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Abstract: 
Background: This study focuses on a natural convention flow of Silicon (IV)Oxide-water nanofluid in a 

magnetically equipped exponentially stretching surface in a three-dimensional frame. The effects of buoyancy, 

nanoparticle volume fractions and magnetism on the flow velocities in all directions, temperature of flow and 

concentration of the nanoparticles. 

Material and methods: The study considered a steady boundary layer flow of an electrically conducting nanofluid 

past a semi-infinite convectively heated flat plate in the presence of a uniform transverse magnetic field. It 

assumed that the induced magnetic field and the external electric field were negligible. The governing equations 

were subject to the boundary conditions and were solved numerically by the Runge-Kutta-Fehlberg method with 

shooting technique. Both velocity and temperature profiles were obtained and utilized to compute the skin-friction 

coefficient and the local Nusselt number in the equation. 

Results: The numerical simulations reveal that an increase in Grashof number (𝐺𝑟) lead to an enhancement in 

both the primary (𝑓′) and secondary (𝑔′) velocity components. This was due to the buoyancy forces strengthening 

the convective transport of fluid and nanoparticles so that buoyancy forces became stronger as 𝐺𝑟 increases, and 

consequently leading to an increase in the fluid velocity. 

Conclusion: Grashof number and nanoparticle volume fraction enhances primary and secondary velocities, 

magnetic field reduces both primary and secondary velocities, nanoparticle volume fractions increase 

temperature profile, and nanoparticle volume fractions concentration of nanoparticles decreases. 

Key Words: Nusselt number, Grashof number, Velocity components, Heat transfer, Thermal conductivity, 

nanoparticles, Magnetic field strength, Nanofluid. 
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I. Introduction 
Fluids generally have poor thermal conductivity and are unable to handle thermal requirements for 

industrial processes such as in industrial cooling, and electronic thermal management. By dispersing some 

nanoparticles in the fluids, a suspension referred to as nanofluid is formed and the electrical and thermal properties 

of the fluid are improved. Studies on nanofluids revealed that nanofluids have the tendency to solve the thermal 

problems in industrial settings due to the superiority of their thermophysical properties compared to the base 

fluids. 

By harnessing the thermal and electrical properties of the nanoparticles, the nanofluid formed from the 

colloidal suspension produces higher thermophysical properties that makes the nanofluid superior to the base 

fluids. 

Equipping a flow with magnetic field produces an effect referred to as magnetohydrodynamic (MHD) 

effects. The effect becomes magnified when the fluid is carrying highly conductive and electrically sensitive 

components. Hence, the flow of thermally and electrically enhanced nanofluids under influence of magnetic force 

is expected to be influenced significantly. 

 

II. Methodology 

 
Figure.1: Flow configuration 
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The flow configuration, as depicted in Figure 1, illustrates the system under consideration in this study. 

The flow is steady and occurs within a three-dimensional framework, where a magnetic field (MF) is applied 

along the vertical axis. The nanofluid flows within the 𝑥1𝑥2-plane due to the influence of the MF, which is oriented 

at an angle of 90∘ to the flow plane. 

 

Fundamental Equations 

Continuity equation 

letting 𝐮 = (𝑢1, 𝑢2, 𝑢3) be the velocity field, (𝑥1, 𝑥2, 𝑥3) the space coordinates 
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Momentum equations 

The momentum equations, also commonly referred to as Navier-Stokes equations, are derived from the 

Newton’s second law of motion. 

The general momentum equation for incompressible steady Newtonian flow is 
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Thus, the momentum equations in the three directions are 
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Boundary Layer Analysis 

The boundary layer analysis is used to reduce the complexity of the problem by leveraging the 

characteristic length scales and flow behaviour near the boundary. The assumptions of the boundary layer theory 

are as follows; 

1. The boundary layer is very thin compared to the characteristic length 𝐿 of the flow. 

2. In the boundary layer, there is a strong variation in the velocity in the direction normal to the surface, but the 

variation along the surface is small. 

3. The pressure is assumed to be constant in the direction tangential to the surface and can only vary in the 

direction normal to the surface. 

4. Some terms are assumed to be negligible based on scaling arguments, which depend on the relative magnitude 

of different terms. 

 

Now, 𝑥1 and 𝑥2 are the primary flow directions (tangential to the surface) and 𝑥3 is the direction normal 

to the surface. The boundary layer develops along 𝑥1 and 𝑥2, while variations in 𝑥3 are much stronger within the 

thin boundary layer. 

 

The order of magnitude for the viscous terms are as follows; 
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are large and must be retained. The order of magnitude for the pressure terms are as follows; 
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Removing terms of negligible order, the momentum equations are left with: 

- The 𝑥1 momentum equation becomes 
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- The 𝑥2 momentum equation becomes 
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- The 𝑥3 momentum equation becomes 
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Hence, the momentum equations become; 
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In a natural convection, the pressure terms the equations are ignored and the equations agree with the 

equations in the work of Rutto et al. (2024) as; 
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In the equations the left-hand side represents the convective acceleration, which describes the rate of 

change of velocity as fluid particles move through the domain. This term accounts for the transport of momentum 

due to the motion of the fluid itself. On the right-hand side, there are four distinct terms that contribute to the 

flow. The first term is the pressure term that represents the influence of pressure on the flow. The second term 

represents the viscous effects, which arise due to the internal friction within the fluid caused by molecular 

interactions. This term accounts for the resistance to deformation and the diffusion of momentum, governed by 

the viscosity of the fluid. Viscous forces are responsible for determining the velocity distribution, especially in 

regions where shear stress is significant, that is the boundary layers. The third term accounts for buoyancy forces 

which arise due to temperature variations within the fluid. This is a common occurrence in natural convection 

flows that causes a difference in density across the fluid. The fourth term represents the body force exerted by the 

applied magnetic field. This effect is fundamental in magnetohydrodynamics (MHD), where the interaction 

between the fluid flow and the electromagnetic field governs the behaviour of conducting fluids such as plasmas, 

liquid metals, and ionized gases. 
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III. Results 
Effects of Grashof Number 

 
Figure1(a): Effect of Grash of number on primary velocity 

 

 
Figure1(b): Effect of Grash of number on secondary velocity 

 

Effects of Magnetic Field Parameter 

 
Figure2 (a): Effect of magnetic field on primary velocity 
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Figure2 (b): Effect of magnetic field on secondary velocity 

 

 
Figure2 (c) Effect of magnetic field on temperature 

 

 
Figure 2 (d) Effect of magnetic field on concentration 

 

IV. Discussion 
The system of dimensionless ordinary differential equations is solved over 𝜂 ∈ [0, 𝜂∞] where 𝜂∞ = 10 

to ensure convergence. The thermophysical properties of the nanofluid were incorporated into the calculations. 

Using water as the base fluid and silicon (IV) oxide (𝑆𝑖𝑂2) as the nanoparticles. The numerical simulations are 

carried out for different parameter values to study the response of velocity, temperature, and concentration 

distributions to the variation in the parameters. The default parameter values are 

𝐺𝑟 =  0.5;  𝑀 =  0.1;  𝑅 =  2;  𝑃𝑟 =  6.9;  𝑆𝑐 =  0.63. 
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The Grashof number (𝐺𝑟) represents the ratio of buoyancy forces to viscous forces in the nanofluid flow. 

It determines the influence of natural convection on the flow. The numerical simulations reveal that an increase 

in 𝐺𝑟 leads to an enhancement in both the primary (𝑓′) and secondary (𝑔′) velocity components. These 

observations are primarily due to the buoyancy forces strengthening the convective transport of fluid and 

nanoparticles so that buoyancy forces become stronger as 𝐺𝑟 increases, and consequently leading to an increase 

in the fluid velocity. The increase in velocities in both directions implies that free convection is dominant and 

cross-sectional flow mixing is enhanced, leading to more effective thermal energy distribution. 

The numerical results indicate that increasing 𝑀 leads to a reduction in both the primary velocity and 

secondary velocity, but it leads to increased temperature and concentration of the nanofluid. As 𝑀 increases, a 

noticeable decline in the velocity profiles is observed, which can be attributed to the Lorenz force introduced by 

the magnetic field, which acts in the opposite direction to the fluid motion, thereby suppressing both primary and 

secondary velocities. The reduction in velocity also leads to increased viscous dissipation, which in turn 

influences the thermal and mass transport characteristics of the nanofluid. Also, a significant increase in 

temperature is observed with increasing 𝑀 due to an increase in thermal boundary layer thickness arising from 

suppressing velocity. The concentration is also observed to increase with increasing 𝑀, probably due to the 

reduction in convective mixing caused by lower velocities. 

. Increasing the nanoparticle volume fraction ϕ thickens the viscous boundary layer and expands the 

region where viscosity becomes more significant. By the increase, the higher thermal conductivity of 

nanoparticles facilitates improved heat exchange, leading to a reduction in viscous resistance and an increase in 

flow acceleration. The thermal effects of 𝜙 are significant due to the superior heat-conducting ability of 

nanoparticles compared to the base fluid. As 𝜙 increases, nanoparticle interactions become more frequent, leading 

to greater inter-particle collisions. This reduces the mobility of individual particles, limiting their ability to diffuse 

freely within the base fluid. . Consequently, the concentration boundary layer thickens, and nanoparticles become 

more localized rather than evenly distributed. 

 

V. Conclussion 
The results show that Grashof number and nanoparticle volume fraction enhances primary and secondary 

velocities, magnetic field reduces both primary and secondary velocities, nanoparticle volume fractions increase 

temperature profile, and nanoparticle volume fractions concentration of nanoparticles decreases. 
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