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Abstract: This paper presents a method to design adaptive controller for robot based on Lyapunov control 

function using Backstepping techniques combined sliding mode control and neural network. This study used the 

neural network to approximate the uncertainty functions, the weight coefficients of the neural network are 

trained online. The simulation results of the controller on the 2 degrees of freedom robotis is the sustainable 

control systems with sticking to the trajectory with a zero attachment error, that showed the correctness of the 

theoretical analysis and the applicability of the adaptive controller using Backstepping techniques and sliding 

mode control. 
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I. Introduction 
The design of the global asymptotic stabilizer controller by Backstepping technique based on 

Lyapunov function applied in nonlinear dynamic system is being studied and there are some published works 

such as [1, 2, 3 , 4, 5, 6, 7, 8]. To further develop this idea, we present the method of designing adaptive 

controllers using an online training 3-layer neural network to approximate the uncertainty functions of the 

object, Lyapunov control function associates. matched with the sliding controller to resist interference, ensure 

the closed system is globally stable and the deviation reaches zero with good quality. 

To achieve the desired, in this study, the authors focused on designing the controller including 2 control stages 

based on Lyapunov control function and sliding control (SMC): 

1. Design of a triple-layer noron network controller (MNN) 

2. Design of sliding controller 

3. Stability analysis 

Applying the controller simulation in this research application for 2 degrees of freedom robot. 

 

II. Controller Base Of Design Controller 

2.1. Control problem 

Considering the object of retrograde transmission, it is expressed in a general form: 

   

   

1, 2 1 2

1

1, , , , ,i i i i i i

n d

x f x x x g x x x x

x f x g x u T

y x



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
 

   





 






 (1) 

1,2, , 1i n    

In which: 1 2( , , , )T

i ix x x x  and state vector with i elements;   1

T

nx x x  The vector state of the system and dT
is 

noise. Assume that state variables and noise are both bounded and f (x) and g (x) are arbitrary smooth functions. 

The design task was set out to find the controller for the object (1) to ensure the global tightness, stability, noise resistance and 

zero-tolerance. 

 

2.2. Basis of controller design 

The idea of the method is to design the controller including 2 stages: ( )NNu t  is a control channel 

designed on the basis of Lyapunov and ( )SMCu t  is a sliding control channel (SMC) used to resist interference, 

the uncertainty functions of the object are approximated by a three-layer linear transmission neural network 

(MNN). 

Diagram of a closed system control system is described as Figure 1 and the controller is the sum of two control 

signals: 

( ) ( ) ( )SMC NNu t u t u t                       (2) 
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Figure 1. Controller structure diagram 

 

2.2.1. Noron network controller design direct three-layer transmission 

Considering the nonlinear object with the inverse propagation structure (1) ignoring the effects of noise we 

have: 

   

   

1, 2 1 2

1

1, , , , ,i i i i i i

n n n

x f x x x g x x x x

x f x g x u

y x

   














  (3) 

a) Approximating the function by artificial neural network 

Hypothesis 1:  i ixg  is a smooth function that defines a known property and a constant 0 0ig   

satisfy: 0( ) ( )i i i i ix g x g g  với 
i

ix R  . The conditions to ensure that the (3) controllable system is 

  0i ig x  . 

Hypothesis 2: the desired state vector djx  with 1,2, , 1j n    is continuous and known in advance. 

djx Ωdj  and Ωdj  is the compact file. 

Use 3-layer MNN to approximate the uncertainty function h (z):   : mh z R R . 

  ( )T T

nng z W S V Z              (4) 

With ( ,1)T TZZ : input vector 

1 2( , , )T l

lW w w w R   and 
( 1)

1 2( , , )T m l

lV v v v R     is the weight matrix from grade 2 to grade out 

and from grade in to layer 2 of MNN. The number of neurons in a class is always satisfied 1l  . The output 

signal vector of layer 1 is as follows: 

     1 2 1( , , , ( , ),1)T T T T T

lS V s v s v s v  Z Z Z Z with )

1
(

1 a
a z

S z
e





; constant 0   

According to [7], MNN (4) satisfies the Stone-Weierstrass condition and can approximate any continuous 

function on a compact set with optional precision. 

Approximate function:    * *T Th Z W S V  Z        (5) 

with:  
m

ZΩ RZ   ; 


 is the approximation error of NN and ΩZ  is a compact file. 

Hypothesis 3: For smooth functions h (Z) and approximations (4), there always exist ideal weights 
* *,W V  để 

  
 
với 0; ΩZZ   . That means the approximation error is always less than or equal to constant 


 

Essentially W* and V* is unknown, these weights need to be estimated when designing the controller. Call 

ˆ ˆ,W V  are the estimated weights of W* and V* then the weight estimation error is determined as follows: 
*ˆW W W  ; 

*ˆ VV V   

Lemma 1: The estimated MNN (4) can be expressed as follows: 
* *

' '

ˆ ˆ( ) ( )

ˆ ˆ ˆˆ ˆ( ) ,

T T T T

T T T T

u

W S V W S V

W S S V W S V d



    

Z Z

Z Z
    (6) 

Here  ' ' ' '

1 2
ˆ ˆˆ ˆ ˆ ˆ( ), , ,..., ,T

lS S V S diag s s s Z with 
 ' '

ˆ
ˆ ˆ( ) ( ) / , 1,2,..., ,

T
a i

T

i i a a z v
s s v d s z dz i l


  

Z
Z

 

and residual limits ud  is blocked by 
* ' * ' *

1

ˆ ˆˆ ˆT T

u
F F

d V W S W S V W  Z Z
     (7)  
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Conclusion [7]: Considering closed system including model (3) when 1i   and controller (9), if amplifier (10) 

Constant 1 0   NN weights updated by (11) with: 1 w1 0,T

w     

1 1 0,T

v v    and w1 v1, > 0  , top condition 1 1
ˆ(0),W (0)x and 1Ŵ (0)  is blocked, all signals in a closed 

system are blocked and vectors 1Z exist in  



1

1 1 1

0 1 1 2 2

( , , ) ( )

2 2 /

z d d

t

d d

x y y z t

c e c
 

 

  



, x
     (8) 

with 0 1 1, ,c c   positive determination constant. 

1 1 1 1 1 1 1

1 1

1 ˆ ˆ[ ( ) ( )]
( )

T T

NNu k t z W S V
x

   Z
g       (9) 


1

1 1 1
0

1

2 2
' '

1 1 1 1 1 1

1
( ) 1 ( )

ˆ ˆˆ ˆ

d

T T

F

k t z y d

W S S V

  


  
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

 g

Z Z

    (10) 
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1 1 1 1 1 1 1 1 1

'

1 1 1 1 1 1 1
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ˆˆ ˆ ˆ[ ]

T

w w

T

v v

W S S V z W

V W S z V





    

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



Z

Z
     (11) 

 

b) Design of adaptive controller by Backstepping technique 

In the control design for backward nonlinear systems, the model determines the design of Lyapunov control 

function by backstepping technique to ensure that the global stable closed system is made easily. But when the 

object has non-functional components, this controller is no longer available. To achieve this, it is necessary to 

approximate the uncertain functions of the object. In this paper, we use three-layer linear neural network to 

approximate. Algorithm for designing adaptive controller by artificial neural network based on backstepping 

technique is done as follows: 

Step 1: Consider (3) when giving 1i   is mean: 1 1 1 1 1 2( ) ( )x f x g x x  . By watching 2x  As a virtual 

control input and control, we choose a new bias variable 2 2 1z x    với 11 NNu   defined in (9) and 

1 1 1 1 1 2 2( ) ( )( ) dz f x g x z y    
 

Choose 

1

1 1

0

( )
z

z dV y d     and transformed by [7], we get: 

 1 1 1 1 2 1 1 1( )( ) ( )zV z x z h Z   g 2

1 1 1 1 1 1 1 1 2( ) ( )zV k t z z z x z     g     (12) 

Step 2: Consider (3) and give 2i   I have: 2 2 2 2 2 3( ) ( )x f g x  x x     (13) 

Looking at 3x  as a virtual console, we can design a controller ando head 2  for (13). Determined 3 3 2z x   , 

we have: 

2 2 1 2 2 2 2 3 2 1( ) ( )( )z x f g z         x x     (14) 

Choosing: 
2

2 1 2 1 1
0

( , ) 0
z

s zV V d       x  

2 2 1 1
2 1 2 2 2 2 1

0
1

2 1 1
1

1

( , )
( )

( , )

z

s zV V z z

d

  
 

  
 



 
    



 
 

 

  



x
x x

x

x
 (15) 

Using (12), (14) we have: 
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(i) 
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With 1Ŵ


 and 1̂v 


 is defined in (11), we have: 

2

2 1 1 1 1 1 1 1 2

2 2 2 3 2 2 2

( ) ( )

[ ( )( ) ( )

sV k t z z z x z

z x z h Z


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Here:  

2

2
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2 1

1
2 1 1

0
2

( , )
( ) ( ) ( )

( , )

z

z

h Z f d
z

d
z

  
  


   

 
 



 









x x
x x

x

x
 

1
2 1 2 1

2 2 2 2 1 2
0

1

1

1 2 1 2 1
0

( , )
( ) ( )

( , )

z
f x z d

z d

  
  

    

 
 



 









x
x x

x

x

 

with: 
5

2 2 1 1 1 1 2[ , , / , ] .T T

zZ x R      x  

Select control function: 

2 1 1 1 2 2 2 2 2 2

2 2

1 ˆ ˆ[ ( ) ( ) ( )
( )

T Tx z k t z W S V    g Z
g x     (18) 

Here: 


1

2 2 1 2 1
0

2

2 2
' '

2 2 2 2 2 2

1
( ) 1 ( , )

ˆ ˆˆ ˆT T T T

F

k t x z d

W S S V

   


  

  


 g

Z Z

    (19) 

With constants 2 0  , and network weights updated by 

'

2 w 2 2 2 2 2 2 2 2

'

2 2 2 2 2 2 2 2

ˆ ˆˆ ˆ ˆ( )

ˆˆ ˆ ˆ(

T

w

T

v v

W S S V z W

V W S z V





     
  


    
 





Z

Z
  (20) 

With in: 2 2 2 20, 0T T

w w v v         and 2 2, 0.w v    

Through some transformations we have the result: 
2

2

2 2 2 2 3

1

( ) ( )s j j j j

j

V k t z z z z


      g x  

Step k: The process is done the same for each step: k : (3 1)k n   . Consider the system (3) when: 

1; ( ) ( )k k k k k ki k x f g x    x x  

Choosing Lyapunov function:  

( 1) 1 1
0

( , )
kz

sk s k k k kV V d        x . We can design control functions k and jurisprudence 
ˆ

kW and 

ˆ
kV have similar forms (18), (19), (20). 

Step n:  Consider 1n n nz x     we have: 

1 1( ) ( )n n n n n nz x f x g x u         
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Select the function Lyapunov: 

( 1) 1 1
0

( , )
nz

sn s n n n nV V d        x     (21) 

( 1)

1 1
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n
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 
 



 
 

 



  





x

x
x

x

x

 

Similarly we have:  

1
1 1

1
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1 1
1
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n
n j n

j

n
n

j j j j j n
j j
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
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
 




 



 



  
       



 x
x
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Here 

1
1 1

1 ( 1)
1 ( 1)

1
,

1 ,

Ŵ
Ŵ

ˆ
ˆ

j

n
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n d j j
j d j j

l

n
j

j
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
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


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 
 





  
 

  


  









x
x

 

with Ŵj


 and ,

ˆ
jv 


 for 1,2,..., 1j n   Designed in the previous steps 1n   and we have:  

 

1
2

1 1 1

1

( ) ( )

( ) ( )

n

sn j j j j n n n n

j

n n NN n n

V k t z z z x z

z x u h Z



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

     

 

 g

g

(22) 

Here:  

1
1 1

1
0

1

1

1 1 1
0

( , )
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( , )

n n n n
n n n n n n n n

n

n n n n n

x z
h Z x f x z x d

x

x z d

  
  
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 

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  

 
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
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
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
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2 11 1 1
1 1

1 2 1

, , ,..., ,

T

T nn n n
n n n n zn

n

Z x R
x x x

  
    

 



   
   

     
The controller is selected as follows: 

1 1 1

1 ˆ ˆ( ) ( ) ( )
( )

T

NN n n n n n n n n

n

u x z k t z W S V
x

  
    
 

T

ng Z
g   (23) 

with:  


1

1 1
0

2 2
' '

1
( ) 1 ( , )

ˆ ˆˆ ˆ

n n n n n

n

T T

n n n n n n
F

k t g x z d

W S S V

   


   

  




Z Z

    (24) 

Select constants 0n   and the jurisprudence of the neural network   

'

'

ˆ ˆ ˆˆ ˆ( )

ˆˆ ˆ ˆ

T

n wn n n n n n wn n

T

n vn n n n n vn n

w S S V z w

V W S z V





     
 


   
 





Z

Z
 

with: wn 0, 0T T

wn vn vn         and wn vn, > 0   

(25) 

 

(26) 
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2.2.2. Design sliding controller 

Consider (1) the slider controller design task is to give ( dT ) noise resistance 0e  . Definition of a sliding 

surface: 
2 1

1 2 12 1
( )

n n

n nn n

de d e d e
S e e a a a

dt dt dt

 

  
        (27)

                              
with ( 0) 0S e   . 

To make sure lim ( ) 0
t

e t


  then we have to choose coefficients ia  of polynomial characteristics 

2 1

1 2 1( ) 1 n n

n nA s a s a s a s 

    
      (28) such that (28) is a Hurwitz polynomial. With the slip surface 

(27), the design task is to identify a control signal SMCu  so that when there is interference, the system will leave 

the sliding surface, this control signal will pull the system back to the sliding surface. The design of the slider 

control signal [8] is based on the Lyapunov function: 

21
( )

2
SMCV S S                  (29) 

And the sliding control signal is determined from the condition   

( )
( ) 0; 0SMCdV S

SS KSsgn S K
dt

    
   (30) 

The condition (30) is called the sliding condition. 

From    
  

( 1)

1 2

( )

1

( ) ...

( ) ( ) sgn( )

n

n

n

n SMC

S e e a e a e

a r f x g x u K S







   

    

  
 

I have: 
( 2)

1

1

sgn( ) ( ,..., ) ( )

( )

n

n
SMC

n

K S D e e a f x
u

a g x







 



 (31) 

With:    
( 1) ( 1) ( )

1 2 1( ,..., ) ...n n n

n nD e e e a e a e a w 

         

 

2.2.3. Stability analysis 

Theorem: Reverse propagation system (1) provided that the observed state variables are directly and blocked, 

indefinite functions ( )f x  and  smooth uncertainty functions ( )g x  are blocked, the controller (2) with 

components NNu  is defined (23) and SMCu defined in (31) to ensure that the closed system is globally stable 

and has an adherence error of 0. 

Prove 

Select function: NN SMCV V V   

For V to be Lyapunov, the function and function must be Lyapunov. 

We see after each design step a positive determination function appears: 

1 1
0

( , ) , 2,3,...,
iz

zi i i iV x d i n         
(32) 

So we choose it as Lyapunov function and this is an important key point of the method. 

According to Hypothesis 1, we know that: 

1 1 1 1 1 01 ( , ) ( , ) /i i i i i ix x g          g  
and the following properties: 

(i) 

2
1 1

2 2

1 1
0 0

( , )
2

i
zi i i i i i i

z
V z z d z d          x  (33) 

(ii)   

1
2

1 1
0

2
1

1 1
0

0

( , )

( , )

zi i i i i i

i
i i i i

i

V z z d

z
z d

g

   

   

 

 

 

 





x

g x
     (34) 

Theorem 2 [7]: Consider a closed system including a tight backward transmission system (3) satisfying the 

assumption 1, the controller (23) and the law of updating the weight of NN (25). For the initial condition is 

blocked. 

(i) all signals in the closed loop system are blocked, and vectors jZ exist in compact files 
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2
2 0

0 1
1 1 min w

2
0

( 1) ( 1)1
1 min

( ) ,
( )

;
( )

n n

zj j i i

i i

n

i d j d j
F

i v

C
Z z t C W

C
V x






 

 



   




  

 

 






(35) 

with the constant 0C  and 

(ii) inequality 

2

0
10

21
( )

1

n
t j

i i
t ij

lim z d c
t g


 

 




                 (36) 

2

1 1

2
( ) 2 (0) , 0s

n n
t

i s i
i is

z t V e c t






 

       (37) 

with , (0),i s sc V   are positive constants.  

Selected function Lyapunov: 

 1 1

1

1

2

n
T T

NN s sn j w j j w j

j

V V V W W tr V V 



      
     

 

The final derivative and transformation we have 

1

n

s s s j

j

V V c


  
 

In that place:  

2 2 2
* * * 2

1

2 2
2 2

* *

1 1

4 4

2 2

j j j j j jF

w v
j j F

c W V W

W V



 

 
    

 

 



 




10 1 20 2 0

1 1

max max

min / , / ,..., / ,

/ ( ), / ( )

s n n

w w v v

g g g   

    



 
 

and I have 

1

2

1 1

1
( ) (0) ; 0

1
( ) ( )

2

s

n
t

s s j

js

n n

s sn zj j

j j

V t V e c t

V t V V z t









 


   



   




 
      (38) 

This confirms for the initial condition is blocked, all signals iz , 
ˆ

iW  and 
ˆ
iV , of a closed system and a set exists 

ziΩ  like that ziZ Ωi   with every moment. 

Replace the controller (23) and (22) with some of the last transforms we have: 

2

1

( )
n

sn j j j j

j

V k t z z


    
 

Slide control 

Select function 
21

0
2

SMCV S        (39) 

Derivative (38) from time to time is obtained      .SMCdV
S S

dt
 

 

with: 
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( ) ( )S e Ksgn S  sgn( )SMCV KS S  
    (40) 

So 0K   is sgn( ) 0SMCV KS S  
 

If you choose larger, the sliding speed on the slip surface of the deviation e  more faster. 

Result: NNV  and function SMCV  are Lyapunov functions so that V is a Lyapunov function. 

0NN SMCV V V     NN SMCV V V    
 

0SMCV 
; 0NNV 

 and condition (38) so the closed system is globally stable and the error adheres to zero.  

 

III. Application Of Controller For Robot 
In this section, the authors will apply the controller and simulate the applicability of the ando controller to 

simulate verification on n-degree robots. 

 

3.1. N-level robotic mathematical model 

The dynamic equation of the robot of degrees n degrees of freedom is expressed as follows: 

( ) ( , ) ( ) ( )d r dH q q C q q q G q F q F q T M         
   (41) 

Set: ( , ) ( , ) ( ) ( )d r dA q q C q q q G q F q F q T          

So (41) can rewrite: 

( ) ( ) ( , )M t H q q A q q         (42) 

with: ( ) ( ) ( )k uH q H q H q  ; ( , ) ( , ) ( , )k uA q q A q q A q q     

( ); ( , ) ( , ) ( )k k k k dkH q A q q C q q q G q F q       are known components. 

( ); ( , ) ( , ) ( ) ( )u u u u du s dH q A q q C q q q G q F q F q T          are indeterminate components 

Therein
nq R , ,q q   respectively, angle, speed and acceleration of the matching variables;  ( ) n nH q R   is 

an inertial, symmetric positive positive matrix; ( , ) nC q q q R   is a connected and radial moment vector; 

( ) nG q R  is the gravity vector;
n n

dF R   is a diagonal matrix of viscous friction coefficient; ( ) n

rF q R  is 

the dry friction coefficient; 
n

dT R  is noise.  

Set state variables: 

   

 

1 11 12 1 2

11 12 1 2

,..., , ,..., ,

, ,..., ,

T T

n n n

T

n n

X X X x x x x

q q q q

 



      

   
 1 2, ,..., nM    ;  11 12 1 2, ,..., ,n nu u u u u  

From (42) I have:  1 ( , )q H M A q q       (43) 

If we consider cross-linking as uncertainty, we have a general model as follows: 

( ) ( )ij ij ijX f x g x u 
; 1 ; 1 2i n j        (44) 

In the place: ( ) 0ijf x   and 2ij iu x  at 1,j i  ;  ( ) 1ijg x  , ,i j  
1( ) ( ) . ( , )ijf x H q C q q q    and 

1( ) .iju H q M  at 2,j i   

So (44) is rewritten:  

 

 

12 22 2

12 12 22 22 2 2

0, ( ),0, ( ),...,0, (

. , , , ,..., ,

T

n

T

ij n n

X f x f x f x

g x u x u x u







  (45) 

With functions  2 ,i iif x 
 
and  , ;i iijg x   

1,2,..., ;  1,2i n j 
 
are indeterminate functions because they contain an infinite parameter vector of each 

match  i , We can show the model (45) through n tightly propagated models as follows: 

1 2

2 2( , ) ( , ) ( )

i i

i i i i ii i

x x

x f x g x u d t 




  



     
(46) 

11,2,..., ;  0.ii n g                            
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 The robot model presented in (46) allows the use of a controller design based on the Lyapunov control function 

adapted by Backstepping and artificial neural networks to approximate the uncertainty function associated with 

the controller. controls sliding to resist interference. 

 

3.2 Verification simulation on 2 DOF robots 

3.2.1. Simulation parameters 

In this section, the study simulates the separate and concurrent effects of the noron network controller and the 

sliding control. 

- Robot model: Consider Planar 2 DOF robot as Figure 2: 

The change 1q  in tight backward transmission is as follows: 

 

 

 

 

 

 

 

 

  

 

11 12

12 12 11 12 12 11 12 12

1 11

( , ) ( , )

x x

x f x x g x x u

q x




 
 



      (47) 

with: 

12 11 12 22 1 12 2

12 11 12

12 22 1 12 2

( , ) ( )

( , ) 1

( )

f x x k h a h a

g x x

u k h h 

  



  

 

Similarly with 2q  I have: 

21 22

22 22 21 22 22 21 22 22

2 21

( , ) ( , )

x x

x f x x g x x u

q x




 
 




 (48) 

                                       With: 

22 21 22 21 1 11 2

22 21 22

22 21 1 11 2

( , ) ( )

( , ) 1

( )

f x x k h a h a

g x x

u k h h 

 



   

 

Stitch 1: weight 1 5m kg , length 1 0.45l m  

Stitch 2: weight 2 3m kg , length 2 0.35l m  

Two match variables: 1 2,   

- Select controller: 

1 2 2 2 2 2 2( ) ( )T T

NNu z k t z W S V    Z         (49) 

With 1 1 2 2 1,dz x y z x       and  
1

2 1 2 1 1

2

, , , , ,1

T

Z x x


 


 
 

 
 

with: 1 1 1 1 1 1
ˆ ˆ( ) ( )T Tk t z W S V    Z ;  1 1, , ,1

T

d dZ x y y     

1

1 1 1 1
1 1 1

1 11

ˆ ˆ
ˆ ˆ

l

d d

d d

y y W v
y y vW


 

   




    
     
     


  

  

2 2
' '1 3 ˆ ˆˆ ˆ( ) ; 1,2

2

T T

j j j j j j j
F

j

k t W S S V j


 
    

 
Z Z  

the corresponding weights 1Ŵ , 1V̂ , 2Ŵ , 2V̂  be updated according to the expression (11), (25). 

Choose the coefficients: 

Figure 2. Flat robot structure 2 DOF 
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1 23.0; 1.0; 5.0     ; 1 2

2

w w 1 10     ; 1 2

4 3

v 1 10 ; 1 10v       
1 2w w 1.0diag   ; 

 
1 2

10.0v v diag    

The initial weights: 1
ˆ (0) 0.0,W  2

ˆ (0) 0.0W  , 1
ˆ (0)V , 2

ˆ (0)V ; take randomized 
1

2

SMC

u
u

u

 
  
 

 and 

1 1 1 1 1 1 1 12 12

2 2 2 2 2 2 2 22 22

sgn( ( )) w w

sgn( ( )) w w

u s e k k x f

u s e k k x f

    


    

 

  (50) 

 

3.2.2. Simulation results 

Case 1: The effect of a NN controller without an SMC controller is shown in Figure 3: 

 

 

 

 

 

 

 

 

 

 

Figure 3. Response result when there is only NN controller (without SMC controller) 

 

Case 2: The impact of a SMC controller without a NN controller is shown in Figure 4: 

 

 

 

 

 

 

 

 

 

Figure 4. Response result when there is only SMC controller (without NN controller) 

 

Case 3: The impact of both NN and SMC controllers is shown in Figure 5, Figure 6: 

 

 

 

 

 

 

   

 

 

Figure 5. Response results when both NN controllers and SMC controllers are involved (qd = step) 

 

 

 

 

 

 

 

 

 

 

Figure 6. Response results when both NN controllers and SMC controllers are involved (qd = sin) 

 

 



Adaptive Control for Robot Based On Backstepping Technique and Sliding Mode Control 

DOI: 10.9790/0050-07012535                                      www.iosrjournals.org                                            35 | Page 

IV. Conclusion 
The simulation results of the controller for 2 degrees of freedom robot show that: thanks to the ability 

to approximate the high-precision neural network function of the neural network, we do not need to analyze 

cross-relations between the joints as well as the change of inertia torque, friction force, ... but still ensure the 

exact trajectory set with good quality. 

The simulation results confirm the applicability of the controller to the n-degree robot with an 

uncertainty model and the influence of noise to ensure a stable stable system, sticking to the trajectory set with a 

zero-tolerance. without the need to accurately analyze the cross-linking between joints, as well as other 

uncertainties of the robot such as load, friction ... It is also the advantage of the controller compared to the other 

adaptive sustainable controllers. 
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