  is given by: 
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While hoop stress in the cylinder 3 at outer radius 
4r  is given by: 
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Using equations (17) and (18), hoop strain at inner wall 
3r of cylinder 3 is given by: 
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Radial displacement 
3r iU : 
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 Using equations (16) and (21), total interference 
23  at the contact between cylinder 2 and 3: 
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Hoop stress at any radius r  in compound cylinder due to internal pressure only is given by: 
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2.4  Principle of superposition 

 After finding hoop stresses at all the radii, the principle of superposition is applied, i.e. the various 

stresses are then combined algebraically to produce the resultant hoop stresses in the compound cylinder 

subjected to both shrinkage pressures and internal pressure iP . 

2.4.1 Resultant hoop stress in cylinder 1 
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Using equations (23) and (5), maximum hoop stress at the inner surfaces of cylinder 1 at
1r : 
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2.4.2  Resultant hoop stress in cylinder 2 

Using equations (23) and (10), maximum hoop stress at the inner surfaces of cylinder 2 at 
2r : 
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2.4.3 Resultant hoop stress in cylinder 3 

Using equations (18) and (23), maximum hoop stress at the inner surfaces of cylinder 3 at 
3r : 
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III. Optimum Design Based On Maximum Tensile Stress 

 To obtain optimum values of the contact (shrinkage) pressures 
12sP  and 

23sP  which will produce equal 

hoop (tensile) stresses in all the three cylinders, maximum hoop stresses given by the equations (24), (25) and 

(26) have been equated. 

Equating equations (24) and (25) i.e. 
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Hence equation (27) becomes: 
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Equating equations (25) and (26)  i.e. 
2 3    and rearranging we get:     
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Hence equation (33) becomes: 
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Equations (11) and (15) have been solved to get 
12sP  and 

23sP  in terms of 
iP  as follows: 
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Putting the values of 
1t , 

2t  and 
3t , the equations (14) and (22) can be written as: 

 2 2 2 2
2 2 1 2

12 12 232 2 2

2 1 1

1 1 1
2

1 1 1
s s

r t t t
P P

E t t t



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      

      

                               (40) 
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                                                (41) 

3.1 Steps in optimum design 

1. Assume internal diameter of cylinder 1  1d say 100 mm 

2. Let the ratios 32 4

1 2 3

1 2 3

, ,
rr r

t t t
r r r

    

3. For the given internal pressure 
iP , one can find contact (shrinkage) pressures 

12sP and 
23sP in terms 

of ratios  
1 2,t t  and 

3t using equations (33) and (34). 

4. Find the volume of the compound cylinder using equation  2 2

4 1 / 4V d d   

5. Minimize the volume subjected to the constraints, a) 1 y  , b) 2 y  , c) 3 y  , d) 
12 0   

and e) 
23 0  ,  

6. Optimize parameters 
1 2 3, ,t t t and 

12 23,  .  

7. By selecting the various values of 
1 2,t t  and 

3t and using iterative numerical method (with the help of 

computer programming), contact (shrinkage) pressures 
12sP and 

23sP for given internal pressure iP are calculated 

using equations (38) and (39) respectively. These contact pressures are then used to find out  interferences  

12 23,  with the help of equations (40) and (41) respectively. Volume is minimized subjected to the above said 

constraints. Actually the condition that maximum hoop stresses in all three cylinders being equal is met by 

number of combinations of 
1 2,t t  and 

3t . Out of these, some selected combinations have been included in this 

paper where volume is relatively less as compared to rest of the combinations. Using the five selected 

combinations of 
1 2 3 2 3 4 12t , t , t , d , d , d ,  and 

23  are calculated through computer programming and results are 

listed in the table no. 1. It is found that parameters in set no. 5 produce minimum volume. 

Analytical Results of  (MS-EXCEL): 

Table no. 1 

Parameters Set 1 Set 2 Set 3 Set 4 Set 5 

1t  1.17 1.3 1.22 1.38 1.20 

2t  1.35 1.2 1.3 1.3 1.29 

3t  1.44 1.44 1.45 1.27 1.45 

2d  117 130 122 138 120 

3d  157.95 156 158.6 179.4 154.8 

4d  227.44 224.64 229.97 227.83 224.46 

1 max  246.58 249.718 241.017 241.714 249.72 

Parameters Set 1 Set 2 Set 3 Set 4 Set 5 
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2 max  246.58 249.718 241.017 241.714 249.94 

3 max  246.58 249.718 241.017 241.714 249.94 

1 nmi  -123.225 -123.851 -125 -127.589 -126.363 

2 min  -39.709 3.445 -24.407 19.464 19.943 

3 min  62.461 59.817 60.161 85.84 86.528 

12  0.0186 0.0315 0.0234 0.0383 0.038 

23  0.0364 0.0225 0.0316 0.0326 0.032 

12sp  16.603 25.283 20.602 30.295 29.5 

23sp  21.581 20.893 23.246 22.005 21.948 

Volume 32757.22 31763.55 33665.66 32909.95 31763 

 3.2 Effects of parameters in design 

 The effects of variation of 
1t , 

2t and 
3t  and the interferences on the maximum principal stresses in all 

three cylinders are shown in the following figures. 
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Fig 1: Variation of maximum and minimum hoop stresses w. r. t.  
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Fig 2: Variation of maximum and minimum hoop stresses w. r. t. 2t  
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t3
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Fig 3: Variation of maximum and minimum hoop stresses w. r. t. 
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Fig 4: Variation of maximum and minimum hoop stresses w. r. t. 
12  






 ,

 


 ,

 



0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036 0.038 0.04

-150

-90

-30

30

90

150

210

270

max

max

max

min

min

min

 

Fig 5: Variation of maximum and minimum hoop stresses w. r. t. 
23      

 From the Fig. 1, 2, 3, 4 and 5, it is observed that for change in 1t , 2t , 3t , 12  and 23 there is little 

difference in maximum principal stress at the inner surfaces in all three cylinders. Hence for minimum weight of 

three layer compound cylinder, the values of 
1t  , 

2t  
 and 

3t are so chosen that it will keep the maximum hoop 

stresses developed in all three cylinders are equal. 
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IV. Validation By FEM 

The three layer compound cylinder is modeled in design modeler of Ansys Workbench’13 with the 

computed dimensions. Here, we have used   brick elements for meshing. The type of bond is coarse and mesh 

size is 10 mm. The contact between these cylinders are rough-solid to solid contact. The inner surface of the 

cylinder is subjected to fluid pressure of 250 N/mm
2
. To avoid rigid body motion, weak spring forces in 

appropriate directions are applied.  

Data for modeling in Ansys: 

Table no. 2   

1t  
2t  

3t  
1d  

2d  
2id  

3d  
3id  

4d  
12  

23  

1.20 1.29 1.45 100 120 119.96 154.8 154.76 222.46 .022 .032 

 

                      
            

 Fig 6: Maximum principal stress in cylider 1        Fig 7: Maximum principal stress in cylider 2 

                           
 Fig 8: Maximum principal stress in cylider 3             Fig 9: Contact pressure between cylinders 

no. 1 & 2 without iP  

  
Fig 10: Contact pressure between cylinders no. 2 & 3 without iP  
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FEM model of three layer compound cylinder is prepared in ANSYS Workbench’13 using values of 

the diameters from table no. 2. 

Table no. 3                                                               

Parameter 
Maximum Hoop stress with pressure 250 MPa 

Analytical results (MPa) FEM result (MPa) Error (%) 

1
st
 cylinder 249.94 249.15 0.31 

2
nd

 cylinder 249.94 254.79 1.94 

3
rd

 cylinder 249.94 251.66 0.68 

                                                          

Table no. 4 

Parameter 
Contact pressure without internal pressure 

Analytical results (MPa) FEM results (MPa) Error (%) 

12sP  18.922 20.862 10.2 

23sP  20.893 24.807 18.73 

  

From the table no. 3 and 4 it is observed that there is very small difference in analytical and FEM 

results, i.e. FEM gave virtually similar results as analytical ones. 

V.  Conclusion 

 Multilayer compound cylinders are suitable for high operating pressures. 

 There is saving in material by using multilayered compound cylinder as compared to solid walled 

cylinder. This decreases not only weight of compound cylinder but also the cost of the material required to 

manufacture of multilayered compound cylinder. 

 The results are indicated that for an optimum condition, the stress at the inner surfaces of all cylinders 

become equal to the yield stresses of the materials used for multilayer compound cylinders.  

 Theoretical calculated values by using different lame’s formula are very close to that of values obtained 

from “ANSYS WORKBENCH’13” analysis. The differences are due to the numerical techniques. 
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