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Abstract: Drought is a recurring hazard which affects many parts of Kenya. In most countries in Sub-Saharan 

Africa, agriculture which is predominantly rain-fed is the main stay of the economies is highly prone to the 

impacts of drought which, whenever it occurs, leads to serious socioeconomic challenges at various levels. The 

study of drought duration, magnitude and severity have relevance in many areas such as waste load allocations, 

issuance of pollution discharge permits, location of treatment plants and sanitary landfills, determination of 

allowable water transfers and withdrawals both within, between and outside the affected areas and 

determination of minimum downstream release requirements for hydropower water supply, cooling plants and 

other facilities. Knowledge of the frequency distribution of the drought events is useful as it contributes to the 

assessment of drought risks which have implications on the long term ecological, economic and social well 

being of the biological and human communities that make use of water from the various streams in a basin. In 

this study five frequency distributions were fitted to drought duration and severity as determined from discharge 

data from representative river gauge stations in the upper Tana Basin of Kenya. The frequency distributions 

fitted to the two drought events were the Generalized Normal (GN) or 3-parameter Lognormal, Generalized 

Extreme Value (GEV) or the Extreme Value Type III, Generalized Pareto (GPA), Pearson Type III (P3) and 

Generalized Logistic (GL). The distributions of best fit for the drought events were identified using the Z value 

obtained from the average L-moment statistics of a particular candidate distribution and the average L-moment 

statistics. The Z value for each homogenous region was determined from sample estimates of Lcv , Lcs and Lck that 

were determined from probability weighted moment estimators and the weighted  means of Lcv, Lcs  and Lck using 

records from the river gauging stations representing each hydrologically homogenous region. A frequency 

distribution of best fit was selected if ׀Z
Dis

Z׀ and the one with the lowest 1.64 ≥ ׀
Dis

 value selected as the distribution ׀

of best fit. Results showed that the frequency distribution of best fit for duration and severity was the Generalized 

Normal while the Pearson Type III distribution was the distribution of worst fit for both duration and severity.  
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I. Introduction 
Drought events modelling is about fitting several frequency distributions to drought duration, severity and 

magnitude and selecting the distribution of best fit using a given criterion or several criteria. Since stream flow 

records cannot assume values less than zero, the candidate frequency distributions normally used in droughts events 

modelling are those that are bounded below (that is, have lower limits equal to or greater than 0) and are defined by 

no more than three parameters. Consequently, frequency distributions with a lower bound and those with three 

parameters were deemed suitable for use in this study. The distributions include the Generalized Normal (Three 

Parameter Lognormal), Generalized Extreme Value (Weibull Type III), Pearson Type III and the Generalized 

Logistic and have previously been widely used in various studies by Vogel and Kroll (1989). To derive the risk of 

occurrence of the magnitude of a particular drought event, it is necessary to know the frequency distribution that best 

describes past characteristics of the drought event. This requires that a suitable drought frequency model be 

determined from a group of competing ones through fitting the available historical hydrological drought events data 

to various frequency distribution models and selecting, using a suitable criteria, the most appropriate frequency 

model. 

Empirically, drought frequency analysis involves fitting several statistical frequency distributions to the 

drought events and then selecting the model of best fit for each of the events. The frequency distribution models to 

be fitted should be those that comply with practical statistical and physical considerations. Since drought events 

cannot assume values less than zero, it is necessary that candidate distributions be bounded below (that is, have 

lower limits equal to or greater than 0) and be defined by no more than three parameters. Consequently, only those 

probability distributions with a lower bound and those defined by three parameters are best suited to drought events 

frequency analysis. Five three-parameter statistical frequency distributions were used to model the drought events in 

the delineated homogeneous regions of the upper Tana basin.  
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The frequency distributions fitted were the Generalized Normal (GN) or 3-parameter Lognormal, 

Generalized Extreme Value (GEV) or the Extreme Value Type III, Generalized Pareto (GPA), Pearson Type III (P3) 

and Generalized Logistic (GL). Details of these distributions and their applications are available in Chowdhury et al 

(1991). The distributions were selected because they are widely applied in drought frequency analysis, are simple 

and convenient to apply and are consistent, flexible and robust. In addition, they are theoretically well based, are 

well documented, have lower and upper bounds and are defined by three parameters (Maidment, 1993). 

In this study, hydrological drought was defined using stream flow deficits below the mean as the 

truncation level. The mean flow was used as the truncation or threshold level since it is more sensitive to 

extreme values of frequency distributions, it standardizes the severity of maximum and minimum flows and it is 

indicative of normal hydrological conditions as it lends itself well to revealing the occurrence of hydrological 

drought (Dracup et al., 1980a and Capra, 1994).  

 

II. Literature Review 
Hydrological drought frequency modelling involves examining the frequency distribution of best fit for 

the drought events of duration, magnitude and severity. This is done by statistically fitting several frequency or 

probability distribution models to the events using either the annual maximum series (AMS) or the partial duration 

series (PDS) modelling approaches. In the AMS approach, the largest event within a hydrometric year is extracted 

for frequency analysis while in the PDS approach, all drought events above a given truncation level are considered. 

This means that the PDS approach provides a more consistent definition of the extreme value region compared to the 

AMS approach which is problematic when a relatively low truncation level is used, since in some years drought 

conditions may not occur at all and flow never becomes less than the truncation level. The implication of this is that 

the AMS approach includes zero values such that when there are too many zero-drought years, the sample size is 

reduced and the modelling of the drought events is seriously affected. Consequently, the PDS approach is normally 

used in drought frequency analysis (Zelenhasic and Salvai, 1987; Madsen and Rosbjerg, 1995) and so it was adopted 

in this study. It includes all the drought events in a time series and therefore intuitively provides a more 

consistent definition of the extreme value region. It has been used by various researchers including Zelenhasic 

and Salvai (1987); Madsen and Rosbjerg (1995) and has been recommended by Tallaksen et al. (1997) in 

hydrological drought frequency studies. 

To derive the risk of occurrence related to drought events, the frequency distribution that best describes the 

past characteristics of the events need to be known. This requires that a suitable drought frequency model be 

determined from a group of competing ones through fitting the available historical hydrological drought events time 

series to various frequency distribution models and selecting using a suitable criteria the most appropriate frequency 

distribution model. Empirically, this involves fitting several statistical frequency distributions to the events and then 

selecting the model of best fit for the events. The frequency distribution models to be fitted should be those that 

comply with practical, statistical and physical considerations. Although distributions bounded below by zero and 

defined by no more than three parameters are normally used in drought events modelling, it is important to note that 

the existence or otherwise of lower and upper bounds gives no clue as to the true distribution of the underlying 

variable. This is, for instance, why the Beta distribution although it allows an explicit definition of both lower and 

upper bounds is never used as, in practice, its upper bound will not be attained without a drastic change in river 

regime implying that discharge remains zero for the entire year (Clausen and Pearson, 1995). 

Drought frequency modelling has received increased attention for a long time despite problems of data 

availability. The drought events are extracted from the stream flow series using various techniques such as the 

runs approach, percentile method or the discrete Markov processes (Yevjevich, 1967, 1972) and then fitted to 

various frequency distributions. By the runs approach, drought events are defined as periods when the 

hydrological determinant (stream flow) is less than a certain threshold and a single drought event comprises 

duration and severity or cumulative water deficit. Drought magnitude or the average water deficit is obtained 

from the ratio of severity to duration. The truncation level is a component by which drought events are 

abstracted from the remainder of the hydrological time series and divides the series into ‘above normal’ and 

‘below normal’ sections. It is normally chosen to be some measure of the central tendency of the time series and 

can either be mean, median or mode. However, the mean is usually preferred since it is more sensitive to the 

extreme values of frequency distributions, standardizes the severities of high and drought flows and attributes 

more significance to the extremes of the drought distribution which frequency analysis is most concerned about 

(Bonacci, 1993). 

In modelling drought events, different frequency distributions fitted to various drought events and then 

the best fitting model identified using chosen criteria. The candidate distributions used for fitting include the 

Three Parameter Lognormal, Pearson Type III, Extreme Value Type III, Gamma and the Weibull (Normalized 

Extreme Value) distribution. Others are the Logistic and the Generalized Pareto. Descriptions and applications 

of these distributions are available in Maidment (1993) and other standard texts on statistical frequency analysis. 

Modelling of drought events has applications in assessing drought risks, and this has implications to the long 
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term ecological and socio-economic well being of the biological and human communities that utilize water in 

streams (Waylen and Woo, 1987). 

The identification of the frequency distribution model of best fit for each of the drought events requires 

that goodness-of-fit tests be applied. The available tests are grouped into descriptive and predictive ability tests. 

Descriptive tests are used to find the distribution that best fits the observed sample data and are based on 

moment ratio diagrams, condition of separation and regional behaviour of statistics (Cunane, 1987). The 

predictive ability tests are, on the other hand, used to investigate how well a particular distribution together with 

its associated method of parameter estimation estimates the frequency of the events. 

To determine parameters of the various distributions, different estimation techniques may be used. 

These include graphical, least squares, method of moments, method of maximum likelihood, principle of 

maximum entropy and those based on probability weighted moments. The graphical, least squares and moments 

methods are easy and simple to apply but are biased, subjective and suffer from low accuracy and so their 

usefulness in practical hydrological frequency modelling is quite limited. The method of maximum likelihood is 

theoretically most suitable in providing unbiased and efficient parameter estimates, but several tests are required 

to objectively discriminate against various competing frequency distribution models. On the other hand, 

procedures based on probability-weighted moments (PWMs) are the most modern and are currently widely used 

in hydrological frequency studies worldwide. 

Al-Mashidani et al (1980) fitted several frequency distributions to drought events in the Tigris river and 

applied the chi-square, Kolmogorov-Smirnov and likelihood ratio tests to discriminate against the normal, 

lognormal, square root normal, extreme value type I and III and 2-parameter Gamma distributions and found 

that, except for the chi-square test that accepted all but the normal distribution, the Kolmogorov-Smirnov test 

rejected none. The extreme value type I, on the other hand, fitted the drought events well using the likelihood 

ratio test.  

Drought is a natural phenomenon whose occurrence cannot be predicted with certainty. Drought events 

must therefore be treated as random variables to be investigated by the theories of probability and stochastic 

processes. Knowledge of frequency distribution of drought duration and severity is vital in the performance of 

any water resources system (Sen, 1980). Using different truncation levels to define monthly and seasonal 

drought occurrences, Woo and Tarhule (1994) fitted the normal, exponential, and Weibull frequency 

distributions to drought duration, deficit and time of occurrence in four Nigerian streams and selected the 

distribution of best fit using small root-mean-square error values, Kolmogorov-Smirnov test and theoretical 

considerations. The results showed the duration of short droughts to be best described by the Weibull 

distribution model and the duration and starting dates of drought to be normally distributed. Later, Madsen and 

Rosbjerg (1995) in a frequency analysis study of drought duration and deficit in two Danish streams evaluated 

the suitability of several distributions in modelling drought events and found drought duration to fit the normal 

distribution while the General Pareto Distribution fitted drought severity. Elsewhere, Rossi et al. (1992) have 

provided a detailed review of the existing methodologies for estimating and analysing regional droughts and 

their spatial and temporal variability. Another notable hydrological drought modelling study is that of Clausen 

and Pearson (1995).  

In Kenya, hydrological drought frequency studies are few and scattered and except for work by Mutua 

(1993) and Opere (1999) who fitted several distributions to maximum flow in the Lake Victoria, Rift Valley, 

Athi and the Tana basins and found the Wakeby and the three-parameter lognormal distributions to be the best 

models for flood frequency analysis, no comprehensive study has been done to fit frequency distribution models 

to hydrological drought events. In examining hydrological drought events using stream flow records, it is 

necessary to differentiate droughts from low flows. Low flows differ from droughts in that the duration in low 

flows is of the order of days or weeks, flows occur instantaneously and only one event is selected from an 

annual period of data. The various frequency distributions used by Mutua (1993) and Opere (1999) in modelling 

floods in the country are useful in hydrological drought frequency analysis. However, their suitability or 

otherwise has not been examined and except for preliminary studies by Sharma (1996) who has shown drought 

duration and severity at selected gauging stations in the country to follow the three parameter lognormal 

distribution, no previous attempt has been made to test the suitability of various frequency distribution models in 

modelling drought duration and severity in the Tana basin.  

 

1.1 Data analysis methods 

Frequency distributions contain parameters that need to be estimated before being used as simulating 

tools for drought events. These parameters are mathematical indices characteristic of a statistical distribution, 

have a physical significance and can completely define the mathematical properties of a distribution. Several 

approaches of estimating the parameters of the distributions include the method of moments, maximum likelihood, 

least squares, graphical, probability-weighted moments (PWMs) and the L-moments technique. The first four 

techniques are relatively simple and easy to apply but they provide parameters that are biased and subject to large 
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sampling errors. The L-moments procedure (Hosking and Wallis, 1993) was applied in the study since it provides 

unbiased parameters that are not subject to large sampling errors.  

L-moments are defined to be linear combinations of probability-weighted moments (PWMs) and 

together are analogous to ordinary moments since they summarize theoretical probability distributions of 

observed samples. These moments can also be used for parameter estimation, interval estimation and hypothesis 

testing and can be estimated using linear combinations of an ordered data set. Further, sample estimators of L-

moments, which are linear combinations of ranked observations, do not involve squaring or cubing of 

observations. Consequently, estimators based on these moments are subject to less bias and have very nearly a 

normal distribution while those based on ordinary product-moments requires squaring and cubing of 

observations causing them to give greater weights to the observations far from the mean resulting in substantial 

bias and variation in small samples (Potter and Lettenmaier, 1990).  

The L-moment estimators also provide more accurate quantile estimators than product moment and 

maximum likelihood estimators, they characterize a wider range of distributions, are less biased to estimation, 

are more robust to the presence of outliers in the data, approximate their asymptotic normal distribution more 

closely in finite samples and frequently yield accurate estimation of parameters of fitted distributions (Vogel et 

al, 1993). Because of these reasons, the L-moments technique has lately found wide application in hydrological 

frequency analysis studies in various parts of the world and was therefore found to be ideal for use in this study. 

The simplest way of defining L-moments is by using probability-weighted moments since L-moments are linear 

combinations of PWMs. Probability weighted moments (PWMs) may be defined (Greenwood, et al., 1979) using 

equation (1). 

 

βr = E{X[FX(x)]
r
}           (1) 

 

Where, 

 

 βr is the r
th
 order PWM and FX(x) is the cumulative distribution function of X. 

 

When r =0, β0 is the mean stream flow and so a sample estimate of the first PWM denoted by b0 is the sample mean.  

 

The first four unbiased sample estimates of the PWMs for any distribution can be computed using equations (2) to 

equation (5). 

β0 =m=1/n 


n

j 1

 xj          (2) 
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


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 [(n-j) / (n (n-1)]xj         (3) 
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


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1
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 [(n-j) (n-j-1)/ n (n-1)(n-2)]xj        (4) 

β3 = 




3

1

n

j

 [(n-j)(n-j-1)(n-j-2)/ n (n-1)(n-j-2)]xj       (5) 

Where,  

x(j) represents the ordered statistics. 

 

From the expressions in the above equations, the first four L-moments are obtained for the population using the 

expressions in equations (6) to (12) while those for the sample can be obtained by substituting b1, b2, b3, b0 in the 

equations.  

 

λ1 = β0            (6) 

λ2 = β0 - 2β1           (7) 

λ3 = β0 - 6β1 + 6β2           (8) 

λ4 = β0 -12β1+30 β2-20β3          (9) 

τ2 = λ2/ λ1           (10) 

τ3 = λ3 / λ2           (11) 

τ4 = λ4 / λ3           (12) 
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III. Selection of best fitting frequency distribution 
The distributions of best fit for the drought events were identified using the Z value obtained from the 

average L-moment statistics of a particular candidate distribution and the average L-moment statistics. The Z value 

for each homogenous region was determined from sample estimates of Lcv , Lcs and Lck that were determined from 

probability weighted moment estimators and the weighted  means of Lcv, Lcs  and Lck using records from the river 

gauging stations representing each region. Using the P3, GEV, GL and GN distributions, random samples were 

generated and Lcv , Lcs and Lck estimated for each simulated sequence and the average value for the sequence 

obtained together with the overall average value and the standard deviation of the mean values from the simulations 

done. A frequency distribution was selected as the best fitting if ׀Z
Dis

 Although several distributions passed .1.64 ≥ ׀

the goodness-of-fit criteria, the one with the lowest ׀Z
Dis

 value was taken as the distribution of best fit. The ׀

goodness-of-fit measure, Z
Dist 

was then determined using equation (13). 

 

Z
Dist

 = (τ4
Dist

- 4  +β4)/σ4            (13) 

 

Where, 

τ4
Dist

 is the average L-kurtosis from data of a given site, 4  is the average L-kurtosis from simulation for a fitted 

distribution, β4 and σ4 are the bias and the standard deviation of 4 , respectively.  

 

IV. Results and Discussion 
The frequency analysis results for drought duration are shown in Table 1 for the four homogeneous 

regions. The model of best fit in each homogeneous region was selected using the Z-statistic goodness of fit 

whose values are also given in the Table. The statistic was used to judge how well the regionally averaged L-

statistics values matched the simulated ones in the homogeneous regions. 

 

Table 1: Regional frequency model for drought duration 
Region Frequency distribution model Z-value 

R1 Generalized Normal 
Generalized Pareto 

Pearson Type III 

Generalized Extreme Value 
Generalized Logistic 

0.87 
1.37 

-2.42 

2.88 
3.03 

R2 Generalized Extreme Value 

Generalized Pareto 
Generalized Normal 

Generalized Logistic 

Pearson Type III 

0.88 

1.37 
1.62 

2.03 

-2.32 

R3 Generalized Normal 

Generalized Extreme Value 

Generalized Logistic 
Generalized Pareto 

Pearson Type III 

0.67 

0.86 

3.03 
2.07 

-2.12 

R4 Generalized Normal 

Generalized Logistic 

Generalized Pareto 

Generalized Extreme Value 

Pearson Type III 

0.97 

1.03 

1.77 

1.88 

-2.62 

 

The model of best fit is one for which Z 1.64. From the Table, drought duration in Region 1 (R1) is 

best fitted by the Generalized Normal (GN) distribution followed by the Generalized Pareto (GPA), Pearson 

Type III (P3), Generalized Extreme Value (GEV) and General Logistic (GL), in that order. The respective 

absolute Z-statistic values for these distributions are 0.87, 1.37, 2.42, 2.88 and 3.03 which clearly shows the 

model of best fit for drought duration in this region is the Generalized Normal (GN) or the 3-Parameter 

Lognormal whilst the model of worst fit is the Generalized Logistic (GL). For Region 2 (R2), the model of best 

fit was the GEV with a Z-statistic value of 0.88 followed by the GPA whose Z-value was 1.37. The worst model 

in this region was the Pearson type III (P3) with a Z-statistic value of 2.32. The order of preference of the 

frequency distribution models in Region 2 (R2) is Generalized Extreme Value (GEV), Generalized Pareto 

(GPA), Generalized Normal (GN), Generalized Logistic (GL) and Pearson Type III (P3) with Z-values of 0.88, 

1.37, 1.62, 2.03 and 2.32, respectively. For Region 3 (R3), the best fitting distribution was the GN whilst the 

worst fitting frequency distribution was the GL with the order of model preference being GN, GEV, GPA, P3 

and GL with corresponding Z-values of 0.67, 0.86, 2.07, 2.12 and 3.03, respectively. The order of model 
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preference in Region 4 (R4) from the best to the worst fitting was GN, GL, GPA, GEV and P3 with respective 

Z-statistic values of 0.97, 1.03, 1.77, 1.88 and 2.62. The Generalized Normal was the overall best model for 

fitting drought duration in the basin as it was best in Regions 1, 3 and 4 (R1, R3 and R4) whilst the model of 

worst fit was the GL in region 1 and region 3 (R1 and R3) but that in regions 2 and 4 (R2 and R4) was P3. 

The frequency modelling result for severity is shown in Table 2. The findings show the model 

preference in R1 to be GN, GPA, P3, GEV and GL with respective Z-statistic values of 0.82, 0.91, 0.96, 1.29 

and 3.82. The worst performing frequency distribution model in R2, R3 and R4 was found to be P3 except for 

R1 where the model of worst fit was the GL. The overall model of best fit for severity was the Generalized 

Normal as it provided the frequency distribution model of best fit in three of the four regions in the basin. The 

model of worst fit for severity was P3 in three of the four regions. The order of preference in the performance of 

the various fitted frequency models is shown in Table 3. The findings in this study are consistent with those of 

Al-Mashidani et al (1980), Srikanthan and McMahon (1985), Woo and Tarhule (1994); Madsen and Rosbjerg 

(1995); Sharma (1996), Tallaksen and Hisdal (1997). The GEV distribution is ideally the model of best fit for 

drought duration and severity as it is theoretically the parent distribution of extreme drought flows. However, it 

performed poorly in this study probably because it requires a relatively complex numerical algorithm not 

suitable for many practical applications (Vogel and Kroll, 1989). It has, nevertheless, been found suitable in 

modelling flood events and to provide flood flow estimates in most Kenyan catchments by Opere (1999).  

From the frequency results in Table 3, the GN distribution is the best fitting frequency distribution for 

drought duration and severity. But, the P3 distribution did not perform well since it requires at site estimates of 

skew coefficients that are not precise for the small samples typically encountered in practice and is normally 

used in modelling flood flow events. The estimated parameters for the generalized normal distribution are 

presented in Table 5 and the cumulative distribution function F (x) is given in equation (14). 

 

F (x) =    kauxk //)(1log         (14)

        Where   is the standard normal 

cumulative function; u, a and k are parameters describing location, scale and shape of the distribution. 

 

Table 3: Regional frequency model for drought severity 
Region  Type of frequency distribution Z-value 

R1 Generalized Normal, GN 

Generalized Pareto, GP 
Pearson Type III, P3 

Generalized Extreme Value, GEV 

Generalized Logistic, GL 

-0.82 

-0.91 
0.96 

1.29 

-3.82 

R2 Generalized Extreme Value 

Generalized Pareto 

Generalized Normal 
Generalized Logistic 

Pearson Type III 

-0.81 

-0.92 

0.96 
1.39 

-3.62 

R3 Generalized Normal 
Generalized Extreme Value 

Generalized Logistic 

Generalized Pareto 
Pearson Type III 

-0.72 
-0.81 

0.86 

1.19 
-3.52 

R4 Generalized Normal 

Generalized Logistic 

Generalized Pareto 
Generalized Extreme Value 

Pearson Type III 

-0.80 

-0.91 

0.94 
1.24 

-3.22 

 

Table 4: Regional parameters for drought duration and severity 

(a) Drought duration 
Region U A K 

R1 

R2 

R3 
R4 

0.54 

0.52 

0.48 
0.52 

0.46 

          0.45 

0.40 
0.44 

-0.44 

-0.43 

-0.42 
-0.41 

 

 (b) Drought severity 
Region u A K 

R1 

R2 

R3 

R4 

0.56 

0.55 

0.53 

0.54 

0.47 

0.48 

0.41 

0.45 

-0.42 

-0.46 

-0.43 

-0.44 
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The parameters in Table 4 can be used to compute standardized quantile estimates for different return 

periods for both duration and severity in the homogenous regions of the basin. From the parameters obtained, 

dimensionless quantiles for duration and severity in the four homogeneous regions of the basin can then be 

derived, which together with respective means of the events, can be used to provide estimates of both duration 

and severity at specified return periods in each of the regions. From the expected magnitudes of the drought 

events at different return periods, planning of water dependent activities can be done to ensure availability of 

water for various applications. 

 

 

 

V. Conclusion and Recommendations 
The overall frequency distribution of best fit for drought duration and severity was found to be the 

Generalized Normal whilst the Pearson Type III frequency distribution was the distribution of worst fit for both 

drought duration and severity in the basin. Some of the recommendations following the findings of the study include 

a) The need for public education and the need to institute various mechanisms of maintaining holdover storages, 

lowering intakes to groundwater supplies and adopting various water conservation activities such as reforestation, 

basin and catchment rehabilitation within the various zones of the basin.  

b) Promotion of strip cropping, terracing, storage of water in farm ponds and back of check dams and reservoirs to 

provide sufficient water for domestic, municipal, hydropower, agricultural and industrial activities in the basin. 

This means that available water resources in the basin should be managed in an integrated manner to ensure 

sufficient availability of water to maintain supplies for different uses. 

c) Limiting and/or adjusting different economic development activities within the basin to available water. The 

various zones prone to drought occurrences should be used to guide future development policies and endeavours in 

this regard. 

d) Instituting a comprehensive policy and legislation on drought management in areas where drought is recurrent. 

This should form the basis for integration of drought management issues into national and local development 

programmes. A suitable mechanism should be found of bringing together all the stakeholders such as government, 

nongovernmental and international organizations, Institutions of higher learning, research institutes and 

the local communities to be actively involved in various aspects of drought management in the basin. 

An early warning and national monitoring system will also need to be established to ensure continuous 

assessment of drought impact in various regions of the basin.   
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