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Abstract: This paper presents a method to design adaptive controller for robot based on Lyapunov control
function using Backstepping techniques combined sliding mode control and neural network. This study used the
neural network to approximate the uncertainty functions, the weight coefficients of the neural network are
trained online. The simulation results of the controller on the 2 degrees of freedom robotis is the sustainable
control systems with sticking to the trajectory with a zero attachment error, that showed the correctness of the
theoretical analysis and the applicability of the adaptive controller using Backstepping techniques and sliding
mode control.
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I.  Introduction
The design of the global asymptotic stabilizer controller by Backstepping technique based on
Lyapunov function applied in nonlinear dynamic system is being studied and there are some published works
such as [1, 2, 3, 4, 5, 6, 7, 8]. To further develop this idea, we present the method of designing adaptive
controllers using an online training 3-layer neural network to approximate the uncertainty functions of the
object, Lyapunov control function associates. matched with the sliding controller to resist interference, ensure
the closed system is globally stable and the deviation reaches zero with good quality.

To achieve the desired, in this study, the authors focused on designing the controller including 2 control stages
based on Lyapunov control function and sliding control (SMC):

1. Design of a triple-layer noron network controller (MNN)

2. Design of sliding controller

3. Stability analysis

Applying the controller simulation in this research application for 2 degrees of freedom robot.

I1. Controller Base Of Design Controller

2.1. Control problem
Considering the object of retrograde transmission, it is expressed in a general form:

%= £ (X X0 X))+ Gy (X0 Xgeeh %) Xy
X, = f(X)+g(x)u+T, )
y=X
i=12,...,n-1
In which: %i = (% X0 %) and state vector with i elements; x=[x .. Xn]T The vector state of the system and Ty is

noise. Assume that state variables and noise are both bounded and f () and g () are arbitrary smooth functions.
The design task was set out to find the controller for the object (1) to ensure the global tightness, stability, noise resistance and
zero-tolerance.

2.2. Basis of controller design
The idea of the method is to design the controller including 2 stages: Unn (t) is a control channel

designed on the basis of Lyapunov and Usve (1) s o sliding control channel (SMC) used to resist interference,
the uncertainty functions of the object are approximated by a three-layer linear transmission neural network
(MNN).
Diagram of a closed system control system is described as Figure 1 and the controller is the sum of two control
signals:

U(t) = Ugye (1) + Uy (1) ®)
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Figure 1. Controller structure diagram

2.2.1. Noron network controller design direct three-layer transmission
Considering the nonlinear object with the inverse propagation structure (1) ignoring the effects of noise we
have:

% = (X %0 %)+ 05 (X0 X000 %) X

X, = f, (x)+9g,(x)u 3)

y=x
a) Approximating the function by artificial neural network
Hypothesis 1: 9,(x) is a smooth function that defines a known property and a constant 9, >0
satisfy: i (%)2]9,(%)|2 Gi vsi Y% <R The conditions to ensure that the (3) controllable system is
gi(xi):to_
Hypothesis 2: the desired state vector Xdi with J=12,....,n+1 is continuous and known in advance.

X € Q4 and L is the compact file.

Use 3-layer MNN to approximate the uncertainty function h (z): h(Z) ‘R" >R,

Om(2)=W'S(V'Z) @)

with £ = (ZT 11)T > input vector

W = (W, Wy,... W)  €R' gng V = (v, V,,...v,)" € R o e weight matrix from grade 2 to grade out

and from grade in to layer 2 of MNN. The number of neurons in a class is always satisfied I>1 The output
signal vector of layer 1 is as follows:
1 0
—7. ; constant 7 >

S(V'Z)=(s(%Z),5(v;Z),....504 1, 2).) it S(z,) = T

According to [7], MNN (4) satisfies the Stone-Weierstrass condition and can approximate any continuous
function on a compact set with optional precision.

Approximate function: h(z):W*TS(V*TZ)J’” (5)

with: YZ€Q; cR™. M s the approximation error of NN and €%z is a compact file.

Hypothesis 3: For smooth functions h (Z) and approximations (4), there always exist ideal weights WOV s

‘F" SHoyei B> 0YZ€Q; That means the approximation error is always less than or equal to constant #

Essentially W* and V* is unknown, these weights need to be estimated when designing the controller. Call
W,V are the estimated weights of W* and V* then the weight estimation error is determined as follows:
W=W-W":V=V-V
Lemma 1: The estimated MNN (4) can be expressed as follows:

WTSV'Z)-WTsVT2)

e A an N a 6
=WT(S—S\/TZ)+WTS\/TZ+du, ©
R . N o . a' — T — 1=
Here S=S(V'Z),S =diag {§1'§2""’§I’}With § =30 2)=dls(z,)]/dz, iz L2,
and residual limits du is blocked by ‘du‘ﬁ‘h/* E ZV\A/TSM F +‘M* §VTZ“+‘W*1 ()
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Conclusion [7]: Considering closed system including model (3) when i =1 and controller (9), if amplifier (10)
Constant €1 > 0 NN weights updated by (11) with: I'wa = I >0,

Iy = FL >0, and Ow1:0u >0 , top condition Xi(O),V\ll(O) and Wl(O) is blocked, all signals in a closed

system are blocked and vectors Z, exist in

Q, ={(%, Y5, Y0) |2 ©)

8
S\/2c0e4‘+2cllﬂi,xdze§2d2} ©
with CorCir 41 positive determination constant.
1 . .
U, = m [_kl ® Z _WlT S, (\/1T Zl)] 9)
1 1
k (t) = —(1+ jo 09,0z, +y,)do
&
, , (10)
TS SN\7T
|z s +fsviz )
Wl = le[(él - SAlvlT Z))z, - O-wlwl]
(11)

V= 1ﬂvl[z1\/\A/1T él Z,— O-vl\il]

b) Design of adaptive controller by Backstepping technique

In the control design for backward nonlinear systems, the model determines the design of Lyapunov control
function by backstepping technique to ensure that the global stable closed system is made easily. But when the
object has non-functional components, this controller is no longer available. To achieve this, it is necessary to
approximate the uncertain functions of the object. In this paper, we use three-layer linear neural network to
approximate. Algorithm for designing adaptive controller by artificial neural network based on backstepping
technique is done as follows:

Step 1: Consider (3) when giving 1 =1 is mean: % = £,0¢)+9,(4)X%, | By watching X2 As a virtual
control input and control, we choose a new bias variable Z, =X, =0 ygi % =Unn, defined in (9) and

2, =f,(¢)+9,(x)(z, + ) - ¥y
Choose V, = I 0p,(0 +Y4)d0 and transformed by [7], we get:
0

vzl =7 [gl(x1)(zz + Oﬁ) + hl(zl)] :>vzl =—k(t) 212 —v12 +2,0,(%)7, (12)
Step 2: Consider (3) and give | = 2 I have: %2 = T2(X2) + 9, (X)X (13)

Looking at X3 as a virtual console, we can design a controller ando head #2 for (13). Determined =X =@,
we have:

Iy =% =0 =H,06)+0,(X )z +2)-d (14
Choosing: Vs> =Vau +j02 op,(X,0+a;)do >0
=V, =\/'Zl+zzﬁ2(x2)z'2+rza{8ﬂ2(xl'°”r“1) X,

0 X,

(15)

B (n0ta) dlida
0oy

Using (12), (14) we have:
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j“aaﬂz(xl’“al)alda:alj“aaﬂz(x““al)da ¢ = > X, + @, 0 = —L X,
0 0 oo, 0 oa, i 1 d2 .
! I .

: 2 oa, .~ ~=| Oay

:al[zzﬂz(xz)_,[o ﬂz(xl,o+a1)da} +@_V\711Wl +;|:8\71: le}

With V\A/l and \;)lp is defined in (11), we have:
vsz = _k1(t)212 —vi2,+2,0,(%)2, .
+2,[9,(%,)(2, + a,) +h,(Z,) (17
Here:
X rz OB, (X,0+a
)= A0 o-ﬂz(gxll)do

_ ﬁjozzﬂz(xl,o+al)da
2

:ﬂz(Xz) fZ(X2)+X122I:9 aﬂZ(Xl(,aizz +Cl1) do

1

ol
6, [ B,(%,,02, +a,)d0
with: Z; :[x;,aq_,@%/é‘xl,a)l]T €Q,, R°.

Select control function:
1 N n
@, =——[-0,(x)z,-k, )z, ‘WzT S, (VzT Z,) (18)
9,(X,)
Here:

1
I, () = i(1+ [169,(4.62, + )do
&
(19)
A A2 Ay A 2
s Jsvizif )
With constants €2 > 0 , and network weights updated by

A

W, =T, [(§2 - SAI2\72T Z,)z,— Uwzwz]

A ~ o n (20)
V,=I, [(Zzwz S,2, - szvz:|
with in: I'w2 =T,,>0,I,=I,,>0 and OwzOy2 > 0.

Through some transformations we have the result:
2
; 2
Vs :_Z[kj (t)zj TV ]"’ 2,0,(%;)Z
j=1

Step k: The process is done the same for each step: k. (3 <k<n _1) . Consider the system (3) when:
P =K; % = f (X )+ 9 (X)X
Choosing Lyapunov function:

7 ~
_ . .« o
Vi =V +I0 P (X 1,0+ 1)do  we can design control functions “ and jurisprudence Wy and

A

Vi have similar forms (18), (19), (20).
Step n: Consider Z, =Xy ~ %1 we have:
z2,=X,—c,,=f (X)+9,(Xu—-¢a,,
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Select the function Lyapunov:
Vo =V JrJ.OZn of.(X,,,0+a, )do 1)

:>vsn :vs(n—l) +2,6,(X,)2,
+I [éﬂ(&va+a D

n-1

Xn -1

OX,, 4

aﬁn(xn 1’G+an 1) :|dO'
Similarly we have:
_Oa,

a, = ox Xj +m,

i

:Z{aa L1 15(%) + 9;(X )xj+11}+a)

=1

Here
= Oa,,_
X +—= W.
Jziﬁxd(m) W aw
Ij oa 14
+ Ly
pz:;L aojvp JPJ
with Wj and \71,,; for 1=12,..,n-1 Designed in the previous steps N—1 and we have:
n-1
2
V= _ZI:kj (t)zj -H//jzj]-l_ Z, 1901 (% 4)Z,
= (22)
Zn [gn (X)UNN + hn (Zn)]

Here:

2= A1) 2, [ Pl g
n-1

_dn—lj‘:ﬁn (Xn—l' Hzn + an—l)de

T
Z.=(x.a,, O0at, ’ 0ct, 4 - Oct, o, | eQ, cR™
OX,  OX, OX,y

n

The controller is selected as follows:

1 A
Uyy = m |:_gn—1(xn—l) 2, -k (), _WnT S (V”T Z”)} (23)

with:

k(1) = — (1+j 69, (x .02, +a,)d0

) (24)

Select constants €n = 0 and the jurisprudence of the neural network
W, =T, () SVZ)z,-0,,W, ]

V,=T, () $z,-0,V,]

vnVn
With:rwn :r;/n >O,F r >0 and O, >0

wn ! V
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2.2.2. Design sliding controller

Consider (1) the slider controller design task is to give (Td) noise resistance € —> 0. Definition of a sliding
surface:
n—2e dn—l

G Thager @) with S(e=0)=0

To make sure !'j{} €(t) =0 then we have to choose coefficients & of polynomial characteristics

S(e)=e+a1%+m+an2

A(s)=1+as+:- 'an_zsn_z + an_lsn_l (28) such that (28) is a Hurwitz polynomial. With the slip surface

(27), the design task is to identify a control signal Ysvc so that when there is interference, the system will leave
the sliding surface, this control signal will pull the system back to the sliding surface. The design of the slider
control signal [8] is based on the Lyapunov function:

1.2
Vauc (S)= E S (29)
And the sliding control signal is determined from the condition

w =55 =—KSsgn(S)<0;K >0 (30)
The condition (30) is called the sliding condition.

Se)=¢é+af+..+a, e

F n
rom 2, (1 —(f () +g(Ugye )) =K sgn(S)
| have:
_ Ksgn(S) +D(8,....e"?)—a,, f(X)
e ™ a,,9(x) (31)
With: D(,...e" V) =é+ag+..+a,,"" +a, w"

2.2.3. Stability analysis
Theorem: Reverse propagation system (1) provided that the observed state variables are directly and blocked,

indefinite functions f(X) and smooth uncertainty functions 9(X) are blocked, the controller (2) with

components Unn is defined (23) and Uswic defined in (31) to ensure that the closed system is globally stable
and has an adherence error of 0.
Prove

select function: ¥ =V +Vsuc
For V to be Lyapunov, the function and function must be Lyapunov.
We see after each design step a positive determination function appears:

g .
V, = IO of. (% ,,0+a )do,i=2,3..,n (32)
So we choose it as Lyapunov function and this is an important key point of the method.
According to Hypothesis 1, we know that:
1<B(Xpo+a )< (%, 0+a )] g
and the following properties:

)L )l zi2
(i) Vo =27 08 (x 1,02, +0,.)d0> 2] 030="- (33)

1
V, =27 [ 0B.(x,1,02, + )0

2
(i) <5 J‘legi(xi_l,@zi +a;,)do (34)
giO 0
Theorem 2 [7]: Consider a closed system including a tight backward transmission system (3) satisfying the
assumption 1, the controller (23) and the law of updating the weight of NN (25). For the initial condition is

blocked.

(i) all signals in the closed loop system are blocked, and vectors Zj exist in compact files

DOI: 10.9790/0050-07012535 www.iosrjournals.org 30 | Page



Adaptive Control for Robot Based On Backstepping Technique and Sliding Mode Control

{ Satwsc, IMI <

min (r )
(35)
S =St )
with the constant Co and
(ii) inequality
. 1 t_o 28] n
!L”;‘fo z (r)dr < — - ;Ci (36)
J -
At &
Zz (t) <2V (0)e” +/15 Izic,, Vt>0 (37)

with Ci+Vs(0), 4 are positive constants.
Selected function Lyapunov:

Vi =V =V, + % i[ijr&le +r {VJ'TF;V]\]J' }J

j=1
The final derivative and transformation we have

V, <-4V, +) ¢
j=1
In that place:
_ 1 2 2
Cj —EJ- Z X +ﬂj
Gl w2
Ag=min{g,,/ &,/ &1 O 1 &,
GW / ﬁ’max (F;Vl)’ UV / ﬂ’max (1—‘\71)}
and I have

V,(t) <V, (0)e ™™ +%ch;Vt >0
s j=1
J (39)

V02V, =YV, 252 20
=1 =1

A

This confirms for the initial condition is blocked, all signals Zi, W, and Vi, of a closed system and a set exists

Qi like that Zi € Q4 with every moment.
Replace the controller (23) and (22) with some of the last transforms we have:

Vi, :—i[kj(t)szjzj]

i

Slide control
e
Select function Vmc = 5 S°>0 (39)
dv, :
Derivative (38) from time to time is obtained dStMC =S.5

with:

DOI: 10.9790/0050-07012535 www.iosrjournals.org 31| Page



Adaptive Control for Robot Based On Backstepping Technique and Sliding Mode Control

$(e) =—Ksgn(S) = Ve =-KSsgn(S)  (a0)
so K >0 is Ve =—KSsgn(S) <0
If you choose larger, the sliding speed on the slip surface of the deviation € more faster.

Result: Van and function Vswc are Lyapunov functions so that V is a Lyapunov function.
V =V +Vgue >0 = {V =V, +Vg,c

Vsue <0; VNN <0 and condition (38) so the closed system is globally stable and the error adheres to zero.

I11. Application Of Controller For Robot
In this section, the authors will apply the controller and simulate the applicability of the ando controller to
simulate verification on n-degree robots.

3.1. N-level robotic mathematical model
The dynamic equation of the robot of degrees n degrees of freedom is expressed as follows:

H(0)d+C(0.0)4+G(a) +Fd+F,(0)+T,=M (an)

set: A(0,4) =C(0,d)d+G(a)+ F,q+F.(d)+T,
So (41) can rewrite:

M(t) = H(a)d+A(a.d) (42)

with: H(@)=H,(0)+H,(@), AG.9)=A0.0+A(d)
H,(@); A(9,9) =C, (9,9)4+ G, (a) + F4d are known components.
H,(@); A 0,6)=C,(a,0)d+G, () +Fd+ F(@+Ty are indeterminate components
Therein( € R" , a9 respectively, angle, speed and acceleration of the matching variables; H(g) e R™ s
an inertial, symmetric positive positive matrix; C(9,9)q e R" is a connected and radial moment vector;
G(q) e R" is the gravity vector; Fy € R™ is a diagonal matrix of viscous friction coefficient; F (@) e R" is

the dry friction coefficient; T, € R" is noise.
Set state variables:

X = (Xgreea X, )| = (g Fogaoons Yo %)
z(qllvqu""'qnl’qHZ)
From (42) 1 have: §=H (M —A(q,q)) (43)

If we consider cross-linking as uncertainty, we have a general model as follows:
X=1(X)+0;(Xuy;1=1+n; j=1+2 (49

In the place: fij (x)=0 and Yij = %2 at J=1Vi - 0 (X) :1, Vi,

fy () =H(@)".C(A,0)q and Uy =H(@) "M 4 j=2,Vi

So (44) is rewritten:

X :(Ov flz(ﬁ)yol fzz(l)y---lov fnz(ﬁ)T
+gij'(X12’u12’X22'u22 ----- Xn2: unz)T
With functions fi2 (X| ’QI ) and glj (_I ) )’

1=1,2,...,n; J =12 4r¢ indeterminate functions because they contain an infinite parameter vector of each

M =(7,, 75,07, ) - U=(Up,Uppyeen Uy, Upy)

(45)

match 9 , We can show the model (45) through n tightly propagated models as follows:

X, =X
{>_< = £(x,0,)+ 0, (%, 0)u +d(t) (O
i=12,..n; g, =0.
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The robot model presented in (46) allows the use of a controller design based on the Lyapunov control function
adapted by Backstepping and artificial neural networks to approximate the uncertainty function associated with
the controller. controls sliding to resist interference.

3.2 Verification simulation on 2 DOF robots

3.2.1. Simulation parameters

In this section, the study simulates the separate and concurrent effects of the noron network controller and the
sliding control.

- Robot model: Consider Planar 2 DOF robot as Figure 2:

The change G; in tight backward transmission is as follows:

Figure 2. Flat robot structure 2 DOF

X1 =X
X, = f (%, X)) + 035 (Xp, X35 Uy (47)
0, =%

f12(x11' Xlz) = k(_hzzai + hlzaz)
with: 912()(11’ Xlz) =1
Uy, =k(hy,7, —hy,7,)
Similarly with 0, | have:
Xo1 = X5
Xpp = F10 (Xo, X0 ) + g (Xo14 X55) Uy, (48)
U, = Xn
fzz (le’ Xzz) = k(h21a1 - huaz)
With: |92 (Xp11 Xp) =1
Uy, = K(=h, 7 +hy7,)
Stitch 1: weight M = 5kg length k= 0.45m
Stitch 2: weight M2 = 3kg , length I, =0.35m

Two match variables: 91’ 6)z
- Select controller:

UNN = —Zl - kz (t) Z2 _WZT Sz (VZT ZZ) (49)

.
oa.
With Z1 =X = Y412, =X~ and 4, |:X1’X2’al’£la)lyli|

2

with: & :_k(t)zl _WlTsl(\ilTZl) ; Zl = [Xl’ Yar yd ’1]T

. .
K (1) :%[;“zjw;é;”i S Z"“Zj; 1
.

the corresponding weights W, V) W, VY, pe updated according to the expression (11), (25).
Choose the coefficients:
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y=3.0,¢,=1.0;¢,=50. 0, =0, =1x10". 0, =1x10%0, =1x10°T,, =T, =diag{10}.
I, =T, =diag{10.0}

.\ . n . U,
The initial weights: W, (0) =0.0, W,(0)=0.0 'V;(0)  V,(0); take randomized Ysve {uj and
{Ul =sgn(s, (&) +kw, +W, —kx, - f,

U, =sgn(s, (e,)) + k,Ww, + W, —k,x,, - f,, (50)

3.2.2. Simulation results
Case 1: The effect of a NN controller without an SMC controller is shown in Figure 3:

qd =step; g1; g2, e1=gd-gl; e2=gqd-q2

14
qd
A o e e q1
1 — - ®
el
[ S ARROEECDEDEEET ELEECEECEEEEE — —e2
S S S R ]
S
3 L R e LR —
0.2 -4 mmm e o e e -
Lo e R
0.2 - o oo e —
0.4
0 0.02 0.04 0.06 0.08 0.1

Time(s)

Figure 3. Response result when there is only NN controller (without SMC controller)
Case 2: The impact of a SMC controller without a NN controller is shown in Figure 4:

qd =sin; q1: g2, el=gqd-ql; e2=qd-q2
15

1

=}
o

. Contral SMC
=)

Time(s)

Figure 4. Response resuit wnen tnere 1s onty >ivie contronier (without NN controller)

Case 3: The impact of both NN and SMC controllers is shown in Figure 5, Figure 6:

gqd=step: q1: g2 el=qd-ql: e2=gqd-q2

12
p—
1 —a
e
P I O A N SN S — e
2 — e2
&
B 0.8 L T
=
=
B 04 e E
z
L O S S -
ol
0.2
o 0.02 0.04 0.06 0.08 01

 Time(s)

Figure 5. Response results when both NN controllers and SMC controllers are involved (qd = step)

gd=sin; q1; g2; el=qgd-ql; e2=qd-qg2
T T T T T T

, Cotrol NN & SMC
o

0 5 10 15 20 25 30 35 40 45 50
Time(s)

Figure 6. Response results when both NN controllers and SMC controllers are involved (qd = sin)
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IV. Conclusion
The simulation results of the controller for 2 degrees of freedom robot show that: thanks to the ability

to approximate the high-precision neural network function of the neural network, we do not need to analyze
cross-relations between the joints as well as the change of inertia torque, friction force, ... but still ensure the
exact trajectory set with good quality.

The simulation results confirm the applicability of the controller to the n-degree robot with an

uncertainty model and the influence of noise to ensure a stable stable system, sticking to the trajectory set with a
zero-tolerance. without the need to accurately analyze the cross-linking between joints, as well as other
uncertainties of the robot such as load, friction ... It is also the advantage of the controller compared to the other
adaptive sustainable controllers.
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