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Abstract: This paper is concerned with error estimation of the integrated variant of the tau method for Initial
Value Problems (IVPs) for the class of equations for which m + s <3 where m and s are, respectively, the
order and the number of over determination. Some general results obtained are applied to some problems. The
numerical evidences show that the order of the tau approximant is closely captured.
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l. Introduction
The tau method proposed by Lanczos (1935) seeks an approximant
Ya(X) = X pa X, n<+o (1.1)

of the solution y(x) to the linear m-th order of ODE:

m Ny
Ly(x) = Z <Z Dok x")y(r)(x) =f(x), a<x<bh (1.2a)

r=0 \ k=0
Ly(a) = y9(a) =x,,r = 1(1)m -1 (1.2b)
which satisfies the corresponding perturbed problem;
m+s—1
0= fC+ D Typscs Tacmarsa 0O (130)
r=0
Ly, (%) =, , k=11)m-1 (1.3b)

Where  a, %%, 7 = 0(1)m — 1,k = 1(1)mare given real numbers, f(x) is a polynomial function or
sufficiently close approximants of given real function;

2x—a—b

T, (x) = cos (xcos_l( — )) =Yk, Cr(k) x"(1.4)

is the k-th shifted chebyshev polynomial valid in [a,b] and 7 's are fixed tau parameters to be determined along
with the coefficients of y,, (x);

S=max{N, —r:N,,0<r<m} >0 (1.5)
is the number of over determination of (1.2).

An attempt to improve the accuracy of y, (x) gave rise to the integrated variant of (1.3) in the form

L) = ﬂ- . ...fLyn (x)dxdx ....dx
=ff L ...ff(x)dxdx...dx

m+s+1
+ Tm+s—rTn—m+r+2 + Cm—l(x) (16)
r=0

wheref[ ..™ ... [ Ly, (x)dxdx ....dxdenotes an m-times integration and C,,_;(x) an arbitrary
polynomial of degree (m-1) arising from constants of integration. The higher order perturbation term in (1.6)
accurate for the improved accuracy of the corresponding approximation y, (x).
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1. Error Estimation of the Tau method
Error estimation of the tau method has been reported in literature(see Lanczos, Fox, Onumanyi and
Ortiz). Adeniyi et al also reported an error estimation of the tau method (1.3) which was based on a
modification of the error of the Lanczos economization
process. By this the error polynomial.

(0 (s = 2 “)C(,f" nhnn® o ) =y — 9, @) @1

n-m+1

Satisfies the perturbed error DE

m+s—1
L(en(x))n+1 = - Z Tm+s—rTn—m+r+1(x)
r=0
m+s—1
+ Z Tm+s—rTn—m+r+2(x) (2-2)
r=0

Corresponding to the error DE
L(en (x))n+1 = - Z;n:bs_l Tints—r In—m+r+1 (x) (23)

and where ¢, is a parameter to be determined along with the 7 's in (2.2) an error estimation of the integrated
variant, we have from (2.3) that

L@ = = [[ (mi_l rmﬂ_rTn_mw(x)) dx ..dx
=0

m+s—1

+ Z Tm+s—r+3(x) (24)
r=0

We insert (2.2) into (2.4) and then equate coefficients of powers of xnm+s+1 xntm+s - xn=m determination
of ¢,. A forward equation process is recommended for this purpose. Once ¢, is determined then

|y, |
= o 251 (en (n41l = - oo = maxle, (0] = ¢ (2.5)

m+1

1. Derivation of Error Estimate for the Integrated Formulation.
We consider here the error estimation for the integration formulation of the tau method for class of
problem (1.2) where m + s<3.

3.1 The Case m=1,s=0
For this case we have from (1.2) that

Ly(x) = (Pyo + Py (0))y'(x) + Pooy(x) = f(x)

—Zﬁ LY@ =g (3.1

with the corresponding perturbed integrated form of (3.1)

(q (s = fo (P +Piy )(e2(0) _ + Poolen @), ] dx = ==, fo O ey
r=0

n+2
+ 4 Z CoHDyr (3.2)
r=0
where,
@ xT,, (%)
(en(®¥)n+1 = nCT C(n)zc(n) x"t1 3.3)
n
This leads to
Pnry ni2 n+1 _ s 42 _n2 o
k—[/llx + Ax™ ] = 10, 57X+ |10, e B (34)

1
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where,
Py + (n+1)Pyy }
= k 3.5
A { m+ 2 1 (3-5)
Pyo + xPM]
A, 10k: + [ w2 2 (3.6)
By equation corresponding coefficients of x™*2 and x™*! in (3.2) we have
A
tol = 2 37)
1
kit A,
~ ~(n+2) 11 A
‘L'lcniz _Tl_+2 = k_ln (3.8)
From (3.7) we get
N A,
T = W (3.9)
k1 Cnﬁ—z
Hence , (3.8) gives
_ _Rin 3.10)
O =+ DR, @.
where,
Alc(n+2)
Ry= 2~~~ (3.11)
Cn+2
By letting R, = A4, R, can be expressed in the recursive form.
C(n-il—Z)R1
n+
R,= 1, rGRE (3.12)
n+2
R]_ = /‘11,
= 3.13
R AL (130
/‘12 = P10k1 + I:n—-|-2:| 2 (313b)
kl = Crsn) y kz = C,E’i)l
3.2 The case m=1, s=1
The problem to be considered in this case is
F
y() = (P + Prx + Pipx?y G + (Bog + Pu)y () = Y fix,
r=0
a<x<bh (3.14a)
y(a) = aq (3.14b)
The associated perturbed error equation to be considered is
a
L = [ [(Po +Pu @)@ 00) |+ PuotP) ] ax
0 n+1
n+l n+1 n n+3
= —f 7 Z c x4 1 z c™ xm |dx + Z co Iy
r=0 r=0 r=0 r=0
n+2
+1, Z CoHDyr (3.15)
r=0
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are (e, (x)),,11s again defined by (3.3) We solve (3.15) by forward elimination process to obtain

2
RiTy

¢, = —m (316)

whereR; is given recursively by

(n+3) (n+2)
C C
R3 — 13 _ “n+41 R1 _ “n+l

@3 o) R (3.17a)
n+3 n+2
C(n+3)
Ry = 24, — ?:ig) Ry (3.17b)
Cn+3
Rl = /11 (3.17C)
where,
1= [P01 + (n+1)P12]
1= n+3 !
1 = [P00+(n+1)P11]R [P01+nP12]
2T n+2 1 n+2 2
Pyo + nPpy Py + (n— 1Py,
R e e LRl e s L (3.18)

Ry =C",Ry=C"), Ry =",

n-1’

3.3 The case m=1, s=2;
In this case, the problem to the considered is

. Ly(x) = (Pyg + Piyx + Pipx? + Pisx®)y (%) + (Pyg + Py X + Popx®)y(x) =
Zfr x", a<x<bh
r=0

(3.19)
where the perturbed associated error equation is

Iy (en(X))n+1 Ef [(Plo +Pyu+ Pyu? +P13u3)(€rll(x)) LT (Poo + Po1x + Popx?) (e, (u))n+1]dx
0

n+

x n+2 n+1 n n+4

= —J 7 Z M ur 41, Z Dy 414 Z c™ur [du + Z o9y
0 r=0 r=0 r=0 r=0
n+3 n+2

+ Z C Iy 4 4, Z CoDyr (3.20)
r=0 r=0

Where (e, (x)),,1 is as defined in (3.3) . We then solve the (3.20) by equating the corresponding coefficient of
x4 xm 3 xm2andx™ 1 in (3.20) to have

3 2 2
_[eien? e |uk M 321
" Elm+ ) E  m+D| R (n+ DR, '

whereR, is obtained recursively by
_ CiiiRy  GiEHR,  ClfiRs
R4 14

—M T T ) T A3 ~(n+2)
Cn+4 Cn+3 C

4 3 n+2
o _ g _ GHHR_CUER,
3T BT L) T Ly
n+4 n+3
CRitRy
Ry =2 = —wrny
n+4
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R =2, (3.22)

where,A; = [—P°2+$;1)P13] ky

Pyy + (n+ 1)P12] [PO2 + nP13]
1 2

/12=[ n+3 n+3

Py + (n+ 1P, Py1 + nhy, Py, + (n—1)Py3
1 k, ks

A =[
3 n+2 n+2 n+2

Py + nP11] [P01 + (n_l)Pu]k [Poz + (n—2)P;
—| k2 3

A, = Pk [
4 1ok + n+1 n+1 n+1

J&s
(3.23)

n—-1’ n—-2"

3.4  The case m=2, s=0
From (1.2), we have for m=2 and s=0 the problem

. Ly(x) = (Pyg + Pyyx + Pyyx?)y ' (x) + (Pg + P11 x)y ' (x) + Pyoy(x) =
Zfrxr, a<x<bh (3.24)
- y(@) = ay,y'@ = a
With the associated perturbed error problem
I, (en (x))n+1 = fgx fou [(on + Pyt + Pyyt?) (e (£))ns1 + (Pro + Prit) (eq ())sr +
Pyo(en (t))n+1] dtdu =
— I Iy [Tl o CET T, Yl Cr("_l)tr]dtdu +

2 Yr3 ety g, Y2 0D yr (3.25)
Where,
(e, (%)), +1in this case from (1.7) is given by

e, () ¢,

n— -1
(en@), 1 =ity = gy ), G A (3.26)
n-1 Cr1” 720

This gives,
Pn 2,c™

[/‘llxn+3 + /‘lzxn+2 + /‘13xn+1 + "'] = flcrgr_:_;3)xn+3 flcr(lr_:_;g) + fzc(n+2) - xn+2 +

K 2 m+1D)(n+2)

a A -1
2.0+ 4 p D) T1C,E'i)1 _ Tszil ) n+1
1%n+1 2l p(n42) nn+1)
4o (3.27)
Equating the corresponding coefficient of x™*3,x"*2andx™*1! in (3.27) we have
A~ _ K
Pn =~ (3.28)

whereR; is obtained recursively as
C(n+3)R1 C(n+2)R2

_ _ “n+l _ “n+l
Ry =15 C(n+3) C(n+3)
n+3 n+3
(n+3)
R _ A _ Cn+2 R1
372 ct
n+3
R1 = )‘1
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(3.29)
and
1 = [Poo +(n+1DP+ (n+ 1)P22]
T (m+2)(n+3) !
/}{ _[P10+nP21] [P00+TLP11+11(11—1)P22]k
27l n+2 ! (n+ D(n+3) 2
_ Py + (n_l)Pm] [P00+(n—1)P11+ (n_l)(n_Z)Pzz]
A3 = Pooky + [ n+1 ko + nn+1) &
ky=C 0k = €0 kg = €5V ky = € Pecte, (3.30)

3.5 The case m=2, s=1
Continuing the process, using m=2 and varying s =1 in (3.24) we have obtained,

3 1 1
o [Pty ety kit kT (3.31)

On = +2)+)cED  nm+D| Ry (DR,

With the following recursive form :

n+4 n+3 n+2
C +1 Rl Cn+1 RZ Cn+1 R3

R4 = /14 - n - -
(n+4) n+3) n+2)
Cnr-:—l Cnr-:—3 Cnr-:—Z
R. =1 CiR CIBR,
e N )
Cnr-:—4 Cn"-:-3
CiLE Ry
R3 = ).2 -z
(n+4)
an—l
R, =1 (3.32)
where,
1 = [P01 + (n+ P, + n(n+ 1)P22] k
! n+3)(n+4) !

2 [POO + (n+ 1P, + n(n+ 1)P22] e+ [P01 + (n+ P, + n(n+ 1Py,
2 = 1

n+2)(n+3) n+2)(n+3) ]kz

P10+TLP21 [P00+nP11+ n(n_l)Pzz] [P01+ (n—l)P12+ (n_l)(n+1)P23]k
1 2 3

/132[ n+2 n+1)(n+2) (n+2)(n+3)

P+ (n— 1P, Poo+ m—1P; + (n—1(n—2)P,
. P20k1+[1o ( )21]k2 [oo (n—DPy + (n—1)( >22]k3

n+1) n+1DMn+2)
+ Py + M —2)P; + (n—2)(n — 3)P,3 I
nn+1) +
ki =C" P ky = €51 ks = €5V ky = €LV etc (3.33)

3.6 Thecasem=3,5s=0
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From (1.2) we have for m=3 and s=0, the problem
Ly(x) = (Ps +P31’CF+ Py x% + P33 x3)y " (x) + (Pyg + Pyyx + Py x®)y () + (Pyg + Py %)y (x) + Py y(x)

Y
r=0

a<x<bh
(3.34)

y(@=ay,y(@=a,y(a=a
With the perturbed error problem
I (€n())ny1 = fox fou fow [(p30 + P31t + p3at® +pss t3)(e,'!”(t))n+1 + (P20 + P21t + P22 tz)(e;; (t))n+1 +
(P10 + P11 t)( ' (t)) + (poo)(ex (1)) +1] dtdwdu = — fx fu fW[T1 Yo Ot + T X e e +

T3 10 C(n Dy ] dtdwdu + 1, 2 C("+4)x + 1, Xi C("+3)x + 5 202 C(n+2) T
(335)

— ‘ana'fn— (x) _ ( 2)
(en (x))n+1_ Cgln_—ZZ)z - 2)2 §C
which yields,
o = Gt G G Jan My
e+ D@+ 2@+ 3P (-Da(m+ D] Ry (n—Dn(n+ DR,

where the value of R is obtained recursively as in (3.32) and

P+ (m+1DP, + n(n+ Py + (n—Dnn+ 1P,

M= m+2)(n+3)(n+4)
1 = Py + nPy + n(n— 1Py, i+ Py + nPy + n(n— 1Py, + n(n — 1) (n —2)Ps; "
2T n+2)(n+3) ! n+1D)(n+2)(n+3) 2

ks

1 P+ (m=1)Py K + P+ (n—=1)Py + (n—1)(n - 2)P;,
3 h (n+2) ! n+1DMn+2)

P+ (m—1DP;+ (n—1)(n—2)P,; + (n — D(n — 2)(n — 3)Ps3 K
nn+ 1)(n+2) 3

_ Py + (n —1)Py; P+ (n—2)P; + (n—2)(n—3)P3,
B = Pulat [ CESVI e G+ 1) &
+ Py + (n—2)Py + (n—2)(n—3)Py + (n—2)(n—3)(n — 4)Ps3 K
(n—Dnn+1) *
(3.36)
where,
k=G50 k= Q150 k= QLY k= et

We noticed that the expression for ¢, was the same for the groupings:-
i. M=1,S=1, M=2,S=0,(M+S=2)
ii. M=1,S=2, M =2, S=1, M= 3, S=0,(M+S=3)

and consequently, the general expressions for ¢, corresponding to the above groupings were obtained:-

lem+s
@, = vm+s=1,
" :’n=1(n+s +T) Rm+s+1

_kIZTm+s
;n=1(n ts+r— 1) Rits+1

Pn =
and

vm+s=2,

kit —kftm s
Rm+s+1  IIFe1(ts+r=2)Rm 4541

cn +m+s—2 Cn +s

Pn = [T (n+s+r) C7(1n+-i;nm+-i;s)

(m+m+s) ~(n+s)
] Vm+s=3 (3.37)
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(n-m+1)
n—m+1

where k; = C

Thus, from ( 2.5) we have the following expression for &* :-

2
&t = _kl Tm+s
- m
) r=1(n t+s+ T) Rm+s+1
_k1 T
* m+s _
€ m (m+s+r—1)R vm+s=2
r=1 m+s+1
+m+ +
S* — Cgln+7'71n+s.v_)2 C;n+ss) ] kit1 _ _k%fm+s
H;"Zl(n+s+r)cgln+t;n+ts) R +s+1 H;":1("+S+T—2)Rm+s+1

V.

vm+s=1,

Vvm+s=3

Numerical Examples

(3.38)

We consider here some selected examples with our results of obtained in the preceding sections for
m + s < 3. The exact errors are obtained as

£ = maxog, o {y(x) — v (x )1},

Example 5.1

with exact solution y(x) = exp(3x?),

Here, m=1,5s=2

Ly(x) = y'(x) —x?y(x) = 0

y0)=1
0<x<1.

The numerical example is presented in table 5.1 below.

Example 5.2

A Second Order Homogeneous Constant Coefficient problem
Ly(x) = y"(x) — y(x) = 0

y(0) =1,

y'(0) =1

0<x<1, {x,} = {0.01k}, for k = 0(1)(100)

With analytical solution y(x) = e*,0 < x < 1.For this case m = 2 and s = 0. See Table 5.2 below for

numerical results.
Example 5.3

Third Order Non-Homogenous Constant Coefficient Problem.
Ly(x) = y"(x) — 8y'(x) = —6x% + 9x +2

With exact solution y(x) =
numerical examples.

256

y(0)=0, y(@ =0 y(0)=

ux? 4 % — 2% y<e<. for this problem m = 3 and s = 0. See Table 5.3 below for

16

11

128

Table 5.1
Error and Error Estimates for Example 5.1
r
6 7 8 9
Approximate Error | 1.46 x 10° [ 2.18x 10" [ 1.48x 10" [4.13x10™
Exact Error 240x10° [523x107 |460x10™ [234x10™
Table 5.2
Error and Error Estimates for Example 5.2
N 7 8 9 10
Approximate Error | 2.26 x10™ | 4.87x 10" [ 1.09x10™ | 2.06 x 10
Exact Error 3.61x107 [1.62x10™ |4.26x10™" [4.24x10™
Table 5.3
Error and Error Estimates for Example 5.3
Error 2 3 4 5
Approximate 9.08x 10" | 6.03 x10° [ 4.49x10° | 2.84x10"
Error
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| Exact Error | 710x10° [ 3.31x10° [4.16x10° [8.00x10° |

V. Conclusion
The integrated formulation of the tau method of initial value problems (I\VPs) for the Ordinary

differential equations characterized by a maximum of two overdetermination number such that m +s < 3 (m,
order s, number of overdetermination) has been presented. The method closely estimated the error involved in
the approximants. This is obvious from the numerical evidencies obtained from some selected problems.
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