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Abstract:

Background: This study focuses on a natural convention flow of Silicon (IV)Oxide-water nanofluid in a
magnetically equipped exponentially stretching surface in a three-dimensional frame. The effects of buoyancy,
nanoparticle volume fractions and magnetism on the flow velocities in all directions, temperature of flow and
concentration of the nanoparticles.

Material and methods: The study considered a steady boundary layer flow of an electrically conducting nanofluid
past a semi-infinite convectively heated flat plate in the presence of a uniform transverse magnetic field. It
assumed that the induced magnetic field and the external electric field were negligible. The governing equations
were subject to the boundary conditions and were solved numerically by the Runge-Kutta-Fehlberg method with
shooting technique. Both velocity and temperature profiles were obtained and utilized to compute the skin-friction
coefficient and the local Nusselt number in the equation.

Results: The numerical simulations reveal that an increase in Grashof number (Gr) lead to an enhancement in
both the primary (f") and secondary (g") velocity components. This was due to the buoyancy forces strengthening
the convective transport of fluid and nanoparticles so that buoyancy forces became stronger as Gr increases, and
consequently leading to an increase in the fluid velocity.

Conclusion: Grashof number and nanoparticle volume fraction enhances primary and secondary velocities,
magnetic field reduces both primary and secondary velocities, nanoparticle volume fractions increase
temperature profile, and nanoparticle volume fractions concentration of nanoparticles decreases.

Key Words: Nusselt number, Grashof number, Velocity components, Heat transfer, Thermal conductivity,
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I.  Introduction

Fluids generally have poor thermal conductivity and are unable to handle thermal requirements for
industrial processes such as in industrial cooling, and electronic thermal management. By dispersing some
nanoparticles in the fluids, a suspension referred to as nanofluid is formed and the electrical and thermal properties
of the fluid are improved. Studies on nanofluids revealed that nanofluids have the tendency to solve the thermal
problems in industrial settings due to the superiority of their thermophysical properties compared to the base
fluids.

By harnessing the thermal and electrical properties of the nanoparticles, the nanofluid formed from the
colloidal suspension produces higher thermophysical properties that makes the nanofluid superior to the base
fluids.

Equipping a flow with magnetic field produces an effect referred to as magnetohydrodynamic (MHD)
effects. The effect becomes magnified when the fluid is carrying highly conductive and electrically sensitive
components. Hence, the flow of thermally and electrically enhanced nanofluids under influence of magnetic force
is expected to be influenced significantly.

II. Methodology
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Figure.1: Flow configuration
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The flow configuration, as depicted in Figure 1, illustrates the system under consideration in this study.
The flow is steady and occurs within a three-dimensional framework, where a magnetic field (MF) is applied
along the vertical axis. The nanofluid flows within the x; x,-plane due to the influence of the MF, which is oriented
at an angle of 90° to the flow plane.

Fundamental Equations
Continuity equation
letting u = (uq, Uy, U3) be the velocity field, (x;, x5, x5) the space coordinates
Ju; Odu, OJdu,
> —4+- 24+ 2=
dx; O0x, O0x;

Momentum equations

The momentum equations, also commonly referred to as Navier-Stokes equations, are derived from the
Newton’s second law of motion.
The general momentum equation for incompressible steady Newtonian flow is
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Thus, the momentum equations in the three directions are
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Boundary Layer Analysis
The boundary layer analysis is used to reduce the complexity of the problem by leveraging the

characteristic length scales and flow behaviour near the boundary. The assumptions of the boundary layer theory

are as follows;

1. The boundary layer is very thin compared to the characteristic length L of the flow.

2.1In the boundary layer, there is a strong variation in the velocity in the direction normal to the surface, but the
variation along the surface is small.

3.The pressure is assumed to be constant in the direction tangential to the surface and can only vary in the
direction normal to the surface.

4.Some terms are assumed to be negligible based on scaling arguments, which depend on the relative magnitude
of different terms.

Now, x; and x, are the primary flow directions (tangential to the surface) and x5 is the direction normal
to the surface. The boundary layer develops along x; and x,, while variations in x5 are much stronger within the

thin boundary layer.

The order of magnitude for the viscous terms are as follows;
azul azul azuz azuz a
0 =0 =0|—|=0—=)|=0(=), ligibl
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This implies that the terms

0*u; 0%u; 0%u, an 0%u,
oxt’ oax?’ ox?’ dx?
are small and can be ignored but the terms
0%u, 0%u,
1 and =22
dx2 dx2

are large and must be retained. The order of magnitude for the pressure terms are as follows;

o(Z)=0(2)=0(2). o(Z)=0(})

Removing terms of negligible order, the momentum equations are left with:
- The x; momentum equation becomes
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Hence, the momentum equations become;
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In a natural convection, the pressure terms the equations are ignored and the equations agree with the
equations in the work of Rutto et al. (2024) as;
ouy Ouy ou, puou
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In the equations the left-hand side represents the convective acceleration, which describes the rate of
change of velocity as fluid particles move through the domain. This term accounts for the transport of momentum
due to the motion of the fluid itself. On the right-hand side, there are four distinct terms that contribute to the
flow. The first term is the pressure term that represents the influence of pressure on the flow. The second term
represents the viscous effects, which arise due to the internal friction within the fluid caused by molecular
interactions. This term accounts for the resistance to deformation and the diffusion of momentum, governed by
the viscosity of the fluid. Viscous forces are responsible for determining the velocity distribution, especially in
regions where shear stress is significant, that is the boundary layers. The third term accounts for buoyancy forces
which arise due to temperature variations within the fluid. This is a common occurrence in natural convection
flows that causes a difference in density across the fluid. The fourth term represents the body force exerted by the
applied magnetic field. This effect is fundamental in magnetohydrodynamics (MHD), where the interaction
between the fluid flow and the electromagnetic field governs the behaviour of conducting fluids such as plasmas,
liquid metals, and ionized gases.
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111. Results
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Figurel(a): Effect of Grash of number on primary velocity
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Figurel (b): Effect of Grash of number on secondary velocity
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Figure2 (a): Effect of magnetic field on primary velocity
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Secondary Velocity g'(n)
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Figure2 (b): Effect of magnetic field on secondary velocity
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Figure2 (c) Effect of magnetic field on temperature
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Figure 2 (d) Effect of magnetic field on concentration

IV.  Discussion
The system of dimensionless ordinary differential equations is solved over n € [0,7,,] where 1, = 10
to ensure convergence. The thermophysical properties of the nanofluid were incorporated into the calculations.
Using water as the base fluid and silicon (IV) oxide (5i0,) as the nanoparticles. The numerical simulations are
carried out for different parameter values to study the response of velocity, temperature, and concentration
distributions to the variation in the parameters. The default parameter values are
Gr = 05 M = 01; R = 2; Pr = 6.9; Sc = 0.63.

DOI: 10.9790/5728-2106011318 www.iosrjournals.org 17 | Page



Title

The Grashof number (Gr) represents the ratio of buoyancy forces to viscous forces in the nanofluid flow.
It determines the influence of natural convection on the flow. The numerical simulations reveal that an increase
in Gr leads to an enhancement in both the primary (f') and secondary (g') velocity components. These
observations are primarily due to the buoyancy forces strengthening the convective transport of fluid and
nanoparticles so that buoyancy forces become stronger as Gr increases, and consequently leading to an increase
in the fluid velocity. The increase in velocities in both directions implies that free convection is dominant and
cross-sectional flow mixing is enhanced, leading to more effective thermal energy distribution.

The numerical results indicate that increasing M leads to a reduction in both the primary velocity and
secondary velocity, but it leads to increased temperature and concentration of the nanofluid. As M increases, a
noticeable decline in the velocity profiles is observed, which can be attributed to the Lorenz force introduced by
the magnetic field, which acts in the opposite direction to the fluid motion, thereby suppressing both primary and
secondary velocities. The reduction in velocity also leads to increased viscous dissipation, which in turn
influences the thermal and mass transport characteristics of the nanofluid. Also, a significant increase in
temperature is observed with increasing M due to an increase in thermal boundary layer thickness arising from
suppressing velocity. The concentration is also observed to increase with increasing M, probably due to the
reduction in convective mixing caused by lower velocities.

. Increasing the nanoparticle volume fraction ¢ thickens the viscous boundary layer and expands the
region where viscosity becomes more significant. By the increase, the higher thermal conductivity of
nanoparticles facilitates improved heat exchange, leading to a reduction in viscous resistance and an increase in
flow acceleration. The thermal effects of ¢ are significant due to the superior heat-conducting ability of
nanoparticles compared to the base fluid. As ¢ increases, nanoparticle interactions become more frequent, leading
to greater inter-particle collisions. This reduces the mobility of individual particles, limiting their ability to diffuse
freely within the base fluid. . Consequently, the concentration boundary layer thickens, and nanoparticles become
more localized rather than evenly distributed.

V.  Conclussion
The results show that Grashof number and nanoparticle volume fraction enhances primary and secondary
velocities, magnetic field reduces both primary and secondary velocities, nanoparticle volume fractions increase
temperature profile, and nanoparticle volume fractions concentration of nanoparticles decreases.
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