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Abstract:
This research focuses on an essential aspect of complex analysis, specifically complex integration. The focus is
on the Cauchy-Goursat theorem, which states that the line integral of a holomorphic function along a closed
contour equals zero when the function is holomorphic within and on that contour, in a domain with a single
connection. Various applications derived from this study are analyzed and discussed, aimed at solving integrals
of functions that may present singularities. In this regard, more advanced research would enable the
contribution of tools in the theory of control and potential flow.
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I. Introduction

In the study of definite integrals, there are some very complicated integrals that cannot be solved by known
methods. The Cauchy- Goursat theorem is an answer to a question in complex analysis: When is it true that the
integral of an analytic function f on a closed curve is zero? The references show that this occurs if f has a defined
antiderivative along the entire curve, and sometimes it does not occur.

Cauchy's Theorem can also be applied to closed curves that are not simple, but can be split into simple closed
curves. The orientation of a curve C induces an orientation on each of the split curves, and it can be seen from the
definition of the complex integral that the integral of C is the sum of the integrals of the pieces. Thus, if the function
f is analytical inside each of the simple curves into which the curve is split €, then the integral of f o the curve €
must be equal to 0, [1].

Not every complex function f(z) that is continuous in a region R is the complex derivative of a function .
F(z) in R, by the fundamental theorem, for this to happen it is necessary that the integral of f(z) be 0 on every
closed curve in R. Cauchy’s Theorem tells us that this happens if f(z) is differentiable as a complex function and its
derivative is continuous. Requiring that f it has a complex derivative and that it be continuous seems a very strong
hypothesis compared to the hypothesis in the real case (that f it is continuous). Goursat was able to prove Cauchy’s
Theorem without requiring that the derivative of f be continuous, and this small change has very important
consequences as it translates into the following result: “If f is an analytic function in a simply connected region R
then for every closed curve Cin R, [ f(2)dz=0.

II. Material and Methods

It is an applied approach, as it will solve certain real-world integrals using the remainder theorem. The design
is descriptive and comparative, using the Cauchy integral as a tool to achieve the proposed objectives.

The documented data collection technique is appropriate for each of the variables considered in the research,
allowing us to obtain information to enrich the theoretical framework and analyze the properties of the Cauchy
integral and some of its consequences. All the information will help develop the methodological strategies to obtain
the results of this research.

III. Result

3.1 Fundamental theorems of calculus
Theorem 1. Let f: 0 c € — €, N = Ran(f), be such that f is injective in 2 and such that its inverse function z =
f-1(w): 2 c C — C is continuous. Then, if f(z) is differentiable at zo € 2 and if f'(z0) # 0, then f-1(w) is
differentiable at wﬂ = f:%l and (f _Q__r(%l ="_

f'(zo)
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Definition 1. Anarc T © T is the range of a f: [a, b] — © contimious function. We consider every arc to have an
onientation that must correspond to the direction of growth of't, [2], [3], [4].

If f(t) = u(t) +iv(t). t € [a,b]. f we will call a_the parameterization of I" and t the parameter. I f
a: [c, d] = [a, b] is an increasing bijective function, then I” is also the range of g = f © a: [¢, d] — €. Every Jordan
curve I' separates the plane into two domains, one bounded (called the interior of I') and one unbounded (the
exterior of I'); furthermore, 1if any other curve joins the mtenior with the extenior, 1t must intersect I'.

Definition 2. A curve T C C that has a differentiable parameterization f: [a, b] — € at {a, b) and whose derivative
f(t) # 0.¥t € [a,b]. Every regular curve is rectifiable and its length is given by £ = f: V() + ((v'(£)*dt.

Theorem 2 (Second Fundamental Theorem). Let be f: Q0 — € a continuous and integrable function on 0 C C a
domain and let be F(z) = [ f(z)dz, ¥z € Q. If T © C is a rectifiable curve joining two points z; y z; in f2, then

[ f(z)dz = F(z2) - F(z1).
Corollary. If f 1s integrable over a domain 2 and I" © 12 1s a closed rectified curve, then L, f(z)dz=0.

Theorem 3 (First Fundamental Theorem). Let be f: € — Ccontinuous in O © € domain, such that the integral of
f is independent of the path in 2. Let be z; € 12 fixed, we define F(z) = _f;u f(z)dz.Vz € 1, and then F'(z)exists,
vz € 1 and f(z) = F'(z). Vz € 12, that is, f it is integrable in 2. [5]. [6].

Theorem 4. Let be f: T — T continuous on 0 © € a domain. Then the following three statements are equivalent: a)

f is integrable in 02 © C; b) The integral of f 15 path-independent in 1 © €C; ¢) The integral of f around every closed
piecewise regular curve I' © 2 15 zero.

3.2 On Cauchy’s theorem and Goursat,. 's lemma

Cauchy's theorem in T, 1s closely related to Green's theorem in the plane. To see this relationship, we prove the
slightly weaker version of Cauchy's theorem, [4], [3], [6]-

Theorem 5. Let f: C — C, f € CY(2). 1 c C a simply connected domain. then, for every I' © 0 piecewise regular
Jordan curve

[ f(z)dz=0 ey

Proof : Let R = Int(I"). Clearly R 1s simply connected. If f = u + iv. then by Green's Theorem (uand vare
CHR))

[ udx —vdy = [| = =2 dxdy @
r I 2" dy

[ vdx +udy = [ [ =2 dxdy.
r fooax ay

but since f it 15 analytic, it satisfies the Cauchy-Fiemann conditions 9 = E and & = — ai Therefore, (1) and (2)

dx ay dy dx
cancel out; and [ f(z)dz = [ (udx — vdy) +i [ (vdx +udy) = 0.
The objective is to prove Cauchy's theorem, for this the following Lemma will be useful.

Goursat 's Lemma. Let | be continuous on a f: € — € simply connected I' © 2 domain, and let, be 12 a piecewise
regular Jordan curve, then We = 0, there exists a polygon P © 2 such that ||Jﬂr f(z)dz — fpsf(z)dz|| < £. Closed

polygon: 3z, ey Zn. Z0 = Z, i1 2 suchthat P, = zpzy U Z122 U.. U Zp—1Zn.
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Proof: Since 0 1s openand I’ © 2 1s compact (closed and bounded), then there exist p > 0 and E © 12 compact
such that ' — E and E contains all neighborhoods B(z, p), withz € I'. Letes = 0, as E 1is compact and f, is

continuous on £2, then f is uniformly continuous on E, that is, 3n > 0 such that for all z!,z? € Ewith |z! — 22| <
n = |f(z') —f(z=J:L{ — where L = Long(l'). For £ > 0, by line integral 3§ > 0 such that forall P = z= U

ar 5 o1
Zizz U...U 2,1z, Z, = zp, closed polygon with vertex in I' with ||zy — z—l| < &8; k= 1,2, n. we have
Il ] ,r(z]dz - z," HE Mz —=z < . where s € zz 15 any. In particular we will take
r =1k k k1 B F Ok k-1
llzx — zi-1ll < min{d, p,nkk = 1,2,..0.mn 3)
If f(2)dz=Z" FfE )=z -z <™ )
r k=t kK k k=1 2

ves [ f(2)dz=X" [
P k=1

Sk—15k

[f(z) — f(zdldz + Z]:c_lf(zi‘cl{;zk — Zp-1). then

Il f(z)ydz - E’” f(f:.l@n —Z-l = ZZILZA — zZi-1ll max Uf(z:) — fze-ll (&)
Ps

SESk—15%

Now, for all k = 1,2, nand for all z €z, 1z, ||z — z:ll = llze-1 — 2|l < 1 by (3), and since z; € E and from

3) ||z — z|l < p. then from (1) and z € E, then we have z,z; € E and ||z — z/| < #. Therefore from (2) ||f(z) —
Lzl

< :VZEZ—L. Vh=1,2,..nm().|]J f{zjdz—};” H Mz —=z__ )l )
L k=1 k k= kK1 E k=1 4_.|= ir—l
lhe sum L"ﬁuzk — Zi-1|l g1ves an approximate value “Yor the length ot 1, as L 15 the supremum ot all such sums

Yn |12 — Zxg—1ll & L. lherelore,
k=1

I f@dz—2" f(€ )z —z )< ©)
k=1 Kk K k

Ps = -1 2
By the triangular inequality, from (4) and (6), || frf(z]dz - fpsf(Z]dZ” < e

Now Cauchy's theorem 1s proved, first for I' a tnangle, then for convex polygons, we continue for polvgonal
Jordan curves and finally for closed polygonal curves [7], [8].

Theorem 6. Let f: T — €, be analytic in () © € a simply connected domain, then for every I' piecewise regular
Jordan curve, I' © 12, frf(zjdz =0

Proof. Case 1: For triangles, let be a I" counterclockwise D, E y F tniangle and be ABC the midpoints of the sides
AB, ACy BC respectively. Joimng these points gives four triangles A,, A5, A5 v 4,

frf[z]dz =_fdzf(z)dz—l-fdzf(z)dz+_|"d3f(z)dz+fd4f(z)dz.

Figure 1. Counterclockwise triangle.
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Because the mntegral over ED, EF y DFvamshes in pairs (having opposite directions). Let M = ||frf{2]dz|| =0=
M<=2" ||L_f(z)dz||. n at least one of the tnangles A , say 4 : ||L_flz)dz| = . bdtarting now trom
k=1 Ay k 1 A9 4
4y (instead of I') and proceeding in exactly the same way. we obtain a t.ria.ngle Az, Az € Ajsuch that
[|L_f(z)dz|| ==and so on. resulting in a sequence of triangles ' 2 A4 > g] D4 o “hose area tends to
Az a2 1 n
zero as (n — o0) and

||[ f(z)dz| = there exists such z € I'uint(lMNthatz € z S .:i Wi =12.. ben(z) = flerftzo) — fl{=z } z#
—
Z0 Z E!Z and hmn(z) =0,z # 24,2 €E ﬂthen, given £ = Dan3f36 = 0 such that

z—zp

In(z2)ll <& v0 < |lz — zoll < 6. (7N
Now |If, f(2)dzll = II[ , [f(z0) + f'(z0)lz — za)n(z))dz|l.
=|f " (z —zy(z)dz| = [Perimeﬁ‘O]mfdx ln(z)lz — zo)ll. (8)

fnisla.rge%lgh_:*iﬁ for all z €

o

Let | = Petimeira de (T). Then, perimefro de (M—

ﬂ_—.llz—zoll < &, trom (/)2 lIn(z)ll < &, VzEﬂ_—‘pmnade {ﬂ_—L _and Jiz — 2_—lﬁiz}ll < el ). and

n gn 2r' an

VZE 4 1118 1arge enougn. LOererore, i (8) |[L_L\Z)az|| < i JL_) = __ 0 18 1arge. replacing =d nis
n A 2n an 4r.' An

large. M = £l4, Ve > 0. Lheretore, M = ||| f[z)ari|| = 0. From here: | j‘[z)dz =0
r

Case 2. For convex polygons. Let I' = Agdi... Ap-14u(do = Ap)n = 4 15 a convex polygon , then we take a

vertex of I'. which can be 4y and join it with the other vertices, thus obtaining (n — 2) triangles, all of which are

parameterized in the counterclockwise direction (A: ... Ay—2). from the first step: f,, f(z)dz=0,¥k =
kK

Lyfy ey T 4. AOEIEMNE | (2)0E — L7 L f(Z)UE — U
r k=1 Ay

f,( A 4

Figure 2: case 2 Figure 3. Case 3

Case 3 - For polygonal Jordan curves. As shown in the figure, all sides of the polvgon extend in one direction or the
other (or perhaps both). This breaks down the integral over convex polygons, all of which vanish in step 2.
Therefore _f[.f(z)dz =0, [9]. [10].

Case 4: For polygonal curves. The integral over is subdivided I’ into integrals over polygonal (simple) Jordan
curves. Some may overlap, then, from the previous step [ Sflz)dz=0
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Case 5: (piecewise regular Jordan curves). Let be I' a piecewise regular Jordan curve I' © 2 and £ > 0, from the
lemma, there exists P. a closed polygonal curve P. C (2 such that ||frf(z]dz —fpsf[z)dzﬂ < £. From the fourth

step: ||| - f(2)dz]l < . as e = O is any. then: ||| f(z)dz|| = 0. From here | _f(z)dz = 0.

Theorem 7. Cauchy's integral formula. Let be f: © — € analytic in a domain 2 © €. Let be £ a counterclockwise
rectifiable Jordan curve such that £ U Int(£) < 02, then f(z) = I—Je 1) dw, Wz € Int(f).

i w—c
3.3 Consequences of Cauchy's integral formula

In Cauchy's formula we obtained f(z ) = if f(_::dzz where f is analytic n £ U Int({) and z € Int(f). An
o 2ai *f:—:n 0

ntegral of this type is called a Cauchy-type integral, the function f(z) iz called the denvative and L s the kernel
E—zI

of the integral. This theorem is very important because it proves that if f 1s known only over some Jordan curve £,
then the values of f can be found throughout the interior of £; one would only need to evaluate the kernel of the
integral. Furthermore, it will be seen that all the derivatives of f can also be found from this formula.

Theorem 8. Let /: C — € analvtic in a domain ) © €, then f 1s infinitely differentiable in 2. Furthermore, ¥z, €
N if £c 0 is any counterclockwise Jordan curve such that Int(£) € 2 and zy € Int(€) then finl(z) =

i I ﬂ Wn=20,1,2_.

ami 4 {z—zgintl

Proof: It is clear that it 1s enough to venfy the above formula. We will prove it by mathematical induction. For n =
0, we obtain the already proven Cauchy formula. Assuming that it holds for, n > 0 it is proved that it also holds for

n+1.Lete > 0,38 > 0 suchthat B(zo, p) © Int(£) and §o = dist(£,I',) = 0(Ls: ||z — zoll = p). We have

o, (amd ey
¢ =min{p, G a
enough to prove that if

1> 0, where M =mé!0x|f(2]|, Il =long(#)and R > 0 is such that £ € B{0,R). It is
£E

N e hl = & than IFEHR=FE0) (i)t p flE)d: || < g ()
h 2w f (z—sgntl

Let 0 < |h| < &, then zg + h € B(zg, p) C Int(£), then zp v 2o + h € Int(£).

Then by hypothesis

3] e

clmheo o e flmie o plnde o2 o By flEids E=lrothisttro)
0 ami £ (z—zgyttl 0 2mi € (z—(zg+hyntl h
L L e eVl S
2mi £ (z—sglPHl[=—(=p+h" TR

Ifz —zp = t.then z — (zo + h) = t — hand by the identity

ar*t = bt = (a = b) B, afb (10)
FM o+ = Mizg) al ; FlzHEE (-l H]
R — |

h ami £ =1 matl

nlo | FlsMELE_gRr—at "= (nt—hlt
=l—1 &=

dz 11
2mi £ T I —fontl I U

and ELE: gt — B - Xt — Rt = R EE {t — Ay RRE gl — BT by (10), as & < [t] < 2R,
=0 k=0 k=0 k=0
&y < |t — h| < 2R, taking modulus

||£:I|__ogt — hynF] — Z% — Byl < |k E%ZQQ @;{M 1)
k= = = =
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in) () w1t )ds ot 2} MLOZRY
in(11) and (12) || N0 _eri g F(@ds |<‘”‘““‘ _8 < c.thenV 0 < |k| < & is fulfilled (9).
.'1 2 r(f_.-gﬂ Zm ﬁ

Theorem 9 ( Morera ). Let f be f:C — € continuous in a domain () © € and such that féf[z]dz =0 for every
rectifiable Jordan curve, then f 1s analytic 1n 12, [11].

Demonstration: By the (equivalence) theorem of the hyvpothesis f is integrable in 2. That 1s, there exists F: © — €,
F € C(17) such that F'(z) = f(z); as F € C'(12). then F is analytic in 2 and from the previous theorem (Cauchy's
F), F' it is analytic in £2, so f it is analytic in £2.

Theorem 10. (Cauchy Estimation). Let be f: € — Canalvtic in a domain f:C — C. Let zp € 2 and r > 0 such that
reofl:llz—z || =r)then ||friz ]| = =" n = 0,1,2,.... where M(r) = max. [12].
r r o o

it el

Demonstration: From Cauchy's formula

IFz Il = ) === < 2.

2mi F;-{:——g_ﬁ'”- 27 riTl

Theorem 11 (Liouville's). Every bounded integer function is a constant function

Proof. Letz € C. Since {} = €, then ¥r > 0, " < 12, then the Cauchy estimate IIfJ‘Qll <, ¥r =0 (where M =
o r

0 such that ||f(z)|| < M,¥z € C, when r — ¢0, then f'(zp) = 0,¥z € C, then f(2) = Cte J.nC

3.4 Power series and absolute convergence

Theorem 12. (Cauchy- Hadamard ) Let be ¥* _a (z — z)* a power series and R = : then a) If R = 0,
k=0 k& o

lim '\.-cr

n—0m
the power series converges only for z = zg, b) [f 0 < R < co, the power series converges absolutely ¥||z — z;|| < R,
and diverges V||z — zpl| = R, ¢) If R = o0, the power series converges absolutely everywhere €.

Obviously, the theorem says nothing about the behavior of the series on the circle of convergence: ||z — zq|| = R[7].

(8]

Theorem 13. Let be ¥2 . a:(z — z5)* a power series with radius of convergence R > 0. Let 12: llz — zgll < R and
be flz) = L;‘_a (z —z )% z € {1, then a) | 1s analytic i {2, b) a_=' - and hence f 1s equal fo the lavlor
=0—% o kt
series in 2, c) Wk = 0,1,2.. ¥z € 2: fi&l(z) =12 éz—g:‘
= =k

1heorem 14 ( laylor). Let be f(Z) an analync runction in [ and 2 & {2 then f(z) = L
[i] =0

1K)
_ (2 — 2=, tor all
- 0

k!

Z in the largest disk around zp v contained in £2.

Definition 3. Let be f analytic in a domain 2. A point zp € 12 1s called a zero of order m of f(z) if: f*(zy) =
0,vk =0,1,2,....m — 1and fi™(zg) # 0.

Motto. zg 15 a zero of order n of the analytic f(z) function if and only if in a neighborhood of z: f(2) = (z —
zg)"g(z). where g(zp) # 0 and q(z) is analytic in zg, [13].

Froot: (=) In a neighborhood of z - =L"____[z—z__l: L” . (z—z__]:' = flz)=(z—
0 k=0 k=n i
2q(z). Where q(2) = L2 T - 2 — ZJ* 15 aNAIVHC 1 & Ne1ZNbOTo0d OF Z_Lbecause it 15 @ POWer series)
=0 7 3
£ (zg) (k+ni!
andg(_z__l #* 0.

n!

(<) From the previous Theorem: q(z) = XL bu(z — z)* = bo = g{z0) # 0. where
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_{:Q k=012..n—1

= =
- k=nn+1,... @ bo # 0.

Therefore. f*)(zg) = kla, = 0. ¥k = 0,1,2, ..n — 1 and f0(z) = nla, # 0, where zp 13 a zero of order n of

f(z)-

Theorem 15. Let be f(z) analytic in 2 and zy € 2 such that f(zp) = 0. then 3 r > Osuch that f(z) = 0, ¥|lz —
zoll < 7vor f(z) # 0.V 0 < ||z — =l <7 In fact r = Dist{z,, 317). (That is, the zeros of f occur 1n balls or else
thev are isolated zeros).

Theorem 16. Let £ be analytic in 2 and be {z,,} € 12 a sequence of zeros of f (all distinct) that converge to zp €.12.
Then f=0m 0.

Theorem 17 (Parseval 's Identity). Let f ana.lync in 2 and z € 0. Let R > 0 such that f(z) = ZF _ ai(z — zo)".
F n nz 2

v z—za gRthenVOcﬁrcﬁR—] f:f:zc.-l-gdﬂ— =0 ay I

3.5 Regarding singularities and Laurent series

Definition 4. Let be fdefined in () € a domain. If £ is analytic in 2. except at one pomnt zq € f2, then f it has a
singularity at zo. [6], [7], [8].

It only focuses on singularities that are 1solated That is Ir = 0/W0 < |lz — zoll < r. f(2)it is analytic in 12. Let's
sav f(z) = (sengz has singularities in- g,: n=41,+2,. .. it 1is easy to see that 1 nz = = 0 f has a non-1solated

nmow

singularity. Dcpendmg on whether it exists or not, limf(z) there are three types of singularities: removable
-
singularity if: limf(z) € €, polar singularity if: lim||f(z)|| = o0 and essential liml||f(z)|| singularity if: neither
=5 S5 5]

exists n or 15 00,

Lemma. Let be zp a singulanty of £, a) If z; 1s a removable singulanty, then redefining f (z0) = l&m f (2) f s

25
analytic in z. b) z 15 a pole of fifand only 1f z 15 a zero of 1. [14].
o o 7
Demonstration: a) Obviously. since Q’é} = limf(z). b) (=) lim ||_|| = ' =!= 0, = ' —u=
1 Fadii] =—=zp  fi=) “’I’_:D"f(::'" +o fil=ag)
L has a zero in z_ (<) lim|lf(2)]] = 1 = 4w, .
f g R Tm 10 07
z=zg fi=

Theorem 18. (Lavrent). If f is analytic in the ring Ry < llz — zoll < R, then f(2) it can be represented in the
Laurent series f(z) = X% ¢ (z— z)" which converges to f(z) in the ring. Moreover ¢ _ !, Fflelds  p g
n=—=o n 1]

" o € (s—zgunl

Z, where £ 1s any circle centered at zq and contained in the ning, [15].

Pmof Let zlfR 1 ||z L= zgll < Rz, from Cauchy 's formula for doubly connected domains, flz) =
e [ ‘ds =1 +L,“hereé||s—zll—é1—12g<‘r <:||z—z||<:r <R) Forl_
ami 42 £zl ami £1 F—z] 2 1 ! o L 1 B o 2 B 2
i 1 =F= vniform  convergence, since |z —z || <|s—z|l=r, I =
g1y (s__ELI_El_‘l:U n= Dis‘—'ﬂ;.\é 1 1 o V] 2 2
= risiat 1(=z —z__]: since both closed curves are 1n the ning I =2 ¢(z —z )
L= - £t 1 2 n=0 n_1 0
1
For - — 1 1 =3¥* (s—zg® . uniform convergence, since ||s -z I = r <z —=z|.
1 1 o

a5 :1—.?_.30 [l J__:iE:lll—'s_'D 1 n=0(z 1—'33£+1
I, =% e Zaal.

n=—
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Therefore: Ef-i’_—l 2 ¢ (z — Z_—L V& wheree _ t , fleids
n=—t a1 n ami £ (_,_zgﬂ'
If f is analytic in Ry < ||z|| < Riand in ||z]| < Ry, then its Lawrence series becomes its Taylor series, since ¢, =
2TL”_ “% =0, forn = —1, —2,.... the integrand being analytic in and on £.
Corollary. Let be f analytic in 2 — {zo}. Then F is analytic in zo <= [|f(z) || this bounded in a neighborhood of z;.

Proof: (=) Direct, since ||f(z)ll it is continuous. (E)let M:llz —zoll = p. 0 < p <R, R = Dist(z,, 7). =
fl=lds
{Z] - E?‘.o_—oo Qy (Z - Z& @n = 2m Fp(’_sﬂ.]_+1'ﬂ €N

M M
Let M = 0/llf(z2)Il <M. vz€B(z,R). lla |l < {erp):E If n<0, making p = 0=|la ||—O=>
o i 2 n+l
Uy — U, VTl — — L, — &y e, LOCICIOIE, [ (£) — 2, I(,l.plé —z__‘= s ld\llU.I SEIIES. 1O 15 d.T.I.d.lYllL]J.l.{—.
n=—In_n a

3.6 Calculation of residues

Definition 5. Let be f analytic in a domain 2 except zp € 2. Let be the fi(z) = X7___ a.(z — zo)" Lawrence
series around f. zg The residue of f in z 1s the coefficient a_,. Notation: a_; = Re s (f(z), zo). [8], [9], [10]- How
to calculate the residue:

1}  Directly: Finding the Laurent series of f around z;, then Re s (f(2), zo) will be the coefficient of the term (z —

zg)tt
2)  Res(f, Q _f f(z)dz: where is a £ closed and simple curve around. z

u

fiz)d=

1
Indeed (n = —1)a, = -ré'{z——g}_ﬂ = fef(z)dz_
3) HKesif, z__L— lim o Iz — Wﬂz}l when Z_:I.S a pole ot order k of f(z). It k = 1, Heslf, z__L =
(k—1}! g gpd=*—1
lim(z —z ]f(z) Indegd 1fz 1s apole of order koff{z) flz)= +a (z -
=z (S_EJJJ— z—zq o
Zglt..
(z —z0)¥f(2) = a_;;+...+a_1(z —zg)* 1 4 ao(z — zo)f + ai(z — zo)F T4
= . |
Differentiating (k-1) times ¢ [{z — Qzﬁ{z]] =(k—-—1la + j:a (z — z__l + (ke a (z—z P4+ then(k —
dsh1 17 0 T 1 o
Nla =lim~_ [(z —Qzﬁfz]]
-1 ] dzk—1
N If f(z) ="\, p, q analytical in z_(z) =0 qz) 0 and pfz]) # 0, Res(f(z)) = P0) ich that has a
qlz) o =
sunplezeromg,mcnm.h:—L@rz__L umiz—z) = am = 7'z
o o ==z o 'G":S} sz SSZ—U:QI g'(=zq)

Theorem 19 (Remainder). Let be f analytic 12 except for singularities, 2, Z2,.... 2, of 2, let, be £ a Jordan curve
i [ Which encloses Zj, £z, .., Zy. lhen | JFl2)az = 4m 2t Kes| [, Zx). -
£ k=1

Proof: Let be I'y, 'z, vow, I curves in the interior of £ that enclose and zy, 23, ..., 2, respectively. Then, by Cauchy's
theorem for simply connected domains
def2)

] Flzjdz =221 flz)d = 2 AmiKes(f, =Z).
£ k=1 rp k=1

_];f(z)dz = 2::;'2:_1% z).
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Theorem 20 (From the argument) . Let be £ a Jordan curve and f(z) analytic on £ and in £ except for a finite
number of poles 1n £, then 1 J‘c f'eidz = n — p, where p is the number of poles (counted with their multiplicity)
fis)
within £ and n is the number of zeros (counted with their multiplicity) within £).
Proof: Let g(z) = e
theorem ~ | © a‘z 18 equal to the sum of all residues of g. We first calculate the residue of g at z a zero of f. It
2mi é (=) o

the zero 1s of order k, then f(z) = (z — z__gg{z] where ¢ is analytic and (= l¢ 0. then: g(z) =" "=
#'®), and Res(g;z ) = fg(Z]dZ—k[ J 1+ Ydz =k fa ==

i) 2m ¢ 2mi fa—gp £ @(z)

" then the singularities of g are the zeros and poles f inside £. Therefore, by the residue

Therefore, by adding the residues obtained at each zero within f, the ftotal number of zeros (counted with
their multiplicity) f within £, that 1s, n clearly resulis .
k @'(=]

On the other hand, if f has a pole of order k in z € Int(#), then 75 = — + % and Res(g;z ) =
[ ]
fi=) z—zg #is)
—k. summing the residues of g at the poles of f gives — p, Therefore: J o dz =n —p, 4]

¥ fi=)

2mi

Theorem 21 (Rouche) . Let f(z)and be g(z) analytic functions on and inside a Jordan curve €. If llg(z)ll <
lF(2)ll. ¥z € £, then f(z) + g(z) and f(z) have the same number of zeros inside £.

gl=)

Flz)
functions do not have poles within 1? (since f + g and g are analytic), then

! fﬁdzaﬂdn =iff_1dz=n —n 1 F dz,

—_— ]
zmi 4 fig B oam iy 1 27 om f14F

Proof: Let: F(z) = and be n_a_ud Zl_th.ﬁ number of zeros of {f + g) and f respectively within £, both

1

as: ||F(z)ll < Llon £, then % =1—F+F?—F3+..(and the convergence is vmform), therefore. ny —n. =

—E o o(dz = 0, that 15, iy = na.

2mi
IV. Discussion
The discussion 1s focused on the application and evaluation of Integrals classified into several groups:

Group 1: Jx' ) dx, where p and q are relatively prime polynomials and the degree of q 1s at least 2 greater than

e gegree oI P afd § Nas no real Zeros 3/ g must be eVen). 10 TS Case: (Im ¥ ax = 7ML L HESLT, 7.
P _Rﬁ Im(z)=0
where f(z) = e
otz
Froof: Let ¢ {R U |—R, K|, where eﬂ. llzll = R, Im( =) = 0, be the residue mriﬂ%ax + éRjLzmz
2mi Xm0 Res(f, z), where R = 0 is large enough to £ contain all singularities of f with Im(z) > 0. In this
case, 1t suffices to prove that | R—on L IH—fi(z)dz|| < ZmREmaxi||f ()} M R—t M>=0
f@dz———0 scty < (= =0
1s a constant.
Application 1. Analvze the problem = dx R dr =2mi[Res{— .0 and @ dr =2mi[limiz—
—0xI5]  gamd —Rilii 21 e -

0 %}] =
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.. . w d 1 @ d . L . w dx
Application 2. Evaluate the integral | = r =" x=, since x4+ 1 it 15 an even function then, =
0 %641 E] —00 3611 0 7511

lﬁ - L1 =0,z=y=1=1 (cos T + isen (“T“" )): kK =0,1,2,3,4,5. Only the roots for k = 0,1,2

2 Cgh+q 5 3

which are in the upper half-plane, these are: z; = ei"/6, z; = e3¥i"/fand z; = 5/8_for z; = i85, Res(f(z)
=0

b

tim (z — e% 1 = ﬂ We can apply L' Hospital's rule, and we have lim ! _le-== —vI— { For z; =
i Bl 0 ir 6z & 12 12
=g B g8
3im/6 . 3mi n ) ] ot _
e Res(f(z)l,, = !mfd_im_(z— es) %o, = ;- When applying L' Hospital's rule. Res(f(z))l ;—E-[’_-E_l‘-'] -
; I—=e 6
=
) i Emi ] . ) P N i
For: z, = e5i/6_ Res(f(z)) = J,';;»r;m (z—es) ﬁ =-. Bv applving L' Hospitals mle, we have
g B
—_ S5 i th__, 0: iix . @ dx
Res(f (=) n a=M ) ey = 2mi[Res(f(z)) o, + Res(f(2)):, + Re s (f(z))=.]. oy =
ALl — = — " . LOrI 1 — I 11— .
3 3 E] =09 641 23 3

Application 3. Analyze the problem |% 2 _. Using real analysis. 1t is required to have an antiderivative of this

wITm
function, which 1s very complicated. The most efficient way is to solve this integral via complex analysis, using the

function f(z) = -

first determining the singularities of this function. In this case, they are the complex numbers

1+z10°
2841
20, Z1, rar, Z50f the form z; = 7L 10 k=0,1,2,...,9, and these are poles of order 1 (sumple poles). Only the roots
T 3im Sim Tim Sim
k =0,1,2,3,4 are 1 the upper half-plane [7]. These are zp = el0, 2y =10, z; = el z3 = g1l zy = ¢ 1T, using
LI AUy ICSI0UE RSO ETT Y e, ., Wl - - - -
J—mm sielint(l)
_ 1 1
Bes(f,z) = | =
! (1+s101 10:5[.
L
® dx = 27iY5 Res(fz)=2mi¥* !
J oo pepie- i=1 i n=0" InFi—
100"l 10 Ny
I g 1 i, 1 ~

J—m1+xw g n=0 frl8aEY, 5 _rgtritratritrg
P 1 =

N i —
m—l—i‘il

4 4

r = —cos(18%) + isen(18%) = —

r = cos {'i] + isen {1) =TT
L 10 10 4 4

45 - e
r,=e ‘' = cos (—) +isen{—) =i
10 10

LB gar gar  Vie-ade Vel

ry=e TU:cos(;]-l-Isen{E}: -I-IT

(M”l, 8ir glm Vigrade VB

ry=e Tﬂ=cos(;]+isen{F]= -|—iT
m5—1

Adding these gxpressions we have my +r +rm+rz+ 1y = 20

DOI: 10.9790/5728-2105023446 www.iosrjournals.org 43 | Page



Application Of The Cauchy-Goursat Theorem

Group 2: o a(x)eeslkx)dx. or | = g(x)sen(kx)dxwhere g(x) =" is as in the first case. Either of the two

—o0 —oe ﬁ
- - - - . =] - - " - -
integrals is calculated by considering the integral [ g(x)e®**dx, and equating the respective real and imaginary
PEILS. W e ave (A JETTUR — ATLL A ﬂﬁ.'.‘)'i .L'[Z JETTT ) ds lgLE pET — 1giE e o= I1gie ), o1y A
—® Im(z)=>0

0 (_k > 0 without loss of generality). The proof is similar.

o cos(kx)dx

Application 4. Analvze the % Jk>0and a = 0.
—cn 2402

z'h'd ikz tkz

© T = 2milRes (L +ai)] = 2milimlz — ai)  °
J —00 gl xi4gl —ai s—ai)(z+ai)

' COELRXjax - T éﬂ\ w —kn:? NI KX jax - é&&\ -~
J_m x24+al —00 x24qd Za -0 g24pd —00 x24q2
P @ _ cos(xldx

Application 5. Analyze the problem J_m (et adiri+be)
- o cosix)dx w [,8 T “‘:ra =0
J o (i all(x i+ b et b a

= e 1=2mi[Res( Aai)l

) rrmpmy irobidiisd)
—a

I=2mi[_ ° A

(—a2+b2W3ai)  (—b2+ali2bi) af-p2 b a

Group 3: Analyze the problem f:ﬂR(sen(ﬂj, cos(8))df. This integral is equal to the integral of a certain complex
function ¢(z) over the circle.

e'® = cps( @) + isen(8) = z.e ¥ = cos(8) — isen(d) =

no e

cos(8) = (s + ). sen(8) = (= — ).

z

By replacing in R, we obtain | ll=ll=1 ¢(z)dz, this integral can be calculated by the residue theorem.

Application 6. Analyze the problem sz 4

0__3+2cen(f) ’

Fud 48 Fod

=_ z = cos(8) + isen(f) = gf,dz = izdz

r= J 0 3+2:zen(8) V5

. . —3+J5. =3+ |
z2+3iz—1=0sisblosiz= E']I,:z_= i € Int(¥)
2 o 2
I=2mi(— ) =21
3i+(—3+y5T N
2w cos(38d8

Application 7. Analyze the problem I = .
0 S5—dzen(d)

cos(8) = (z+1). cos(36) = 1 (2 + z-3).dz = izd6

1 _
- Z(:3+z £ a

E i1 _ (Pedz
Tlzll=t s—agz4sly iz 2; llzll=1 3(5z—13=—2)

Inside 8: z = 0, pole of order 3, z = 1pole of order 1
2
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Z [} -

. - E-r z +1
I=—mflimli—p =+ jp—mium [__—7” b=
=0 2idst ¥ 2z—1W=—2) 128 (2z—13=—-32) 12

=5

Z

Lk € {0,1) (for convergence). In this case f(z) =

Group 4: Integration around branch points. M—J:

[T
expi—klnizll 45 3 multivalued fonction; its principal value is taken The function f(z) 15 analytic in all € but the
1+=z

simple pole z = —1 and the branching line y=0,x >0 (ie. 6 =0). When 6 =0, r=x,z==x, f(z)=

exp(=kln(x)) = * _. L integrating f around the closed contour £, which consists of two circular arcs: g& lzll = r,
1+x 1+x

fi:llzl =R (0 <r < 1,R = 1) and two segments L, and L; of the rays 8 = ¢ and 8 = —¢ (g > 0) respectively.
£ =483 U+ UL UL;, as € contains within itself the singulanty z = —1,

_lef(z)dz + fﬁf{z)dz + szf(z)dz + _fLuf(z)dz = 2mi[Res(f(z),—1)]

= 2mi exp[—k(Ln(1) + mi)] = 2mie=*m, 13

about Lz = tes = z7% = t~%e~%5,t € [, R].

about Ly: z = tel2m-3) = z7k = t—kg—kiZr—3 ¢ € [R, 7],

Re—ke—iksgisge | pp—ke—ik(2m—sld(2m—sidy
Ly Lz J?' 1+ta's B 1+¢ell2m—s)
— s n? e —k
ri4+ie® j r 1+tell2n—s)
----- tr—re e 0 g e = Bt NdE :
—p L1 Lz rol4e
About £5: z= Re'®d € [, 21 — £],
about £z = ref € [2m — ¢, £]
2m—s R gAY 2a—sr Ng T Wigl¥dg
fo 1 Js 1+Rei Js 14reif
- meeew B = A = —— S ] - _;R_:HU_“J_“
s=p  fo £ : 0 1+ReC
—k —B[1—K} 1—k 1-k
o f— - A = Ve ol 1 &I e W e L " -~ i
]U 1+rel? R-1 r—1
imllIll =0= liml =0 (1%)
r—0 r—0
R—=o A=

—k
Cdt+ 0= 2mie*r,

from (13), (14) and (15) it follows that lim(1 — e~2km) JR
r—0

L & o
R—mo
=k Frig—kml - _ i
J AL N = e = _ = — :
0 1+4c 1—mig—2km ekTi—gig—kai sen(km)

Whenever there are branch points, circles around them should be avoided.

V. Conclusion

It was necessary to use the result of Goursat 's lemma, and that Cauchy's theorem iz fulfilled for multiply
connected regions, that is, f: © — € an analytic function in 2 © € a domain and is K < 2 a multiply connected set
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whose boundary Fi"g.lg fufu. . Uf, where 4, Intﬁ’) and €3, ¥, k = 1 .2, ..., 1 are piecewise regular and
a15)0INT Joraan Curves orientea countérclockwise, ] Flz)jaz = 1L _I\=z
£

=1 ¢,
It 1z evident that it satisfies the Cauchy integral formula, f: € — C analytical in a domain 2 © C_ with £ a
counterclockwise rectifiable Jordan curve such that £ U Int(f) c 1, that is f(z) = A

furthermore, for the definition of residue, f analytical 2 except at singularities, z l.zz,._.._,zm of 2 and £ a Jordan
curve in I Which encloses i, £z, ..., Zm, thetetore, | flzjaz = 2m 2" EHesif zz).
£ k=1

Finally. to evaluate the integral J_ e dx, where p and are g mutually prime polynomials and the degree of g

15 @l 1SS WO IIOTS LIAETL e aegres oL g g.{l?l Of [las T00 ICdl ACT05 0 F O IIUSL U2 SVELL), WE USed uial e wx —

Room —Rglx)

2mi X, Res(f,z), where f(z) ==

Imiz)=0 a(=)
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