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Abstract 
The orthogonal polynomial set’s properties and its use in the least square sense approximation of data or complex 

functions to a polynomial, are discussed. Performance of Chebyshev, Gram and Alfredo-Giuseppe (A-G) 

polynomials is examined with a simulated Planck profile with and without noise. For Gram and A-G orthogonal 

sets with equal spaced grids, the effect of two types of fake data points at the boundaries are examined by 

computing the root mean square deviation of the data fit. When three or more data points of zero values are added 

at fake grids, computation orthogonal polynomials of highest allowed degree are possible without divergence (no 

Runge phenomenon). When fake repeated data points are added, good data fit to polynomials (computed from the 

orthogonal polynomial for each degree) with highest convergence rate results. Good noise discrimination is seen 

in the latter case and can be used to identify the best orthogonal polynomial degree to be employed for data fitting 

applications. 
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I. Introduction 
Orthogonal polynomial set (defined over an appropriate variable domain and boundary conditions, and 

a weighted orthogonality integral) are eigenvectors of certain classes of differential / difference operators [1]. 

This and the fact that they can be generated via recursive, differential or integral formula, have hypergeometric 

representation and  associated generating functions, have close relation to continued fractions etc., endows it with 

several useful properties and consequent computational and analytical advantages. Orthogonal polynomial sets, 

by serving as a basis for expansion of arbitrary functions, [2] have applications in approximation theory and 

numerical analysis, as in the iteration free least square polynomial fitting, quantum mechanics, probability, signal 

& image analysis, etc. Here, after a concise discussion that traces the origin of the several useful properties of the 

orthogonal polynomials, its application in data fit is probed. The developments in orthogonal polynomials have a 

very long history and diversity with copious literature. However, here only references that are easily accessible 

(except for books), broader than the context, but with some bias towards data analysis, are quoted and that too 

disregarding the chronological order. An attempt is made to include all relevant details in a coherent manner. 

 

II. Polynomial Sets And Finite (Converging) Hypergeometric Series 
Polynomials offer unparalleled computational and analytical advantages and hypergeometric series [3a-

c] is the general way to generate it with exemplary properties. The general hypergeometric series with the symbol  

pFq |
𝛼1 𝛼2 ⋯ 𝛼𝑝

𝛿1 𝛿2 ⋯ 𝛿𝑞
; 𝑧| or pFq(α1,α2, . . . ,αp ;δ1,δ2, . . . ,δq;z) (variables separated by “,” can be interchanged 

while that by “;” should not be) is  defined  in terms of shifted factorials (Pochhammer symbol,  (𝛼)𝑚 =

∏ [𝛼 + 𝑖 − 1]𝑚
𝑖=1 ) as:- pFq=∑

∏ (𝛼𝑖)𝑚
𝑝
𝑖=1

∏ (𝛿𝑗)𝑚
𝑞
𝑗=1

∞
𝑚=0

𝑧𝑚

𝑚!
. In terms of Gama function (𝛤(𝑧) = ∫ 𝑡𝑧−1∞

𝑙
𝑒−1𝑑𝑡), (𝛼)𝑖 =

𝛤(𝛼+𝑖)

𝛤(𝑖)
  

(because𝛤(𝑖 + 1) = 𝑖𝛤(𝑖) = 𝑖! ), its definition is extended to non integer values of the parameters α and δ. Among 

the many interesting properties of the series, the following are of interest here:- 

a) None of the δi can be negative or zero 

b) The series is a nth degree polynomial if anyone the numerators (αi) is -n and hence can be used to generate a 

polynomial set of degree zero to n.  The coefficients of such polynomials being function of factorials, represents 

various types probability distributions. 

c) The convergence of the series depends on the ratio coefficients of the adjacent terms and the value of the 

variable, z. Thus convergence is obtained only for specific variable range; for example if p≤q, it converges for all 

values of z; b); if p=q+1 it converges for │z│<1 only ;  and c)if p > q + 1 then the ratio of coefficients grows 

without bound unless z=o. However it can be a polynomial. 



Orthogonal Polynomials And Least Square Sense Approximation Of Data And Complex Functions. 

DOI: 10.9790/5728-2105021128                           www.iosrjournals.org                                                  12 | Page 

Particular cases of hypergeometric series corresponds to functions expressible as a polynomial series 

when an  appropriate variable range is employed. A special case of interest here is 

2F1(α1,α2;δ1;z)=∑
(𝛼1)𝑚(𝛼2)𝑚

(𝛿1)𝑚𝑚!

∞
𝑚=0 𝑧𝑚 = ∑ 𝑟𝑚

∞
𝑚=0 𝑧𝑚 = 

𝛤(𝛿1)

𝛤(𝛼1)𝛤(𝛼2)
  ∑

𝛤(𝑚+𝛼1)𝛤(𝑚+𝛼2)

𝛤(𝑚+𝛿1)

𝑧𝑚

𝑚!

∞
𝑚=0  which is a nth degree 

polynomial when  (δ1-α1-α2 ) >0 with α1 or α2 equal to -n. 

d) The ratio of coefficients of two adjacent powers of z ( 
(𝛼1+𝑚)(𝛼2+𝑚)

(𝛿1+𝑚)(𝑚+1)
) is a characteristics of the hypergeometric 

series and it is a rational function of m.  It’s derivatives satisfy the relation 
𝑑𝑗

𝑑𝑧𝑗 𝐹(𝛼1, 𝛼2; 𝑑1; 𝑧) =
(𝛼1)𝑗(𝛼2)𝑗

(𝛿)𝑗
𝐹(𝛼1 + 𝑗, 𝛼2 + 𝑗; 𝑑1 + 𝑗; 𝑧) linking hypergeometic series to the differential equation z(1−z)yll + 

[δ1−(α1+α2+1)z]yl − α1 α2y =0 , with   yn = 2F1(-n,α2;δ1;z) (Jacobi polynomials) as a particular set of solutions. 

Other related system of differential equations, a) zyll + [ δ−z] yl − α y=0, with yn =1F1(α;δ;z) and b) y"-2zy'+2ny=0, 

with yn = (2z)n
2F0(

−𝑛

2
,
−𝑛(𝑛−1)

2
; −;−𝑧−2)  also have hypergeometric type polynomial sets as solution.  The three 

linear ordinary differential equations of the type above that can be mapped onto each other and also reducible to 

a conjugate form by an appropriate transformation (transformation of abscissa, expressing ordinate as product of 

two functions or gauge transformation [4]) are referred to as canonical. 

 

Polynomial representation for Data and Function. 

Any differentiable function (f(x)) in an independent variable x or its function, with certain restriction 

about the point of expansion and the range (limited to a region of no singularity), can always be approximated to 

a converging polynomial within a characterize-able accuracy (Weierstrass’s theorem) [5]; Taylor [6a], 

trigonometric, [6b] hyperbolic series [6c] (among many others) being such examples. This forms the basis for 

seeking polynomial as the solution of a large class of differential / difference equations and polynomial 

representation of complex functions and measured data. A nth degree polynomial representation require n+1 

linearly independent, n dependent basis sets [2]; the sets {xj}, {pn} (polynomials of degree from zero to n), and 

cos(nx) (because cos(nx) can be expressed as a polynomial in cos(jx) with j=0 to n) being examples. 

 

Polynomial approximation of data 

Given a cluster of data points, to extract any insight, one needs to know the equation connecting an 

independent (in the simplest case of one dimension) variable, x, to the data as a dependent variable, y, (given by 

a function y=f(x)). If such a function is known with adjustable parameters, one may proceed with various 

optimization/regression methods [7a-d] and forms one of the approaches to data analysis. If no such model 

function is available or if such a function has a complex form, having a polynomial representation enables efficient 

computations. 

With (N+1) discrete data (xj,yj) generated using a complex function or some measurement, it is always 

possible to construct a N degree polynomial that will have the value yj at each xj [8]. A (N+1)th degree polynomial, 

LN+1, [𝐿𝑁+1 = (∏ (𝑥 − 𝑥𝑖)
𝑁+1
𝑖=1 )] and its derivative at each grid point j,  𝑙𝑗, (𝑙𝑗= ∏ (𝑥𝑗 − 𝑥𝑖)

𝑁+1
𝑖=0 𝑗 ≠ 𝑖)  can be used 

for constructing the N degree polynomial.   Since 
𝐿(𝑥)

𝑙𝑖(𝑥−𝑥𝑗)
= 𝛿𝑖𝑗, the N degree polynomial, pN, [8] passing through 

all the points will have the form:- 

𝑝𝑁 = ∑
𝐿𝑁+1

𝑙𝑖(𝑥−𝑥𝑗)

𝑁+1
𝑖=1 𝑦𝑗  -------------------------------{1}. 

An alternate way to approximate to a polynomial is to use the xj basis and expand the Nth degree 

polynomial, pN, as 𝑝𝑁 = ∑ 𝑟𝑁,𝑗
𝑁
𝑖=0 𝑥𝑗 and obtain rN,,j from the matrix inversion of the NxN Vandermonde (V) 

determinant [9] :- 

|

𝑦0

𝑦1

.
𝑦𝑁

| = ||

1 𝑥1 . 𝑥1
𝑁

1 𝑥2 . 𝑥2
𝑁

. . . .
1 𝑥𝑁 . 𝑥𝑁

𝑁

|| |

𝑟𝑁,0

𝑟𝑁,1

.
𝑟𝑁,𝑁

| ; 𝑖𝑒𝐹 = 𝑉𝑅    ---------------------------{2a} 

Inverting V [9] yield R as V-1F. 

If the above equation is multiplied by VT this takes the form:- 

||

∑0
𝑁𝑦𝑖

∑0
𝑁𝑥𝑖𝑦𝑖

.
∑0

𝑁𝑥𝑖
𝑁𝑦𝑖

|| = ||

𝑁 + 1 ∑0
𝑁𝑥𝑖 . ∑0

𝑁𝑥𝑖
𝑁+1

∑0
𝑁𝑥𝑖 ∑0

𝑁𝑥𝑖
2 . ∑0

𝑁𝑥𝑖
𝑁+2

. . . .

∑0
𝑁𝑥𝑖

𝑁+1 ∑0
𝑁𝑥𝑖

𝑁+2 . ∑0
𝑁𝑥𝑖

2(𝑁+1)

|| |

𝑟𝑁,0

𝑟𝑁,1

.
𝑟𝑁,𝑁1

| ; 𝑖𝑒𝐹 = 𝐿𝑅  ---------------{2b} 

By column operations, (adding to each column the column on its left after multiplying by an arbitrary 

constant) V can be replaced by a matrix with polynomial elements as:- 
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|

𝑃0 𝑃1(𝑥1) . 𝑃𝑁(𝑥1)

𝑃0 𝑃1(𝑥2) . 𝑃𝑁(𝑥2)
. . . .

𝑃0 𝑃1(𝑥𝑁) . 𝑃𝑁(𝑥𝑁)

|    Thus, (after a column and   row additive operations on RHS and LHS in 2b) 

||

∑0
𝑁𝑝0(𝑥𝑖)𝑦𝑖

∑0
𝑁𝑝1(𝑥𝑖)𝑦𝑖

.
∑0

𝑁𝑝𝑁(𝑥𝑖)𝑦𝑖

|| = ||

∑ [𝑃0(𝑥𝑖)]
2𝑁

𝑖=0 ∑ 𝑃𝑁
𝑖=0 0

(𝑥𝑖)𝑃1(𝑥𝑖) . ∑ 𝑃0
𝑁
𝑖=0 (𝑥𝑖)𝑃𝑁(𝑥𝑖)

∑ 𝑃𝑁
𝑖=0 0

(𝑥𝑖)𝑃1(𝑥𝑖) ∑ [𝑃1(𝑥𝑖)]
2𝑁

𝑖=0 . ∑ 𝑃1
𝑁
𝑖=0 (𝑥𝑖)𝑃𝑁(𝑥𝑖)

. . . .
∑ 𝑃0

𝑁
𝑖=0 (𝑥𝑖)𝑃𝑁(𝑥𝑖) ∑ 𝑃1

𝑁
𝑖=0 (𝑥𝑖)𝑃𝑁(𝑥𝑖) . ∑ [𝑃𝑁(𝑥𝑖)]

2𝑁
𝑖=0

|| |

𝑟𝑁,0

𝑟𝑁,1

.
𝑟𝑁,𝑁

| ; ---{2c} 

Integer powers of x, xi, or in general, a set of ith degree (i=0 to n) polynomials formed from a linearly 

independent ‘simple’ function set of x can form the basis for such an approximation. Thus irrespective of whether 

discrete data is from a function (noise free) or from a measurement (noise may be present), it can have a 

polynomial approximation. 

 

Optimum polynomial degree representation 

Analytically, the interpolations described above ensure that the generated N degree polynomial coincides 

with arbitrary spaced N+1 data points. However, the lack of constraints at regions between the points, the loss of 

accuracy (due to overflow/ underflow, rounding off etc.) in computations, and other factors like noncompliant 

boundary conditions and discontinuous data, leads to fluctuations referred to as Runge & Gauss [10a-b] 

phenomena, close to the boundaries of x or at the discontinuities of y, respectively.  Also, such a fit may be just 

providing a sketching through the data points. In reality, a meaningful fit may require only a lower polynomial of 

degree, n, (n<<(N+1)), with norms for ignoring out-liners (due to error / noise or approximation), sometimes with 

a transformed x-range.    Of course, then (n<<(N+1)) the polynomial may pass through only few or even none of 

the points, so that one needs to look for a polynomial that passes through points ‘closest’ to the data.  There are 

several approaches, [7] but examination of the least square method that employ linear sum of polynomials of 

various degrees, i (i= 0 to n), as basis for an incremental improvement of the fit (approximation) needs attention 

in the context of efficient attainability of the above requirement. 

 

Least square fit to data 

Let 𝑝𝑛 = ∑ 𝑟𝑛,𝑖
𝑛
𝑖=0 𝑂𝑖 where 𝑂𝑖 = 𝑥𝑖 (pn is a nth degree polynomial) or a more general 𝑂𝑖 = ∑ 𝑘𝑖,𝑗

𝑖
𝑗=0 𝑥𝑗. 

For a nth degree polynomial approximation, pn, the measure of the error with in the least square approximation 

is :- 

𝐸𝑛 = ∑ [𝑦𝑘 − ∑𝑟

𝑁

𝑖=0

𝑂𝑖(𝑥𝑘)]

2𝑁

𝑘=0

 

This will have a minimum value with respect to rnj  when 
𝛿𝐸𝑛

𝛿𝑟𝑛,𝑗
= 2∑ [𝑦𝑘 − ∑ 𝑟𝑛,𝑖

𝑁
𝑖=0 𝑂𝑖(𝑥𝑘)]

𝑁
𝑘=0 𝑂𝑗  =0. ;  (j=0 to n) 

Setting 
𝛿𝐸

𝛿𝑟𝑛𝑗
= 0 yields the normal equation  |

𝐹0

𝐹1

.
𝐹𝑛

| = |

𝐺11 𝐺12 . 𝐺1𝑛

𝐺21 𝐺22 . 𝐺2𝑛

. . . .
𝐺𝑛1 𝐺𝑛2 . 𝐺𝑛𝑛

| |

𝑟𝑛,0

𝑟𝑛,1

.
𝑟𝑛,𝑛

| 𝑖𝑒𝐹 = 𝐺𝑅 where 𝐹𝑗 =

∑ 𝑦𝑘𝑂𝑗(𝑥𝑘)
𝑁
𝑘=0 and 𝐺𝑖,𝑗 = ∑ 𝑂𝑖(𝑥𝑘)𝑂𝑗(𝑥𝑘)

𝑁
𝑘=0  ---------------{3} 

Thus R=G-1 F 

The inversion of the Gram matrix, G, to get R (rnj) is not needed (a computational advantage) if, the set {O} 

satisfy 

∑ 𝑂𝑖
𝑁
𝑘=0 (𝑥𝑘)𝑂𝑗(𝑥𝑘) = ℎ𝑗𝛿𝑖𝑗   ----------------{4} 

This defines discrete orthogonality. This discrete sum and the integral ∫ 𝑂𝑖
𝑢

𝑙
𝑂𝑗𝑑𝑥 = ℎ𝑖𝛿𝑖,𝑖 are 

interchangeable  if the function set Oj is singularity free in the x range [l,u], not only represent the data points, y i 

at xi , but also is a good interpolation between the points, and each member of the set and its derivative satisfy 

certain boundary conditions (section 2.2).   Since with discrete orthogonality, the Gram matrix is diagonal:- 

𝑟𝑛,𝑗 =
𝐹𝑗

𝐺𝑗,𝑗
.  --------------------{5} 

When xi is used as the basis, (the non-orthogonal polynomial) case the matrix equation corresponding to 

the least square norm takes the form:- 

||

∑0
𝑁𝑦𝑖

∑0
𝑁𝑥𝑖𝑦𝑖

.
∑0

𝑁𝑥𝑖
𝑛𝑦𝑖

|| = ||

𝑁 + 1 ∑0
𝑁𝑥𝑖 . ∑0

𝑁𝑥𝑖
𝑛

∑0
𝑁𝑥𝑖 ∑0

𝑁𝑥𝑖
2 . ∑0

𝑁𝑥𝑖
𝑛+1

. . . .
∑0

𝑁𝑥𝑖
𝑛 ∑0

𝑁𝑥𝑖
𝑛+1 . ∑0

𝑁𝑥𝑖
2𝑛

|| |

𝑟𝑁,0

𝑟𝑁,1

.
𝑟𝑁,𝑛

| ; 𝑖𝑒𝐹 = 𝐿𝑅 ------{6} 
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Thus, 𝑟𝑁,𝑗 = 𝐿−1 ∑ 𝑥𝑖
𝑗𝑦𝑖(𝑥𝑘)

𝑁
𝑘=0  (in the general form, the elements of L are integrals). This requires 

matrix inversion and re-computation for any change in n. However, in the case of orthogonal polynomials, the rn,j 

are independent of n and hence no re-computation of rn,j is required as the trial degree is incremented to n+1 (<N); 

another computational advantage. Note that for any member of the set {pN}, pn (0≤n≤N), the discrete orthogonality 

is defined by a summation over the roots of pN. Also each pn is the best nth degree polynomial fit in the least-

square sense and will be a better approximation as compared to any lower degree polynomials. 

Since ||

𝑁 + 1 ∑0
𝑁𝑥𝑖 . ∑0

𝑁𝑥𝑖
𝑛

∑0
𝑁𝑥𝑖 ∑0

𝑁𝑥𝑖
2 . ∑0

𝑁𝑥𝑖
𝑛+1

. . . .
∑0

𝑁𝑥𝑖
𝑛 ∑0

𝑁𝑥𝑖
𝑛+1 . ∑0

𝑁𝑥𝑖
2𝑛

||= |

1 1 . 1
𝑥0 𝑥1 . 𝑥𝑁

. . . .
𝑥0

𝑛 𝑥1
𝑛 . 𝑥𝑁

𝑛

| |

1 𝑥0 . 𝑥0
𝑛

1 𝑥1 . 𝑥1
𝑛

. . . .
1 𝑥𝑁 . 𝑥𝑁

𝑛

| and|

1 1 . 1
𝑥0 𝑥1 . 𝑥𝑁

. . . .
𝑥0

𝑛 𝑥1
𝑛 . 𝑥𝑁

𝑛

| can be 

converted to  |

𝑝0(𝑥0) 𝑝0(𝑥1) . 𝑝0(𝑥𝑁)

𝑝1(𝑥0) 𝑝1𝑥1 . 𝑝1𝑥𝑁

. . . .
𝑝𝑛(𝑥0) 𝑝𝑛(𝑥1) . 𝑝𝑛(𝑥𝑁)

| one can rewrite the expression for least square as :- 

||

∑0
𝑁𝑝0(𝑥𝑖)𝑦𝑖

∑0
𝑁𝑝1(𝑥𝑖)𝑦𝑖

.
∑0

𝑁𝑝𝑛(𝑥𝑖)𝑓𝑖

|| = ||

∑ [𝑃0(𝑥𝑖)]
2𝑁−1

𝑖=0 ∑ 𝑃𝑁−1
𝑖=0 0

(𝑥𝑖)𝑃1(𝑥𝑖) . ∑ 𝑃0
𝑁−1
𝑖=0 (𝑥𝑖)𝑃𝑛(𝑥𝑖)

∑ 𝑃𝑁−1
𝑖=0 0

(𝑥𝑖)𝑃1(𝑥𝑖) ∑ [𝑃1(𝑥𝑖)]
2𝑁−1

𝑖=0 . ∑ 𝑃1
𝑁−1
𝑖=0 (𝑥𝑖)𝑃𝑛(𝑥𝑖)

. . . .
∑ 𝑃0

𝑁
𝑖=0 (𝑥𝑖)𝑃𝑛(𝑥𝑖) ∑ 𝑃1

𝑁
𝑖=0 (𝑥𝑖)𝑃𝑛(𝑥𝑖) . ∑ [𝑃𝑛(𝑥𝑖)]

2𝑁
𝑖=0

|| |

𝑟𝑛,0

𝑟𝑛,1

.
𝑟𝑛,𝑛

| ----{7} 

Thus, if ∑ 𝑃𝑖
𝑁
𝑘=0 (𝑥𝑘)𝑃𝑗(𝑥𝑘) = ℎ𝑗𝛿𝑖𝑗, it is equivalent to the use of  an orthogonal set ({pj}0≤j>N, with a 

discrete orthogonality) with  the roots of PN as the grid and automatically ensure a least square fit for any n<N. 

The discrete orthogonality instead of the orthogonality integral, leads to efficient numerical computations. 

 

Construction of orthogonal polynomials from discrete data. 

From the procedure to generate polynomials from discrete data discussed above, it is clear that it is 

defined only at discrete (grid) points of the independent variable and a set of finite degree polynomials are needed 

for approximations of various degree. To generate such a finite orthogonal set, two approaches are used; use an 

x-grid that are the N roots of a ‘suitable’ orthogonal polynomial, pN, or construct an orthogonal polynomial that 

have N equal spaced (or in general q-spaced [11a-c]; not considered here) roots. These are respectively known as 

continuous and discrete cases. In the continuous case, the grid is non-uniform and the needed data is generated 

from the complex function that is being approximated to a member of the orthogonal polynomial set. In the 

discrete case, the equal spaced data (special q-spaced) points are available at the grid points by construction. Apart 

from the restriction on grid spacing, the orthogonal set can be identified as the solution of certain class 

differential/difference equations [1,12] that are reducible to a conjugate form. Eigen value equations 

[
𝑑2𝑦

𝑑𝑧2 − 𝜆𝑛𝑦 = 0] with trigonometric functions as eigen vectors and positive real discrete values as eigen values 

are special cases of such equations in conjugate form.   The link between orthogonal sets and differential equations 

reveal the boundary conditions required and several analytical relations. This also increases the available 

orthogonal sets and facilitates in getting approximate solutions to several related differential equations. 

 

III. Orthogonal Polynomials Of Hahn's Class 
Several computational Physics and mathematics problems are formulated as a difference or differential 

equations [13a-b] that are limiting cases of q-difference equations expressed in terms of Hahn's operator [14a-b]. 

The Hahn's operator  𝛿𝑦(𝑥) =
𝑦(𝑞𝑥+𝑟)−𝑦(𝑥)

(𝑞−1)𝑥+𝑟
 (q and r are real numbers with q ≠ 1 r ≠ 0 and 𝑥 ≠

𝑟

1−𝑞
) satisfy a degree 

conserving (all terms of same degree) q-difference equation of the form:- 

𝜎𝛿2𝑦 (
1

𝑞
(𝑥 − 𝑟)) + 𝜏𝑛0𝛿𝑦 (

1

𝑞
(𝑥 − 𝑟)) = 𝜆𝑛𝑦 with 𝜎 and 𝜏𝑛0 polynomials of at most two and one 

degree respectively [𝜎 = 𝜎2𝑥
2 + 𝜎1𝑥 + 𝜎0; 𝜏𝑛0 = 𝜏1𝑥 + 𝜏0]. Since 𝛿 can be the normal differential operator (for 

𝑙𝑖𝑚
𝑞→1

𝛿 𝑦) or the difference operator (∆ or ∇ when q→1 and r=±1), the above equation reduces to two sub classes, 

referred to respectively as continuous and discrete cases. 

𝜎𝑦!! + 𝜏𝑛0𝑦
! + 𝜆𝑛0𝑦 = 0         -------------------------{8} 

𝜎(∆𝛻𝑦) + 𝜏𝑛0∆𝑦 + 𝜆𝑛0𝑦 = 0 --------------------------{9} 

Here only these two sub-classes will be discussed and not the general q difference case [11a-c]. 

In general equation of the form {8} can be obtained via a transformations of the more general equation 

𝑦!! +
𝜏𝑛0

𝜎
𝑦! +

∑

𝜎2 𝑦 = 0 where ∑ and 𝜎 have degree ≤ 2  and 𝜏 is of degree one [13b] and encompasses large 

number of cases of scientific interest. 
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Properties of differential equations 

The equation {8} has, in addition to a singularity at ∞, singularities at the roots, s, of 𝜎 or 𝜏𝑛0 (s given 

by 𝜎2𝑠
2 + 𝜎1𝑠 + 𝜎0 = 0 or if 𝜎2 = 𝜎1 = 0𝜎0 ≠ 0, s=

−𝜏0

𝜏0
). Thus a power series solution (Frobenius method), of 

the form 𝑦𝑛 = ∑ 𝑘𝑛,𝑖
𝑛
𝑖=0

(𝑥−𝑠)𝑒+𝑖

𝑖!
 (e, the exponent corresponding to the singularity at s) should exist. This, for the 

positive real polynomials, yn leads to a recursion relation for kn,i (for 0≥n≤∞.; with kn,n=1) [11a] as:- 
(𝑛 − 𝑖)[𝜎2(𝑛 + 𝑖 − 1) + 𝜏1]𝑘𝑛,𝑖 − [(2𝜎2𝑠 + 𝜎1)𝑖 + 𝜏1𝑠 + 𝜏0]𝑘𝑛,𝑖+1 − (𝜎2𝑠

2 + 𝜎1𝑠 + 𝜎0)𝑘𝑛,𝑖+2 = 0   ----------

{10} 

This will reduce to a two term recursion if (𝜎2𝑠
2 + 𝜎1𝑠 + 𝜎0) or 𝜏1𝑥 + 𝜏0 equals zero with the region 

between the roots of 𝜎 (or 𝜏𝑛0 as the case be) having singularity free solutions. It also fixes zero as one of the two 

possible values of the exponent e. With such a monic polynomial solution for {8}, 𝜆𝑛0 can be obtained as  

−𝑛[𝜎2(𝑛 − 1) + 𝜏1] (by equating the coefficients of the zeroth power of x with such a trial solution). These are 

in fact the conditions for the existence of polynomial solutions to {8}. Such monic polynomial solution of {8} 

satisfies the condition on the ratio of two adjacent kn,i required for the existence of a hypergeometric representation 

[3a-c,11a]. Thus it is obvious that a set of polynomials of definite degree n, 𝑦𝑛 , ([𝑦𝑛 = ∑ 𝑘𝑛,𝑖
𝑛
𝑖=0

(𝑥−𝑠)𝑖

𝑖!
] ; 𝑘𝑛,𝑛 = 1) 

are the particular solutions of {8} and with an appropriate x range, will have a hypergeometric representation. 

Such particular solutions, pn (i.e. yn=𝑝𝑛 = ∑ 𝑘𝑛,𝑖
𝑛
𝑖=0

(𝑥−𝑠)𝑖

𝑖!
; n=0,1...∞) as a basis set, the converging series 

∑ 𝑟𝑛,𝑖
∞
𝑖=0 𝑝𝑖 (=y) is one of the general solutions of {8}. As it turnout, {8} is recast-able to a conjugate form and 

among many other properties, these solutions form an orthogonal set. 

 

Self conjugate form, weighted solution and orthogonality 

In {8}, if 𝜎 ! = 𝜏𝑛0, it takes the self-conjugate (eigen value equation) form [12]. If the condition 𝜎 ! = 𝜏𝑛0 

is not met, multiplication of y by a function w that satisfy the condition 𝑤𝜎 ! = 𝑤𝜏𝑛0 will recasts {8} into a 

conjugate form [12]. 

Thus 𝜎𝑦!! + 𝜏𝑛0𝑦
! + 𝜆𝑛0𝑦 = 0 takes the form 

𝑑

𝑑𝑧
[𝑤𝜎𝑦!] + 𝑤𝜆𝑛0𝑦 = 0 

Provided  (𝑤𝜎)ǀ = 𝑤𝜏𝑛0 

or 𝑤 ! = 𝑤
(𝜏𝑛0−𝜎!)

𝜎
 .-------------------------{11a} 

This implies that:-  𝑤 =
1

𝜎
𝑒𝑥𝑝 ∫ (

𝜏𝑛0

𝜎
)

𝑢

𝑙
𝑑𝑥   --------------------{11b} 

The limits of integration, l & u, needs to ensure that w is positive and finite. Since {11b} implies that 𝜎 

should not be zero within the limits of integration, l & u needs to be the roots of 𝜎, if 𝜎 is a second degree 

polynomial. In other cases also, the limits are decided by the location of the singularities of {8}. 

 

If pn and pm are two solutions of {8} with eigen values λu  and λv, then 

∫ 𝑝𝑛
𝑢

𝑙
𝑝𝑚𝑤𝑑𝑥 = ℎ𝑛𝛿𝑛𝑛  --------------{12} 

provided a suitable boundary condition sets [𝑤𝜎(𝑝𝑛
! 𝑝𝑚 − 𝑝𝑛𝑝𝑚

! )]𝑙
𝑢 to zero [12]. 

Thus, 𝑃𝑛, w, 𝜆𝑛,0, boundary conditions and restricting the range of x to singularity free region define a 

general orthogonal set that satisfy ∫𝑃𝑛𝑤𝑃𝑚𝑑𝑥 = ℎ𝑛𝛿𝑛𝑚. The generated set will be unique with an additional 

condition that the leading coefficient of Pn is positive. It may be noted that such solutions require specific x range 

([-1,1], [0,1], [0,∞ ],[-∞ ∞] etc.)  in the hypergeometric representation. Thus data will need a linear transformation 

to have such compatible range and the use of such standard range has an advantage in numerical computations 

also. 

Orthogonality implies that like y, any function F, (including 𝑥𝑚, 𝑃𝑚 etc) may be approximated by an 

orthogonal polynomial set as:-  𝐹𝑛 = ∑ 𝑟𝑛,𝑖
𝑚
𝑖=0 𝑃𝑖    (m=n if F is a polynomial of degree n, ∞ otherwise) because rn,i 

can always be obtained as:- 

𝑟𝑛,𝑖 = [∫𝐹𝑛 𝑝𝑗𝑤]𝑑𝑥 ÷ [∫ 𝑝𝑗 𝑝𝑗𝑤𝑑𝑥] -------------------------{13} 

Similarly, ∫ 𝑥𝑛𝑃𝑚𝑤𝑑𝑥 = [ℎ𝑛 ÷ 𝑘𝑛,𝑛]𝛿𝑛𝑚  ∫ 𝑥𝑝𝑛−1𝑃𝑛𝑤𝑑𝑥 = [𝑘𝑛−1,𝑛−1ℎ𝑛] ÷ 𝑘𝑛,𝑛  with  𝑝𝑛 = ∑ 𝑘𝑛,𝑖
𝑛
𝑖=0 𝑥𝑖 

 

Discrete sums and Orthogonality of finite polynomial sets 

As discussed earlier, for an integer N, a finite polynomial set can be generated that satisfy a discrete 

orthogonality. If  pN, pn and pm  (m,n≤ N) belongs to such a set, then the orthogonality integral, because then pn is 

the best fit to N points in the least square sense (see   section1.4), takes the (the superscript i implies the value of 

pn at the ith root of pN) form:- 

∑ 𝑤𝑁
𝑖=1 𝑝𝑛

𝑖 𝑝𝑚
𝑖 = ℎ𝑛𝛿𝑛𝑚   ----------------------------{14a} 
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This expression also implies the existence of another discrete sum as [15] :- 

∑
𝑤𝑝𝑘

𝑖 𝑝𝑘
𝑗

ℎ𝑘

𝑁
𝑘=1 = ℎ𝑖𝛿𝑖𝑗  ------------------------------{14b} 

The equations {14a &b} are the discrete form of the orthogonality integral {12} 

The Christoffel-Darboux identity and Gauss quadrature also are stated using discrete sums (section2.9 and 

[17,17]). 

 

Recursion relation 

A consequence of orthogonality is that the RHS of the expansion  𝑥𝑃𝑛 = ∑ 𝑟𝑛+1,𝑖
𝑛+1
𝑖=0 𝑃𝑖  takes the form 

𝑎𝑛+1𝑥𝑃𝑛 − 𝑏𝑛+1𝑃𝑛 − 𝑐𝑛−1𝑃𝑛−1 (because xPn is a polynomials of degree n+1) with:- 

𝑎𝑛+1 =
∫𝑃𝑛+1𝑃𝑛+1𝑤𝑑𝑥

∫(𝑥𝑃𝑛)𝑃𝑛+1𝑤𝑑𝑥
 ; 𝑏𝑛+1 = 𝑎𝑛+1

∫𝑃𝑛𝑥𝑃𝑛𝑤𝑑𝑥

∫𝑃𝑛𝑃𝑛𝑤𝑑𝑥
 ; 𝑐𝑛−1 =

[𝑎𝑛+1 ∫𝑃𝑛(𝑥𝑃𝑛−1)𝑤𝑑𝑥]

[∫ 𝑃𝑛−1𝑃𝑛−1𝑤𝑑𝑥]
=

𝑎𝑛+1

𝑎𝑛
 ----{15}. 

Thus 𝑥𝑃𝑛 =
𝑃𝑛+1

𝑎𝑛+1
+

𝑏𝑛+1

𝑎𝑛+1
𝑃𝑛 +

𝑃𝑛−1

𝑎𝑛
  or 𝑃𝑛+1 = (𝑎𝑛+1𝑥 − 𝑏𝑛+1)𝑃𝑛 − 𝑐𝑛−1𝑃𝑛−1 ------------------{16} 

(the -ve signs used for keeping bn & cn positive in subsequent relations) 

For finite set of orthogonal polynomials, the summation over N replaces the integrals. 

The above recursion can be initiated with 𝑃0 = ℎ0; 𝑝1 = (𝑎0𝑥 − 𝑏0)𝑃0 and is the most efficient means 

of generating an orthogonal polynomial set. 

 

Recursion and other relations for the polynomial. 

Useful relations for the general polynomial expansion coefficients 𝑘𝑛,𝑗    (𝑝𝑛 = ∑ 𝑘𝑛,𝑖
𝑛
𝑖=0 𝑥𝑖) can be 

obtained by equating the coefficients of xl in the recursion {16}:- 

∑ 𝑘𝑗+1,𝑖

𝑛+1

𝑖=0

𝑥𝑖+1 = 𝑎𝑛+1 ∑𝑘𝑛,𝑖

𝑛

𝑖=0

𝑥𝑖+1 − 𝑏𝑛+1 ∑𝑘𝑛,𝑖

𝑗

𝑖=0

𝑥𝑖 − 𝑐𝑛−1 ∑ 𝑘𝑛−1,𝑖

𝑗−1

𝑖=0

𝑥𝑖 . 

These are :- 

𝑘𝑛+1,𝑛+1 = 𝑎𝑛+1𝑘𝑛,𝑛; 𝑙 = 𝑛 + 1 

𝑘𝑛+1,𝑛 = 𝑎𝑛+1𝑘𝑛,𝑛−1. −𝑏𝑛+1𝑘𝑛,𝑛; 𝑙 = 𝑛 

𝑘𝑛+1,𝑙 = 𝑎𝑛+1𝑘𝑛,𝑙−1. −𝑏𝑛+1𝑘𝑛,𝑙 − 𝑐𝑛−1𝑘𝑛−1,𝑙; 𝑙 = 𝑛 − 1, 𝑛 − 2, . . . . . .2  ------------------(17a) 

Or in general :- 

𝑘0,0 = 𝑝0 

𝑘𝑖+1,𝑖+1 = 𝑎𝑖+1𝑘𝑖,𝑖; 𝑖 = 0,1,− − −𝑁 

𝑘𝑖+1,𝑖 = 𝑎𝑖+1𝑘𝑖,𝑖−1. −𝑏𝑖,1𝑘𝑖,𝑖; 𝑖 = 1,2, − − −𝑁 

𝑘𝑖,𝑗 = 𝑎𝑖𝑘𝑖−1,𝑗−1. −𝑏𝑖𝑘𝑖−1,𝑗 − 𝑐𝑖−2𝑘𝑖−2,𝑗; 𝑖 = 2,3 − − − − − 𝑁  j≤i    -------------{17b} 

It may be noted that the indexing and sign of a, b & c are in accordance with that used in the recursion 

relation {16} and if it is different, as in some literature, those used here should be accordingly readjusted. 

Several relations between the recursion coefficients (an, bn & cn) and between the recursion and the 

polynomial coefficients can be obtained from equations {15} & {17a-b}. 

𝑎𝑛+1 =
𝑘𝑛+1,𝑛+1

𝑘𝑛,𝑛
 ⇔ ∫(𝑥𝑃𝑛)𝑃𝑛+1𝑤𝑑𝑥 = ℎ𝑛+1

𝑘𝑛,𝑛

𝑘𝑛+1,𝑛+1
 

Thus using the two alternate expressions of an 

ℎ𝑛+1 =
𝑘𝑛+1,𝑛+1

2

𝑘𝑛,𝑛
2

= 𝑎𝑛+1
2  

𝑏𝑛+1 = 𝑎𝑛+1 [
𝑘𝑛,𝑛−1

𝑘𝑛,𝑛

−
𝑘𝑛+1,𝑛

𝑘𝑛+1,𝑛+1

] 

𝑐𝑛−1 =
[𝑎𝑛+1 ∫𝑃𝑛(𝑥𝑃𝑛−1)𝑤𝑑𝑥]

[∫ 𝑃𝑛−1𝑃𝑛−1𝑤𝑑𝑥]
=

ℎ𝑛

ℎ𝑛−1

𝑘𝑛+1,𝑛+1𝑘𝑛−1,𝑛−1

𝑘𝑛,𝑛
2

=
ℎ𝑛

ℎ𝑛−1

𝑎𝑛+1

𝑎𝑛

 

Also,  𝑎𝑛+1 = 𝑎𝑛𝑎𝑛−1. . . . . 𝑎0 ;   𝑎0 =
𝑘1,1

𝑘0,0
 ;  𝑐𝑛−1 = 𝑐𝑛−2𝑐𝑛−1. . . . . 𝑐0 ;  𝑐0 =

𝑘2,2𝑘0,0

𝑘1,1
2

ℎ1

ℎ0
 

The above listed relations imply that, b can be zero and a & c are not independent variables. 

In general, the recursion formula for the generation of the polynomial set takes the form:- 

𝑝𝑛+1 = (𝑎𝑛+1𝑥 − 𝑏𝑛+1)𝑝𝑛 −
ℎ𝑛

ℎ𝑛−1

𝑎𝑛+1

𝑎𝑛
𝑝𝑛−1 --------------{18} 

The recursion coefficients an, bn & cn can also be obtained in terms of the coefficients of the polynomials 

𝜎 and 𝜏𝑛0 [18a-b] and is given in section2.8 for monic case[11a]. 

 

Orthogonality of Derivatives 

An important property of the solution of {8} is that all the derivatives of y are also solutions of it, as its 

structure is conserved under differentiation [15]. For the mth derivative (m≤n-1) it takes the form:- 
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𝜎𝑣!!
𝑘 + 𝜏𝑛𝑘𝑣𝑘

! = 𝜆𝑛𝑘𝑣𝑘; 𝑜 > 𝑘 ≤ 𝑛 − 1 (with 𝑣𝑘 as the 𝑘𝑡ℎ  derivative of y) 

𝜏𝑛𝑘 = 𝜏𝑛0 + 𝜎 !𝑘; 𝜆𝑛𝑘 = 𝜆𝑛0 + 𝜏𝑛𝑘
! + 𝜎 !! (𝑘 − 1)𝑘 2⁄  

Also 𝑤𝑘 = 𝑤𝜎𝑘 

Thus the orthogonality integral of the kth derivative 

∫𝑃𝑚
𝑘 𝑃𝑛

𝑘𝑤𝑘𝑑𝑧 = ℎ𝑛,𝑛
𝑘 𝛿𝑛𝑚 can be evaluated from the relation ℎ𝑛𝑛

𝑖+1 = 𝜆 ℎ𝑖
𝑛𝑛 starting with ℎ𝑛𝑛

0 = ∫𝑝𝑛
0 𝑝𝑛

0𝑤𝑑𝑧 

 

Recursion relation of kth derivative of Pn can be obtained by differentiating {12} as:- 

𝑃𝑛+1
𝑘 = (𝑎𝑛+1𝑧 − 𝑏𝑛+1)𝑃𝑛

𝑘 − 𝑐𝑛−1𝑃𝑛−1
𝑘 + 𝑎𝑛+1𝑘𝑃𝑛

𝑘−1 

(with no negative subscript/superscript allowed in the RHS.). These relations lead to Rodrigues formula as [15]:- 

𝑝𝑛 ∝
1

𝑤

𝑑𝑛(𝑤𝜎𝑛)

𝑑𝑥𝑛  

The Ist (and all higher) derivative of   𝑃𝑛  can also be generated [19] by𝜎𝑃𝑛
! = 𝛼𝑛𝑃𝑛+1 + 𝛽𝑛𝑃𝑛 + 𝛾𝑛𝑃𝑛−1 

with 𝛼𝑛, 𝛽𝑛  and   𝛾𝑛  computable from the coefficients of 𝜎 and 𝜏 [19]. 

 

Some useful summations 

For the evaluation of finite sums of the form   𝐹 = ∑ 𝑟𝑛,𝑖
𝑛
𝑖=0 𝑝𝑖  Clenshaw Algorithm [20a-b] is often used. 

As per this algorithm, by virtue of the recursion relation for Pi, as 𝑃𝑖 = (𝑎𝑖𝑥 − 𝑏𝑖)𝑃𝑖−1 − 𝑐𝑖−1𝑃𝑖−2, another 

recursion 𝐵𝑖 = 𝐴𝑖 + (𝑎𝑖+1𝑥 − 𝑏𝑖+1)𝐵𝑖+1 − 𝑐𝑖+1𝐵𝑖+2 (with Bi=0 for i>n ) exists. The recursion is initiated (from 

i=n) with An=Bn to get B0 and then, F=P0B0.. 

The Horner recursive algorithm computes   polynomials (including orthogonal) with better precision 

[21] by avoiding computation of high powers of x. 

 

Extension to more general case. 

In the more general case when the independent variable is a function of x, (f),   {8} takes the form. 

𝜎 !𝑓 !𝑦!! + [𝜏!
𝑛0𝑓

!𝑓 ! − 𝜎 !𝑓 !!]𝑦! + 𝜆𝑛𝑓 !!𝑓 !𝑓 !𝑦 = 0 

Following the procedure as in the case of {8} one can get the weight function w as :- 
1

𝜎!𝑓! 𝑒𝑥𝑝 ∫ (
𝜏!

𝑛0𝑓!𝑓!−𝜎!𝑓!!

𝜎!𝑓! )
𝑢𝑛

𝑙𝑛
𝑑𝑓 

For the case when f is obtained as a result of a linear transformation of x (f=l1x+l0,  𝑓 ! = 𝑙1   and 𝑓 !! =
0), the weight functions will differ by a factor 𝑙1 and the degree of σ and 𝜏𝑛0 will remain unaltered. This implies 

that all results discussed above are applicable in this transformed case also with changed limits of integration and 

the transformed 𝜎, 𝜏𝑛0 and w. As an example, a linear transformations  (𝑧𝑖 = Є1𝑥𝑖 + Є0 or the reverse 𝑥𝑖 =
1

Є1
[𝑧𝑖 − Є0]; Є1 = 2 [𝑥𝑁 − 𝑥1]⁄ ; Є0 = −[𝑥𝑁 + 𝑥1] [𝑥𝑁 − 𝑥1]⁄ ),will change the limits of integration between 

[x1,xN] and [-1,1], but will leave an, bn & cn unaltered because [∫ 𝑓
𝑥𝑛

𝑥1
(𝑥)𝑤𝑑𝑥] = [∫ 𝑓

1

−1
(𝑧)

𝑤

Є1
𝑑𝑧]. Since the above 

transformation implies,  𝑥𝑖 = 𝜂1𝑧𝑖 + 𝜂0 [with 𝜂1 = 0.5(𝑥𝑁 − 𝑥1);𝜂0 = 0.5(𝑥𝑁 + 𝑥1)], the recursion  changes as 

𝑃𝑛+1 = [𝜂1𝑎𝑛+1𝑧 − (𝑏𝑛+1 − 𝜂0𝑎𝑛+1)]𝑃𝑛 − 𝑐𝑛−1𝑃𝑛−1----------------------{19} 

The reverse transformation is 𝑥𝑖 = 𝜂1𝑧𝑖 + 𝜂0 ; 𝜂1 = 0.5(𝑥𝑁 − 𝑥1);𝜂0 = 0.5(𝑥𝑁 + 𝑥1) and may also be 

used  to obtain the grid for other intervals ([0,1], [0,N] and [0, ∞]).  Thus orthogonal polynomials can be 

computed in any convenient range (related through a linear transformation), but as a standardization, results are 

often presented in terms of range compatible with hypergeometric representation. 

It is possible to assign P0 any value that is independent of x, to get compact relations, or numerical 

stability in computations. 

Two forms of orthogonal polynomials that are often used are the Monomial and Orthonormal and 

respectively correspond to cases where all kn or hn are set to unity. 

 

1) Monomial 

𝑃𝑛+1 = (𝑧 − 𝑏𝑛+1)𝑃𝑛 −
ℎ𝑛

ℎ𝑛−1
𝑃𝑛−1      𝑝𝑛+1 = [𝑧 − (𝑘𝑛,𝑛−1 − 𝑘𝑛+1,𝑛)]𝑝𝑛 −

ℎ𝑛

ℎ𝑛−1
𝑝𝑛−1  -------{20} 

with p0=1 

The recursive relation obtainable from the orthogonality for the monic case in terms of the coefficients 

of 𝜎 and 𝜏𝑛0 is [11a]:- 

𝑦𝑛+1 = (𝑧 − 𝑏𝑛+1)𝑦𝑛 − 𝑐𝑛−1𝑦𝑛−1 with 𝑏𝑛+1 =
𝑛𝜎1[𝜎2(𝑛−1)+𝜏1]−𝜏0(𝜎2−𝜏1 2⁄ )

2[𝜎2(𝑛−1)+𝜏1 2⁄ ][𝜎2𝑛+𝜏1 2⁄ ]
 

𝑐𝑛−1 =
𝑛[𝜎2(𝑛 − 2) + 𝜏1][𝜎1(𝑛 − 1) + 𝜏0𝜎2𝜎1(𝑛 − 1) + 𝜎1𝜏1 − 𝜎2𝜏0] − 4𝜎0[𝜎2(𝑛 − 1) + 𝜏1 2⁄ ]2

4[𝜎2(2𝑛 − 3) + 𝜏1][𝜎2(𝑛 − 1) + 𝜏1 2⁄ ]2[𝜎2(2𝑛 − 1) + 𝜏0]
 

or (𝑏𝑛+1 =
−𝜏0

𝜏1
   𝑐𝑛 =

−𝑛

𝜏1
 when 𝜎2 = 𝜎1 = 0; 𝜎0 ≠ 0). 
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2) Orthonormal 

𝑝𝑛+1 = (𝑎𝑛+1𝑧 − 𝑏𝑛+1)𝑝𝑛 −
𝑎𝑛+1

𝑎𝑛
𝑝𝑛−1  or  0 = 𝑧𝑝𝑛 − [

𝑝𝑛+1

𝑎𝑛+1
+ (

𝑏𝑛+1

𝑎𝑛+1
) 𝑝𝑛 −

𝑝𝑛−1

𝑎𝑛
]----------{21} 

It may be noted that in general 𝑝0 = 𝑘0,0 and  ℎ0 = ∫𝑝0 𝑝0𝑤𝑑𝑧 = ∫𝑘0,0
2 𝑤𝑑𝑧.  If h0 is not one, it possible 

to scale P0 and get a scaled 𝑝0̄   (𝑝0̄ =
𝑃0

√ℎ0
) and generate a recursion relation starting with 𝑝0̄ =

1

√ℎ0
: 𝑝1̄ =

𝑝1

√ℎ0
. and 

𝑝̄𝑛+1 = (𝑎𝑛+1𝑧 − 𝑏𝑛+1)𝑝̄𝑛 −
𝑎𝑛+1

𝑎𝑛−1
𝑝̄𝑛 -----------{22} 

For conversion between monomial and orthonormal forms the following relations can be employed. If 

𝑀𝑛+1 = (𝑧 − 𝑏𝑛+1)𝑀𝑛 − 𝛾𝑛𝑀𝑛−1 is a monomial set, then the corresponding orthonormal set is:- 

𝑂𝑛+1 = [(𝑧 − 𝑏𝑛+1)𝑂𝑛 − √𝛾𝑛𝑂𝑛−1] √𝛾𝑛+1⁄   ------------------{23} 

The equations for the orthonormal polynomials p1 to pn+1 generated by the recursion relation, after 

rearranging it as 
𝑝𝑛+1

𝑎𝑛+1
= [

𝑝𝑛−1

𝑎𝑛
+ (

𝑏𝑛+1

𝑎𝑛+1
) 𝑝𝑛] − 𝑥𝑝𝑛 and written in a matrix form is:- 

|

|

0
0
.
.
0

𝑃𝑛+1 𝑎𝑛+1⁄

|

|
=

(

 
 
 

|

|

𝑏1 𝑎1⁄ 1 𝑎1⁄ 0 . 0 0

1 𝑎1⁄ 𝑏2 𝑎2⁄ 1 𝑎2⁄ . 0 0
. . . . . .
. . . . . .
0 0 0 . 𝑏𝑛 𝑎𝑛⁄ 1 𝑎𝑛⁄

0 0 0 . 1 𝑎𝑛⁄ 𝑏𝑛+1 𝑎𝑛+1⁄

|

|
−

|

|

𝑧 0 0 . 0 0
0 𝑧 0 . 0 0
. . . . . .
. . . . . .
0 0 0 . 𝑧 0
0 0 0 . 0 𝑧

|

|

)

 
 
 

|

|

𝑝0

𝑝1

.

.
𝑝𝑛−1

𝑝𝑛

|

|
 

If we consider that z takes only the values that corresponds to the roots of pn+1, zi, then for each such zi 

the LHS in the above equation is zero (because at z=zi  pn+1=0).  Thus on the RHS requires that:- 

(

 
 
 

|

|

𝑧𝑖 0 0 . 0 0
0 𝑧𝑖 0 . 0 0
. . . . . .
. . . . . .
0 0 0 . 𝑧𝑖 0
0 0 0 . 0 𝑧𝑖

|

|
−

|

|

𝑏1 𝑎1⁄ 1 𝑎1⁄ 0 . 0 0

1 𝑎1⁄ 𝑏2 𝑎2⁄ 1 𝑎2⁄ . 0 0
. . . . . .
. . . . . .
0 0 0 . 𝑏𝑛 𝑎𝑛⁄ 1 𝑎𝑛⁄

0 0 0 . 1 𝑎𝑛⁄ 𝑏𝑛+1 𝑎𝑛+1⁄

|

|

)

 
 
 

=0  ----------{24} 

The above can be identified as the eigen value equation of the matrix J, known as Jacobi Matrix. 

J= 

|

|

𝑏1 𝑎1⁄ 1 𝑎1⁄ 0 . 0 0

1 𝑎1⁄ 𝑏2 𝑎2⁄ 1 𝑎2⁄ . 0 0
. . . . . .
. . . . . .
0 0 0 . 𝑏𝑛 𝑎𝑛⁄ 1 𝑎𝑛⁄

0 0 0 . 1 𝑎𝑛⁄ 𝑏𝑛+1 𝑎𝑛+1⁄

|

|
   ------------------------------{25} 

These eigenvalues (roots/grid points) and the corresponding vectors play an important role in the 

quadrature methods that employ orthogonal polynomials. 

 

Christoffel-Darboux identity. 

A relation involving discrete sums, known as Christoffel-Darboux identity, exists for two polynomial 

sets {𝑝𝑁(𝑧1)}   and {𝑝𝑁(𝑧2)}. The two variables, z1 and z2 are related via a linear transformation and thus have 

the same recursion coefficients. For the general (non-monomial and non-orthonormal) sets [16,22,23] it has the 

following form. 

∑
𝑝𝑖(𝑧1)𝑝𝑖(𝑧2)

ℎ𝑖

𝑁−1
𝑖=0 =

1

𝑎𝑁ℎ𝑁−1

[𝑝𝑁−1(𝑧2)𝑝𝑁(𝑧1)−𝑝𝑁−1(𝑧1)𝑝𝑁(𝑧2)]

(𝑧1−𝑧2)
 ------------{ 26a} 

It takes a simpler form for the orthonormal case as:- 

∑ 𝑂𝑖(𝑧1)𝑂𝑖(𝑧2)
𝑁−1
𝑖=0 =

1

𝑎𝑁

[𝑂𝑁−1(𝑧2)𝑂𝑁(𝑧1)−𝑂𝑁−1(𝑧1)𝑂𝑁(𝑧2)]

(𝑧1−𝑧2)
  ----------------{ 26b} 

In particular when z1 = z2 =z 

∑ 𝑂𝑖(𝑧)𝑂𝑖(𝑧)

𝑁−1

𝑖=0

=
1

𝑎𝑁

[𝑂𝑁−1(𝑧)𝑂𝑁
! (𝑧) − 𝑂!

𝑁−1(𝑧)𝑂𝑁(𝑧)] 

If the discrete values of z corresponds to the N roots of ON (i.e ON=0), zj ,  this yields [17(Eq35, chapter 2) ] :- 

∑ 𝑂𝑖
𝑁−1
𝑖=0 (𝑧𝑗)𝑂𝑖(𝑧𝑗) =

1

𝑎𝑁
𝑂𝑁−1(𝑧𝑗)𝑂𝑁

! (𝑧𝑗) ---------------------------------{27a} 

The corresponding equation for the monomial will be:- 

∑
𝑝𝑖(𝑧𝑗)𝑝𝑖(𝑧𝑗)

ℎ𝑖

𝑁−1
𝑖=0 =

1

ℎ𝑁−1
𝑝𝑁−1(𝑧𝑗)𝑝𝑁

! (𝑧𝑗) --------------------------------{27b} 

This expression leads to an efficient computation of weight in quadrature methods. 
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Generating new weight functions. 

If w is a weight function that yield an orthogonal set {pn} then  Ω = φ w, also satisfies the requirements 

of the weight function if φ is a non-negative polynomial of degree L  within the limits of integration [22]. The 

new orthogonal set that corresponds to Ω is  𝜓 =
1

𝜑
𝐷𝑛  where Dn is :- 

𝐷𝑛 = |

𝑝𝑛(𝑥) 𝑝𝑛+1(𝑥) . 𝑝𝑛+𝐿(𝑥)

𝑝𝑛(𝑟1) 𝑝𝑛+1(𝑟1) . 𝑝𝑛+𝐿(𝑟1)
. . . .

𝑝𝑛(𝑟𝐿) 𝑝𝑛+1(𝑟𝐿) . 𝑝𝑛+𝐿(𝑟𝐿)

| (ri are the L roots of φ ) 

 

Additional ways of generating orthogonal sets 

In general, if  a function set, 𝛺𝑖 (i=1….n) and it and its derivatives,  𝛺𝑖
!,  exists,  then the nth degree 

polynomial pn  given by Rodrigues formula , 𝑝𝑛 =
1

𝑤

𝑑𝑛𝛺𝑛

𝑑𝑧𝑛 , form an orthogonal polynomial set [22, page 59] for a 

weight function, w, provided 𝛺𝑖 and derivatives vanish at the boundaries. The boundary conditions on 𝛺𝑗, 𝛺𝑖
! and  

𝑑𝑛+1𝑝𝑛

𝑑𝑧𝑛+1
= 0. in fact identifies the set 𝛺𝑛. When 𝛺𝑛 = 𝑤𝜎𝑛, Pn satisfy differential equation {8}. 

For a given w, orthogonal polynomial set, can be generated via the moments matrix, constructed from 

the finite integrals 𝑚𝑖 = [∫ 𝑤
𝑢

𝑙
𝑧𝑖𝑑𝑥]. Let  A & B be:- 

A=  

[
 
 
 
 

1 𝑧 . 𝑧𝑛−1 𝑧𝑛

𝑚1 𝑚2 . 𝑚𝑛 𝑚𝑛+1

. . . . .
𝑚𝑛−1 𝑚𝑛 . 𝑚2𝑛−2 𝑚2𝑛−1

𝑚𝑛 𝑚𝑛+1 . 𝑚2𝑛−1 𝑚2𝑛 ]
 
 
 
 

     B= 

[
 
 
 
 

𝑚0 𝑚1 . 𝑚𝑛−1 𝑚𝑛

𝑚1 𝑚2 . 𝑚𝑛 𝑚𝑛+1

. . . . .
𝑚𝑛−1 𝑚𝑛 . 𝑚2𝑛−2 𝑚2𝑛−1

𝑚𝑛 𝑚𝑛+1 . 𝑚2𝑛−1 𝑚2𝑛 ]
 
 
 
 

. 

Then Pn=A/B will form an orthogonal set because∫ 𝑝𝑛
𝑢

𝑙
𝑝𝑚𝑤𝑑𝑧 = 𝛿𝑛𝑛. This approach can be employed 

to generate a set from any suitable w and need not always satisfy differential equation of the form {8}. 

Starting with any suitable linearly independent set {vj} of functions treated as vectors, one can generate 

an orthogonal polynomial set {xi} with the same span as {vj} via Gram-Schmidt scheme [24] as:- 

𝑥𝑖 = 𝑣𝑖 − ∑
⟨𝑣𝑖|𝑥𝑗⟩

⟨𝑥𝑗|𝑥𝑗⟩

𝑖−1

𝑗=1

𝑥𝑗 

These general approaches may need the computation of recursion coefficients via integrals. 

 

Classical orthogonal polynomials 

Classical polynomials (so named because they were known for a long time as solutions of some physics 

problems that have differential equations of the form {8}), have an associated infinitely differentiable function 

𝛺𝑖 with an auxiliary condition 𝛺𝑛 = 𝑤𝜎𝑛 [22,section 2.7]. They give standard expressions (avoiding integration) 

for an, bn and cn and weight function, and are widely used because of the efficient computational possibility. As 

mentioned earlier, for variables related by linear transformation, the orthogonal set is not new except for a 

modified recursion relation and weight.  From the discussion up to now it is clear that the solutions of {8} with 

restrictions on the degree and coefficients of  𝜎 and  𝜏 meet all these requirements. They can also be made to meet 

the independent variable range compatible with hypergeometric representation. Thus one can look for the 

hypergeometric form of particular solutions of {8}. The requirement of a positive-Definite weight and the possible 

solutions of 𝜎=0 or  𝜏=0 give rise to three unique monic Orthogonal Polynomial Solutions [11a]. 

 

case 1 degree of σ zero implying 𝜎2 = 𝜎1 = 0, 𝜎0 = 1, τ1<0 and x range [−∞,∞] 
The differential equation has the form:- 𝑦!! + (𝜏1𝑥 + 𝜏0)𝑦

! = 𝜏1𝑛 

The weight function obtained from the relation 𝑤 ! = 𝑤
(𝜏𝑛0−𝜎!)

𝜎
  is:- 𝑤 = 𝑒𝑥𝑝 (

𝑥2

2
𝜏1 + 𝜏0); 

The recursion is:-   𝑦𝑛+1 = (𝑥 − 𝑏𝑛+1)𝑦𝑛 − 𝑐𝑛−1𝑦𝑛−1 with 𝑏𝑛+1 =
−𝜏0

𝜏1
 𝑐𝑛 − 1 =

−𝑛

𝜏1
  τ1<0 

The polynomial expansion takes the form:- 

𝑦𝑛 = ∑ 𝑟𝑛,𝑖
∞
𝑖=0 (𝑥 +

𝜏0

𝜏1
)

𝑖

  with 𝑟𝑛,𝑛−2𝑖+1 = 0; 𝑟𝑛,𝑛−2𝑖 =
𝑛!

2𝜏1
2𝑖!

 

The hypergeometric form is:- 𝑦𝑛 = (𝑥 −
𝜏0

𝜏1
)

𝑛

 2F0 (
−𝑛

2
,
−(𝑛−1)

2
𝑛;−;

2

𝜏1(𝑥−
𝜏0
𝜏1

)
2) 

Orthogonality integral is:-∫ 𝑤
∞

−∞
𝑦𝑛𝑦𝑚𝑑𝑥 = √

2𝜋

𝜏1

𝑛!

(−𝜏1)𝑛
𝑒𝑥𝑝 (

𝜏0
2

2𝜏1
) 𝛿𝑛,𝑛 

This corresponds to Hermite polynomials 
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Case 2 degree of 𝜎  is one implying 𝜎2 =0 and 𝜎1=1  and x range [−𝜎0, ∞] 
If 𝜏1𝜎0 < 𝜏0  and with a parameter α ( 𝜏0 + 𝜎0𝜏1 − 1 which implies that α+1>0),  the weight w (𝑤 =

(𝑥 + 𝜎0)
𝛼𝑒𝑥𝑝(𝜏1𝑥)),is positive. The differential equation has the form :- (𝑥 − 𝑙)𝑦𝑛

!! + (𝜏1𝑥 − 𝜏1𝜎0 + 𝛼 + 1)𝑦𝑛
! =

𝜏1𝑛𝑦𝑛 with singularity at -𝜎0(=l). 

The recursion is 𝑦𝑛+1 = (𝑥 − 𝑏𝑛+1)𝑦𝑛 − 𝑐𝑛−1𝑦𝑛−1 with  𝑏𝑛+1 =
−(2𝑛+𝜏0)

𝜏1
     𝑐𝑛−1 =

𝑛(𝑛−1)+𝜏0−𝜏1𝜎0

𝜏1𝜏1
 

The polynomial form:-𝑦𝑛 = ∑ 𝑟𝑛,𝑖
∞
𝑖=0 (𝑥 + 𝜎0)

𝑖 

The Hypergeometrical  form :-  𝑦𝑛 =
(1+𝛼)

𝜏1
 1F1(−𝑛; 𝛼 + 1; 𝜏1(𝜎0 + 𝑥)) and 

The orthogonality integral :- ∫ 𝑤
∞

−𝜎0
𝑦𝑛𝑦𝑚𝑑𝑥 =

𝛤(𝑛+𝛼+1)𝑛!𝑒𝑥𝑝(𝑙𝜏1)

(−𝜏1)2𝑛+𝛼+1 𝛿𝑛,𝑛 

This corresponds to Laguerre polynomials 

 

Case 3 

Since σ is a second degree polynomial, its two roots can be real (which may be equal or unequal) or 

complex conjugates. This give raise to three sub classes with the unequal roots case further divided into two 

subclass. Here only one of the two subclasses corresponding to the two unequal roots case is listed. This class has 

the attractive feature that the x range can easily be changed to [-1,1] and is widely used in numerical computations. 

With l and u defined as  𝜎=(x-l)(x-u), and two parameters α and β given by  𝜏1= α + β - 2 and 𝜏0 =-

[lβ+uα+l+u], a positive weight can be obtained as:- 

w=(x-l)α(u-x)β (here l<x<u and (α+1)(β+1)<0 ensures positive weight). 

The corresponding differential equation is:- 

(𝑥 − 𝑙)(𝑢 − 𝑥)𝑦𝑛
!! + [(𝛼 + 𝛽 + 2)𝑥 − (𝛼 + 1)𝑢 + (𝛽 + 1)𝑙]𝑦𝑛

! = 𝑛(𝑛 + 𝛼 + 𝛽 + 1)𝑦𝑛 

 

The recursion coefficients are 

𝑏𝑛+1 =
2𝑛(𝑛 + 𝛼 + 𝑛 + 1)(𝛼 + 𝛽) + [𝑙(𝛽 + 1) + 𝑢(𝛼 + 1)](𝛼 + 𝛽)

(2𝑛 + 𝛼 + 𝛽)(2𝑛 + 𝛼 + 𝛽 + 2)
; 𝑐𝑛−1

=
𝑛(𝑛 + 𝛼)(𝑛 + 𝛽)(𝑛 + 𝛼 + 𝛽)(𝑢 − 𝑙)

(2𝑛 + 𝛼 + 𝛽 − 1)(2𝑛 + 𝛼 + 𝛽)2(2𝑛 + 𝛼 + 𝛽 + 1)
 

 

When expanded around the singularity at l and u,  yn respectively have the form:- 

𝑦𝑛 =
(𝑙−𝑢)𝑛(𝛼+𝛽)𝑛

(𝑛+𝛼+𝛽+1)𝑛
2F1 (−𝑛, 𝑛 + 𝛼 + 𝛽 + 1; 𝛼 + 1;

(𝑥−𝑙)

(𝑢−𝑙)
) 

𝑦𝑛 =
(𝑢−𝑙)𝑛(𝛽+1)𝑛

(𝑛+𝛼+𝛽+1)𝑛
2F1 (−𝑛, 𝑛 + 𝛼 + 𝛽 + 1; 𝛽 + 1;

(𝑥−𝑢)

(𝑙−𝑢)
) 

 

The orthogonality integral has the form 

∫ 𝑤
𝑢

𝑙

𝑦𝑛𝑦𝑚𝑑𝑥 =
(𝑛!)𝛤(𝑛 + 𝛼 + 𝛽 + 1)𝛤(𝑛 + 𝛼 + 1)𝛤(𝑛 + 𝛽 + 1)

𝛤(2𝑛 + 𝛼 + 𝛽 + 1)𝛤(2𝑛 + 𝛼 + 𝛽 + 2)
(𝑢 − 𝑙)2𝑛+𝛼+𝛽+1𝛿𝑛,𝑛 

This defines the Jacobi polynomials (after the range of x is changed to [-1,1])  and several others for 

special values of α & β; Chebyshev polynomial (α=β=−1/2) for example. 

Another distinct roots case with range [u,∞] also exists[11a]. 

The two equal and complex conjugates roots cases leads respectively to Bessel and pseudo Jacobi 

polynomials [ 11a]. 

These are the list of classical continuous orthogonal polynomials 

 

IV. Discrete Orthogonal Polynomials On An Equal Spaced Grid. 
When the grid is equally spaced, it can be readily checked that an orthogonal set with unit weight 

satisfying a recursion relation can be built as follows:- 

𝑝0 = 1; 𝑝1 = 𝑥𝑖 − 𝑏1 

𝑃𝑛+1 = (𝑥𝑖 − 𝑏𝑛)𝑃𝑛 − 𝑐𝑛𝑃𝑛−1 

with    𝑏𝑛+1 = [∑ 𝑥𝑖
𝑁−1
𝑖=0 𝑝𝑛

2] ÷ [∑ 𝑝𝑛
2𝑁−1

𝑖=0 ]  and 𝑐𝑛+1 = [∑ 𝑝𝑛
2𝑁−1

𝑖=0 ] ÷ [∑ 𝑝𝑛−1
2𝑁−1

𝑖=0 ] (for each xi, xi= x0+hi, 

h, the step seize; h=(xi+1-xi);  0 ≤ i  ≥   N-1 ). Also reduction of {9} to the form of  {8} with an accuracy up to 

second order in h  (xi+1-xi=h (i=0,1----N-1.) is possible [15] when N is sufficiently large because:- 
𝛿𝑦

𝛿𝑥
= [

𝑦(𝑥+ℎ)−𝑦(𝑥)

2ℎ
−

𝑦(𝑥)−𝑦(𝑥−ℎ)

2ℎ
] and  

𝛿2𝑦

𝛿𝑥2 =
1

ℎ
[
𝑦(𝑥+ℎ)−𝑦(𝑥)

ℎ
−

𝑦(𝑥)−𝑦(𝑥−ℎ)

ℎ
] 

Thus for the difference equation {9}, parallel relations can be obtained [1,11a,15 ], as for {8}, for the 

orthogonal polynomial solution, recursion, hypergeometric representation, weighted orthogonality summation 

etc.  Considering the conditions on the roots of 𝜎 and 𝜏 for positive weights results in 12 types (Hahn, Meixner, 

Kravchuk or Charlier)  of possible polynomials [1,11a,15].  Among these, details of only one each of the Hahn, 
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Meixner, Kravchuk and Charlier polynomial sets that have asymptotic solutions matching the continuous case, 

are listed here. 

1) 𝜎 of degree 0; 𝜎2=  𝜎1=0  𝜎0=1  𝜏1<0 

𝑤 =
1

(−𝜏1−1)𝑥(𝑥+1)!
   ; x=0,1,2 …….. 

Recursion :- 𝑦𝑛+1 = (𝑥 − 𝑛 +
1

𝜏1
) 𝑦𝑛 −

𝑛

𝜏1
𝑦𝑛−1 n=1,23 …... 

The hypergeometric form is given as 𝑦𝑛 =
1

(𝜏1)𝑛
 2F0 (−𝑛,−𝑥;−; 𝜏1) 

The orthogonality sum is ∑ 𝑤∞
𝑥=0 𝑦𝑚𝑦𝑛 = 𝑛!

𝑒𝑥𝑝(
−1

𝜏1
)

(−𝜏)𝑛
𝛿𝑛𝑚 

This is known as Charlie polynomials 

2a) If 𝜎 is of degree one with 𝜏1>1 and 𝜏0-𝜏1 τ0=-N  w is positive (𝑤 =
1

(𝜏1−1)𝑥𝑥!(𝑁−𝑥)!
). 

The recursion is 𝑦𝑛+1 = (𝑥 −
𝑛𝜏1−𝑛+𝑁

𝜏1
) 𝑦𝑛 −

𝑛(1−𝜏1)(𝑛−1−𝑁)

𝜏1
2 𝑦𝑛−1 

The hypergeometric form is given as 𝑦𝑛 =
(−𝑁)𝑛

(𝜏1)𝑛
 2F1 (−𝑛,−𝑥;−𝑁; 𝜏1): 𝑛 = 0,1, . . . . . . , 𝑁 

The orthogonality sum is ∑ 𝑤𝑁
𝑥=0 𝑦𝑚𝑦𝑛 =

(𝜏1−1)𝑁−2𝑛𝑛!

(𝜏1−1)𝑁−𝑛(𝑁−𝑛)!
𝛿𝑛𝑚 

This is known as Krawtchouk polynomials 

2b)  𝜎 is of degree one with 𝜎 + 𝜏=μx ; 0<μ<1; x range 0 to ∞ 𝜏1<0; 𝜏0> 𝜏1 

The positive weight is 𝑤 =
𝛤(𝑥+𝜏0−𝜏1)

(1−𝜏1)𝑥𝛤(𝑥+1)
   ; x=0,1,2 …….. 

The recursion is 𝑦𝑛+1 = (𝑥 −
𝑛(𝜏1−2)+𝜏1−𝜏0

𝜏1
) 𝑦𝑛 − (

𝑛(1−𝜏1)(𝑛−1+𝜏0−𝜏1)

𝜏1
2 ) 𝑦𝑛−1 

The hypergeometric form is given as 𝑦𝑛 =
(𝜏0−𝜏1)

(𝜏1)𝑛
 2F1  (−𝑛,−𝑥; 𝜏0 − 𝜏1; 𝜏1) 

The orthogonality sum is ∑ 𝑤∞
𝑥=0 𝑦𝑚𝑦𝑛 =

𝑛!(1−𝜏1)𝑛+𝜏0−𝜏1𝛤(𝑛+𝜏0−𝜏1)

(−𝜏1)2𝑛+𝜏0𝜏1
𝛿𝑛𝑚 

This is known as Meixner polynomials. 

3)  𝜎  is a second degree polynomial 

The requirement for the existence of positive w and finite polynomial set, can be achieved by introducing two 

parameters α and β  defined by the following relations :- 

𝜏1 = 𝛼 + 𝛽 + 2; 2𝛿 = 𝛼 + 𝑁 + 1; 2𝜂 = 𝛽 + 𝑁 + 1 with 𝛿2 = (
𝜎1−𝜏1

2
)

2

− 𝜎0 + 𝜏0,  𝜂2 = 𝜎1 2⁄ 2
− 𝜎0 , (α+1)>0 

and (β+1)>0. 

The weight function is 𝑤 =
𝛤(𝑥+𝛽+1)𝛤(𝛼+𝑁+1−𝑥)

𝛤(𝑥+1)𝑛𝛤(𝑁+1−𝑥)
; 𝑥 = 0,1. . . . . . , 𝑁 

The recursion is :- 𝑃𝑛+1 = (𝑥𝑖 − 𝑏𝑛)𝑃𝑛 − 𝑐𝑛𝑃𝑛−1  with 

𝑏𝑛 = 2𝑛(𝑛 − 1 + 𝜏1) (2 − 𝜎1 +
𝜏1

2
) − (1 −

𝜏1

2
) (𝜏0 − 𝜏1) [(2𝑛 − 2 + 𝜏1) (𝑛 +

𝜏1

2
)]⁄   and 

𝑐𝑛 =
4𝑛(𝑛−𝜏1)𝐷𝑛

4(2𝑛−3+𝜏1)(2𝑛−2+𝜏1)2(2𝑛−1+𝜏1)
 where  𝐷𝑛 = [(𝑛 − 1 + 𝜏1 2⁄ )2 − 𝛿2 − 𝜂2]2 − 4𝛿2𝜂2 

The hypergeometric form is 𝑦𝑛 =
(𝛽+1)𝑛(−𝑁)𝑛

(𝑛+𝛼+𝛽+1)𝑛
 3F2  (−𝑛, 𝑛 + 𝛼 + 𝛽,−𝑥; 𝛽 + 1,−𝑁; 1) 

The orthogonality summation is ∑ 𝑤𝑁
𝑥=0 𝑦𝑛𝑦𝑚 =

𝛤(𝑛+𝛼+1)𝛤(𝑛+𝛽+1)𝛤(𝑛+𝛼+𝛽+𝑁+2)𝑛!

𝛤(2𝑛+𝛼+𝛽+1)𝛤(2𝑛+𝛼+𝛽+2)(𝑁−𝑛)!
𝛿𝑛𝑚 

These define the Hahn polynomials. 

It may be noted that for each member of the polynomial set  an additional expression for the orthogonality 

summation exists as mentioned earlier. 

At very large values of N (asymptotic form) these polynomials corresponds to the continuous version 

as:-  Charlier  & Kravchuk → Hermite, Meixner →  Laguerre and Hahn → jacobi. Like Chebyshev polynomials, 

Hahn polynomials for the special case of 𝛼 = 𝛽 = 1 2⁄ , referred to as Gram polynomials [25a-b]. Gram 

polynomials offers highest computational advantage because bn is zero, w is unity and its zeros/roots are known. 

The orthogonal polynomial parameters of all polynomials are available[15, table 2.1, 2.2 & 2.3, 23] . 

Also slandered expressions in terms of hyper geometrical series are available for the entire class [26]. 

 

V. Further Extensions Of Orthogonality And Orthogonal Polynomials. 
Simultaneous use of Pn and its derivatives in the orthogonality integral, for better constraints, accuracy 

and faster convergence is routine [27a-c]. The q-analogue [11a-c] case extends the analysis to more general form 

of orthogonal polynomials and has advantages for the analytical approaches to solve a variety of problems. 

Tinkering the weight functions and/or using polynomial sets based on eigen functions of higher (even) power 

differential equations leads to several non-classical orthogonal functions [22]. The analysis can also be extended 

to multi variables and generalized cases [28,29,30,31] and find wide applications.  There are several ways of 



Orthogonal Polynomials And Least Square Sense Approximation Of Data And Complex Functions. 

DOI: 10.9790/5728-2105021128                           www.iosrjournals.org                                                  22 | Page 

generating multi variable orthogonal polynomial sets of various structures and computational complexity. Here 

only a set that is linked with two variable polynomial least square fit is discussed because of its use in image 

analysis [32]. 

 

Two dimensional orthogonal polynomials. 

A N and M grid along the x and z directions respectively and a value (yij)at each grid point define an image / 

surface and a two variable polynomial [ On(x,z)] of order n over a rectangular grid  of seize NxM can be used to 

represent it in the least square sense. For such a two variable case, the set {xizj-i} ([i,j]=[n,0],[n-1,1]…..[0,n] for 

any n) are linearly independent  for each power n. Thus a linear combination of these can replace each power of 

x in 𝑂𝑖 = ∑ 𝑘𝑖,𝑗
𝑖
𝑗=0 𝑥𝑗 (see section 1.4)  and  via column operations, each element can be converted to a polynomial 

in x & z. Thus a polynomials of various degree n, 𝑦𝑛(𝑥, 𝑧) (𝑦𝑛(𝑥𝑘 , 𝑧𝑙) = ∑ ∑ 𝑟𝑛𝑖𝑗
𝑀−1
𝑗=0

𝑁−1
𝑖=0 𝑂𝑖(𝑥𝑘𝑧𝑙)), can be least 

square fitted to a grid with N values along x and M along z analogous to {7} as:- |
|

∑ ∑ 𝑂0
𝑀−1
𝑗=0

𝑁−1
𝑖=0 (𝑥𝑖𝑧𝑗)𝑦𝑖𝑗

∑ ∑ 𝑂1
𝑀−1
𝑗=0

𝑁−1
𝑖=0 (𝑥𝑖𝑧𝑗)𝑦𝑖𝑗

.
∑ ∑ 𝑂𝑛

𝑀−1
𝑗=0

𝑁−1
𝑖=0 (𝑥𝑖𝑧𝑗)𝑦𝑖𝑗

|
|= 

|

|

|
∑ ∑[𝑂0(𝑥𝑖𝑧𝑗)]

2
𝑀−1

𝑗=0

𝑁−1

𝑖=0

∑ ∑ 𝑂

𝑀−1

𝑗=0

𝑁−1

𝑖=0 0

(𝑥𝑖𝑧𝑗)𝑂1(𝑥𝑖𝑧𝑗) . ∑ ∑ 𝑂0

𝑀−1

𝑗=0

𝑁−1

𝑖=0

(𝑥𝑖𝑧𝑀−1)𝑂𝑛−1(𝑥𝑖𝑧𝑗)

∑ ∑ 𝑂

𝑀−1

𝑗=0

𝑁−1

𝑖=0 0

(𝑥𝑖𝑧𝑗)𝑂1(𝑥𝑖𝑧𝑗) ∑ ∑[𝑂1(𝑥𝑖𝑧𝑗)]
2

𝑀−1

𝑗=0

𝑁−1

𝑖=0

. ∑ ∑ 𝑂1

𝑀−1

𝑗=0

𝑁−1

𝑖=0

(𝑥𝑖𝑧𝑗)𝑂𝑛−1(𝑥𝑖𝑧𝑗)

. . . .

∑ ∑ 𝑂0

𝑀−1

𝑗=0

𝑁−1

𝑖=0

(𝑥𝑖𝑧𝑗)𝑂𝑛(𝑥𝑖𝑧𝑗) ∑ ∑ 𝑂1

𝑀−1

𝑗=0

𝑁−1

𝑖=0

(𝑥𝑖𝑧𝑗)𝑂𝑛(𝑥𝑖𝑧𝑗) . ∑ ∑[𝑂𝑛(𝑥𝑖𝑧𝑗)]
2

𝑀−1

𝑗=0

𝑁−1

𝑖=0

|

|

|

|

𝑟𝑛,0

𝑟𝑛,1

.
𝑟𝑛,𝑛

| 

 

----------------{28} 

If 𝑂𝑛(𝑥𝑧) = 𝑃𝑛(𝑥)𝑃𝑛(𝑧)  (with Pn(x) and Pn(z) belonging to orthonormal polynomial sets {pN} and {pM} 

(i.e. ∑ 𝑤(𝑥)𝑁
𝑖=0 𝑃𝑘

𝑖𝑃𝑙
𝑖 = ℎ𝑘𝛿𝑘𝑙; ∑ 𝑤(𝑥)𝑁

𝑘=0

𝑃𝑘
𝑖𝑃𝑘

𝑗

ℎ𝑘
= ℎ𝑖𝛿𝑖𝑗;∑ 𝑤(𝑧)𝑀

𝑖=0 𝑃𝑘
𝑖𝑃𝑙

𝑖 = ℎ𝑘𝛿𝑘𝑙 and∑ 𝑤(𝑧)𝑀
𝑘=0

𝑃𝑘
𝑖𝑃𝑘

𝑗

ℎ𝑘
= ℎ𝑖𝛿𝑖𝑗 ) 

then, the discrete orthogonality approximated intensity represented by an nth degree 𝑂𝑛(𝑥𝑧) at each grid point (k,l) 

can be  expanded over the roots of {pN} and {pM} as:- 

𝑦(𝑥𝑘 , 𝑧𝑙) = ∑ ∑ 𝑟𝑛𝑖𝑗
𝑀−1
𝑗=0

𝑁−1
𝑖=0 𝑃𝑖(𝑥𝑘)𝑃𝑗(𝑧𝑙) ------------------------{29} 

[with  𝑟𝑛𝑖𝑗 = ∑ ∑ 𝑦𝑖𝑗
𝑀−1
𝑗=0

𝑁−1
𝑖=0 𝑤(𝑥)𝑤(𝑧)𝑃𝑛(𝑥𝑖)𝑃𝑛(𝑧𝑗) (for each trial n)] 

This is most popular 2d construction of orthogonal polynomial with application to image analysis.[32]   

There are alternate approaches [ 33 ] also. 

When x1 and x2 are two orthogonal variables with the same range, the polynomial expression, 

𝐾𝑛(𝑥1, 𝑥2) = ∑ 𝑂𝑖
𝑛−1
𝑘=0 (𝑥1)𝑂𝑖(𝑥2); (𝑛 < 𝑁 + 1) and its inverse (with x=x1=x2) are respectively known as 

Christoffel–Darboux (n,n) bi-degree kernel  and  Christoffel function. These in conjunction with polynomials 

built with ordered powers of two variables as basis, with some empirical modifications, have wide applications 

in data fit and classification of 2d data.[34,35] 

 

VI. Orthogonal Polynomials And Quadrature 
The Riemann definition of the definite integral of a function (f) yields it as the sum of the (N+1) 

rectangular areas ∑ (𝑥𝑖+1 − 𝑥𝑖)
𝑁+1
𝑖=1 (𝑦𝑖+1 + 𝑦𝑖) 2⁄  (with xi, sufficiently close (N+1) grid points at which f is yi). 

Thus the form ∑ 𝑔𝑖
𝑁+1
𝑖=1 𝑦𝑖 + 𝐸  should be sought for∫ 𝑓

𝑢

𝑙
𝑑𝑥. Here gi is referred to as weight, E is an error term 

that depends on N+1 and the functional form of f between the grid points.  If indeed the integral has the form 

∑ 𝑔𝑖
𝑁+1
𝑖=1 𝑦𝑖 + 𝐸 one should aim to evaluate the gi that minimize E with a feasible, large N. An important advance 

is the replacement of f by its polynomial approximation of degree n.  Then a direct integration of ∫ 𝑓
𝑢

𝑙
𝑑𝑥 is 

possible and results in a set of n equations, ∑ 𝑘𝑛,𝑗
𝑛
𝑗=0 ∫ 𝑥𝑗𝑢

𝑙
𝑑𝑥=∑ 𝑔𝑖

𝑁+1
𝑖=1 𝑦𝑖 . Thus a set of N+1 gi that is compatible 

with the n and kn,j can be obtained. Since in the above relation RHS can at most have, 2N+1 parameters, this 

approach is viable for solving for the weight gi while f has a degree n ≤ (2N+1)]. In the case of equal spaced grids, 

though the number of parameters in RHS reduces to N+2 such an integral can be still be evaluated in this form. 

If the polynomial used belongs to an orthogonal set spanned on N+1 grid points, then through a series of 

developments initiated by Gauss, an efficient and accurate algorithm for the evaluation of  gi is available 

[17,22,36,37,38]. This requires that the orthogonal polynomial pN with its roots at the grid, belongs to a finite set 
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{pN}. The limits of integration need to match with the domain of the orthogonal polynomial set {pN} chosen 

(achievable via a linear transformation). From the procedure used to construct Lagrange interpolating polynomial 

(section 1) it is obvious that any (orthogonal) polynomial, pN, that approximate f (with yi =f(zj)) also can be 

constructed from the its roots, (zi) as:- 

𝑝𝑁 = ∑
𝐿𝑁+1

𝑙𝑗(𝑥 − 𝑥𝑗)

𝑁+1

𝑗=1

𝑦𝑗  

Thus, ∫ 𝑓
𝑢

𝑙
𝑑𝑧=∫ 𝑝𝑁

𝑢

𝑙
𝑤𝑑𝑧=∑ 𝑦𝑖

𝑁+1
𝑖=1 ∫

𝐿𝑁+!𝑤𝑑𝑧

𝑙𝑗(𝑧−𝑧𝑗)

𝑢

𝑙
  ⇒  𝑔𝑖 = ∫

𝐿𝑁+1𝑤𝑑𝑧

𝑙𝑗(𝑧−𝑧𝑖)

𝑢

𝑙
   ----------------------{30} 

This expression is valid for any orthogonal polynomial set. By noting that a suitable non unity values of 

the recursion coefficient, an , will convert this orthogonal (pN)  to an orthonormal (ON) polynomial set and using 

an integrated Christoffel-Darboux identity, the above expression for gi takes the form:- 

𝑔𝑖 = [
1

𝑎𝑛

(𝑂𝑁−1(𝑧𝑖)𝑂𝑁
𝑙 (𝑧𝑖))]

−1

 

or in the more easily compute-able from:- 
1

𝑔𝑖
= ∑ [𝑂𝑗(𝑧𝑖)]

2𝑁
𝑗=0  --------{31} 

Grid points other than zeros of pN / ON (both have the same set of roots) can be used, as in the case of 

Chebyshev polynomial, where the points at which the extremes in MN occur is used. Such cases are suitable where 

some boundary conditions need to be applied at the endpoints. In general, the form of the quadrature formula 

depends on the particular orthogonal polynomial and grids employed (needed to be found for unequal spaced 

grid). The Golub and Welsch [22, 36, 37] algorithm yields the grid points (as the eigen values of Jacobian, J [see 

equation {24}]), and also the eigen vectors. Faster algorithms are now available for this [38, 39].  Normally equal 

spaced grid is a voided because of the error introduced due to Runge phenomenon. 

There are several means to improve accuracy and convergence [ 40a-c]. 

 

VII. Orthogonal Polynomials And Data Fit 
As is clear from equations {3},  {5} & {13}, N+1 data points generated from a complex function or 

measurements, can be fitted in the least square sense to any nth degree [N ≤ n≥0] member of the orthogonal 

polynomial set {pN} in a non-iterative and a trial polynomial free-way provided the N data points are the roots of 

pN. A linear transformation that set bn to zero boosts the computational efficiency (because of the symmetry 

relations for 𝑝𝑗(𝑥) and𝑝𝑗(−𝑥)). 

While approximating, higher n do not mean higher precision due to overflow / underflow (in parameters 

in the recursion relation and in higher powers of xi), the lack of uniform convergence for Pn etc (for example for 

Jacobi with α=β=0,when N<2n(n+1,  there is no uniform convergence [41]). This, in the discrete case, is assumed 

to contribute towards the wide swings in the computed values close to the boundary. However no such swings are 

prominent in the continuous case and it is conjectured that the densely spaced roots near the boundary, constrains 

the computed function much better. This has led to the use of additional / fake nods near the boundaries with y 

values matching the gradient of the data, in the discrete case. However to meet the boundary condition, fake nodes 

with y=0 is a better option and was investigated here. 

 

Least square fit; computational aspects. 

The data fit starts with choosing an appropriate orthogonal polynomial set. The requirement that x i 

corresponds to the roots of a (N) degree orthogonal polynomial, PN needs to be ensured during this choice. In the 

discrete case, the equal spaced xi needs to be matched with the roots of PN (z with range [-1,1] only considered 

here and hence a linear transformation 𝑧𝑖 = Є1𝑥𝑖 + Є0; Є1 = 2 [𝑥𝑁 − 𝑥1]⁄ ; Є0 = −[𝑥𝑁 + 𝑥1] [𝑥𝑛 − 𝑥1]⁄  is 

required which may be inbuilt in the recursion). In the continuous case, the yi, that corresponds to zri is to be 

generated (using the function if it is being approximated or by extrapolation of data (used here) that is normally 

available at equal spaced grid). In both cases, closed form expressions are available for an, bn and cn for classical 

orthogonal polynomials. Thus for a j-degree polynomial approximation, aj, bj and cj can be precomputed while 

computing pj-1 in a loop starting from 0 to j. In all such loops, orthogonal polynomial of degree j (j ≤ N-1) are 

obtained (for each zi) by employing recursions relations, initiated by appropriate value of p0 (an inner loop over 

0 to N-1). Also in same inner loop, [∑ 𝑦𝑖
𝑁−1
𝑖=0 𝑝𝑗

𝑖]and [∑ 𝑝𝑗
𝑖𝑁−1

𝑖=0 𝑝𝑗
𝑖] (𝑝𝑖is the value of pj at the root zi, of pN) and 

hence rj,i (𝑟𝑗,𝑖 = [∑ 𝑦𝑖
𝑁−1
𝑖=0 𝑝𝑗

𝑖] [∑ 𝑝𝑗
𝑖𝑁−1

𝑖=0 𝑝𝑗
𝑖]⁄  ) and the approximate yi, yj,i, (𝑦𝑗,𝑖 = ∑ 𝑟𝑗,𝑖

𝑛
𝑖=0 𝑝𝑗) and root square 

deviation 𝑅𝑗 = ∑ (𝑦𝑖 − 𝑦𝑗𝑖)
𝑁−1
𝑖=0 (𝑦𝑖 − 𝑌𝑗𝑖)can be calculated. 

 

Data fit with constant weight orthogonal polynomials 

Hahn [42] and Chebyshev polynomials(T) [ 43] are widely used for data fit and image analysis. Two 

forms of Hahn polynomials with unit weight, (the Gram polynomial (G) with in the interval [-1,1] [25a-b] and a 
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more general form (H) in the interval [x1,xN], [44]) and Chebyshev polynomial (T) in the interval [-1,1], are 

investigated.  For Gram polynomial, in the standard form, the grid (𝑧𝑖 = −1 + (2𝑖 − 1) 𝑁⁄  𝑁 ≤ 𝑖 ≥ 1) is an equal 

spaced one with in the interval [-1,1]. However in this form, the grid does not include -1 & 1. A linear 

transformation x= (zN)/(N-1) will yield a grid ( 𝑥𝑖+1 = −1 +
2𝑖

(𝑁−1)
;  (𝑁 − 1) ≤ 𝑖 ≥ 1 ) that include -1 &1 (same 

as in T) and is used here.  For the Chebyshev polynomial, TN, (Jacobi with 𝛼 = 𝛽 = −1 2⁄ , 𝑏𝑛=0, 𝑤 =

(1 − 𝑧2)−1 2⁄ ) the roots (zir) are known apriori (𝑧𝑖𝑟 = −𝑐𝑜𝑠 [(𝑖 − 1 2⁄ )
𝜋

𝑁
]  𝑁 ≤ 𝑖 ≥ 1) and w is unity [43]. The 

grid and recursion used for each polynomial (p) is listed in table I. 

As a general case, nearly equal spaced data is used and it is converted to the required (equal or at the 

roots of T) spaced one via interpolation. For G, the generated equal spaced data (y i) in the x grid corresponds to 

the z grid (via a linear transformation 𝑧𝑖 = Є1𝑥𝑖 + Є0 Є1 = 2 [𝑥𝑁 − 𝑥1]⁄ Є0 = [𝑥𝑁 − 𝑥1] [𝑥𝑛 − 𝑥1]⁄  𝑁 ≤ 𝑖 ≥ 1) 

and can be directly used. For H no such transformation is needed. For Chebyshev polynomial, the data at the 

Chebyshev grid ( 𝑧𝑖𝑟 = −𝑐𝑜𝑠 [(𝑖 − 1 2⁄ )
𝜋

𝑁
]; 𝑁 ≤ 𝑖 ≥ 1) needed to be generated. For this, first a transformation 

of the data coordinate xi, to zi  is carried out. Then, for getting the yj that corresponds to each zir, initially the set 

of three zj that are nearest to zir is located. Then the yi that corresponds to zir is obtained from a parabolic 

interpolation that employs this set of three zj & yj.  Thus as a general case, almost equal spaced data, can be 

 

Table I. The grid and recursion relations used to compute the orthogonal polynomials. The subscripts o and m 

respectively imply orthonormal and monic forms. However, Gm is monic only in the standard grid. 

P Grid Recursion 

Go  

𝑥𝑖+1 = −1 +
2𝑖

(𝑁−1)
;  (𝑁 − 1) ≤ 𝑖 ≥ 0 

𝑔𝑛 = 𝑎𝑛−1

𝑁 − 1

𝑁
𝑧𝑔𝑛−1 −

𝑎𝑛−1

𝑎𝑛−2

𝑔𝑛−2 

𝑔0 = 1  and   𝑎𝑛−1 = √(
4−1 𝑛2⁄

1−(𝑛 𝑁⁄ )2
) 

Gm 𝑥𝑖+1 = −1 +
2𝑖

(𝑁−1)
; (𝑁 − 1) ≤ 𝑖 ≥ 0 𝑔𝑛 =

𝑁 − 1

𝑁
𝑧𝑔𝑛−1 − 𝑐𝑛−1𝑔𝑛−2 

𝑔0 = 1  and    𝑔1 = 𝑧     𝑐𝑛 = (
1−(𝑛 𝑁⁄ )2

4−1 𝑛2⁄
) 

Ho  

𝑥𝑖 = 𝑠(𝑖 − 1) − (𝑥𝑛 − 𝑥1) 2⁄  (𝑁 − 1) ≤ 𝑖 ≥ 1 

𝑠 = 𝑥𝑖+1 − 𝑥𝑖; (𝑁 − 1) ≤ 𝑖 ≥ 1 

𝑎𝑛+1 =
2

ℎ𝑛
√

(2𝑛+1)(2𝑛−1)

(𝑁2−𝑛2)
   𝑏 = (𝑥𝑁 + 𝑥1) 2⁄ 𝑐𝑛 =

𝑎𝑛

𝑎𝑛−1
 

ℎ𝑛 = 𝑎𝑛[𝑥 − 𝑏]ℎ𝑛−1 − 𝑐𝑛ℎ𝑛−2 n=3,4,----N 

ℎ1 =
1

√𝑁
;  ℎ2 = 𝑎2(𝑥 − 𝑏)ℎ1 

Hm 𝑥𝑖 = 𝑠(𝑖 − 1) − (𝑥𝑛 − 𝑥1) 2⁄  (𝑁 − 1) ≤ 𝑖 ≥ 1 

ℎ = 𝑥𝑖+1 − 𝑥𝑖; (𝑁 − 1) ≤ 𝑖 ≥ 1 
𝑏 = (𝑥𝑛 + 𝑥1) 2⁄   𝑐𝑛+1 = (

𝑠

2
)

2 (𝑁2−𝑛2)

(4−1 𝑛2⁄ )
 

ℎ𝑛 = [𝑥 − 𝑏]ℎ𝑛−1 − 𝑐𝑛ℎ𝑛−2  n=3,4,----N 

ℎ1 = 1   ℎ2 = 𝑥 − 𝑏 

To −𝑐𝑜𝑠 [(𝑖 − 1 2⁄ )
𝜋

𝑁
]; 𝑁 ≤ 𝑖 ≥ 1 T0=1 & T1=z 

Tn+1=2zTn-1  - Tn   n ≥  1 

Tm −𝑐𝑜𝑠 [(𝑖 − 1 2⁄ )
𝜋

𝑁
]𝑁 ≤ 𝑖 ≥ 1 T0=1 , T1=z and T2=zT1-T0/2 

Tn+2=zTn+1-Tn /4 ; n ≥1 

 

approximated to polynomials of various degrees as (𝑓𝑗 = ∑ 𝑟𝑗,𝑖
𝑛
𝑖=0 𝑝𝑖) by evaluating 𝑟𝑗,𝑖 as:-𝑟𝑗,𝑖 =

(∑ 𝑦𝑖
𝑁−1
𝑖=0 𝑝𝑖

𝑗
) ÷ (∑ 𝑃𝑖

𝑗
𝑁−1
𝑗=0 𝑃𝑖

𝑗). The polynomial form of fn is can be computed (𝑓𝑗 =

∑ 𝑟𝑗,𝑖
𝑗
𝑖=0 𝑝𝑖=∑ 𝑟𝑗,𝑖

𝑗
𝑖=0 ∑ 𝑘𝑖,𝑗

𝑖
𝑗=0 𝑧𝑗=∑ (𝑟𝑗,𝑖 ∑ 𝑘𝑖,𝑗

𝑖
𝑗=0 )

𝑗
𝑖=0 𝑧𝑖) using the rj,i and  kii  obtained from the recursion relation 

{17b}. However this will be for z which has the range [-1,1] (for G & T). To get the polynomial form in the 

original range [x1,xN], the recursion for kiji  corresponding to the modified recursion (equation{19}) for the 

orthogonal polynomial as per the liner transformation (𝑥𝑖 = 𝜂1𝑧𝑖 + 𝜂0; 𝜂1 =
2.

(𝑥𝑁−𝑥1)
; 𝜂0 =

−(𝑥𝑁+𝑥1)

(𝑥𝑁+𝑥1)
) needs to be 

used. The, modified recursion of the orthogonal polynomial and the corresponding recursion for k i,j are listed in 

table II. Using the recursion to generate the polynomial coefficients is less cumbersome as compared to the 

alternate method of using binomial coefficients(
𝑛
𝑘
). 

 

VIII. Data Fit And Results 
Traditionally, for stable computation, lot of emphasis is placed on a suitable starting (scaled) value of 

the orthogonal polynomial and the computation of recursion coefficients, to avoid over/under flow for large values 

n<N-1 [42]. In the classical orthogonal polynomial, constant-weight, cases used here, the coefficients of the 

recursion relation do not diverge and hence any computational error should arise from that of higher powers of x 

or other sources. Thus with the standard starting values given above, the orthogonal polynomials of various n 

values (0 >n< N) were computed (employing GFORTRAN compiler with quadrupole precision). Two Planck 
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profiles corresponding to nearly equal spaced (0.5nm), 10000 discrete x values, in the range [350,5350], one with 

added random counts to mimic noise and another without any noise, were generated and fitted to orthogonal 

polynomial after converting the data to required steps (to equal steps or at the roots of TN). To evaluate the quality 

of data fit and noise rejection, the of sum of square of deviation (R) for each degree (n) up to 9999 was computed 

(unless limited by overflow). 

 

Table II Recursion for the polynomial coefficients kj,i for each n. 

p Transformation Recursion 

Go 
 

𝑥𝑖 = 𝜂1𝑧𝑖 + 𝜂0; 

𝜂1 =
2.

(𝑥𝑁−𝑥1)
; 𝜂0 =

−(𝑥𝑁+𝑥1)

(𝑥𝑁+𝑥1)
 

𝑔𝑛 = (𝜂1𝑥 + 𝜂0)𝑔𝑛−1 − 𝑐𝑛−1𝑔𝑛−2 

𝑘0,0 = 1; 𝑘(1,0) = 𝜂0; 𝑘1,1 = 𝜂1 

𝑘(𝑖,𝑗) = 𝜂1𝑘𝑖−1,𝑗−1 − 𝜂0𝑘𝑖−1,𝑗 − 𝑟𝑛,𝑖−2𝑘𝑖−2,𝑗; 2 ≤ 𝑖 ≥ 𝑛; 𝑗 ≤ 𝑖 

Gm 

 
𝑥𝑖 = 𝜂1𝑧𝑖 + 𝜂0 

𝜂1 =
2.

(𝑥𝑁−𝑥1)
; 𝜂0 =

−(𝑥𝑁+𝑥1)

(𝑥𝑁+𝑥1)
) 

𝑔𝑛 = 𝑎𝑛−1(𝜂1𝑥 + 𝜂0)𝑔𝑛−1 −
𝑎𝑛−1

𝑎𝑛−2

𝑔𝑛−2 

𝑘0,0 = 1; 𝑘(1,0) = 𝜂1𝑟0; 𝑘1,1 = 𝜂1𝑟𝑛,0 

𝑘(𝑖,𝑗) = 𝜂1𝑟𝑛,(𝑖−1)𝑘𝑖−1,𝑗−1 − 𝑟𝑛,(𝑖−1)𝜂0𝑘𝑖−1,𝑗 − 𝑟𝑛,(𝑖−1) 𝑘𝑖−2,𝑗 𝑟𝑛,(𝑖−2)⁄ ; 2 ≤ 𝑖 ≥ 𝑛; 𝑗

≤ 𝑖 

Ho 

 

 ℎ𝑛 = 𝑎𝑛[𝑥 − 𝑏]ℎ𝑛−1 − 𝑐𝑛ℎ𝑛−2;     𝑏 = (𝑥𝑛 + 𝑥1) 2⁄  

𝑘0,0 = 1;𝑘(1,0) = 𝑏𝑘0,0 ;𝑘1,1 = 1 

𝑘(𝑖,𝑗) = [𝑘𝑖−1,𝑗−1 + 𝑏𝑘(𝑖−1,𝑗) − 𝑘𝑖−2,𝑗]𝑟𝑛,𝑖; 2 ≤ 𝑖 ≥ 𝑛; 𝑗 ≤ 𝑖 

Hm 

 

 ℎ𝑛 = [𝑥 − 𝑏]ℎ𝑛−1 − 𝑐𝑛ℎ𝑛−2; 

𝑏 = (𝑥𝑛 + 𝑥1) 2⁄  

𝑘0,0 = √1 𝑁⁄ ; 𝑘(1,0) = 𝑟2𝑏𝑘0,0 ;𝑘1,1 = 𝑟𝑛,2; 

𝑘(𝑖,𝑗) = 𝑟𝑛,(𝑖+1) [𝑘𝑖−1,𝑗−1 + 𝑏𝑘(𝑖−1,𝑗) −
𝑘𝑖−2,𝑗

𝑟𝑛,𝑖

] ; 2 ≤ 𝑖 ≥ 𝑛; 𝑗 ≤ 𝑖 

 
To 

 

 

𝑥𝑖 = 𝜂1𝑧𝑖 + 𝜂0; 

𝜂1 =
2.

(𝑥𝑁−𝑥1)
; 𝜂0 =

−(𝑥𝑁+𝑥1)

(𝑥𝑁+𝑥1)
 

𝑇𝑛+1 = 2(𝜂1𝑥 + 𝜂0)𝑇𝑛−1 − 𝑇𝑛 

𝑘0,0 = 1 ; 𝑘(1,0) = 𝜂0 ; 𝑘1,1 = 𝜂1; 

𝑘(𝑖,𝑗) = 2𝜂1𝑘𝑖−1,𝑗−1 + 2𝜂0𝑘(𝑖−1,𝑗) − 𝑘𝑖−2,𝑗 ; 2 ≤ 𝑖 ≥ 𝑛; 𝑗 ≤ 𝑖 

 

Polynomials 𝑓𝑛 = ∑ 𝑘𝑛,𝑖
𝑛
𝑖=0 𝑥𝑖 in the range [x1,xN] (=[350,5350] )were computed using Horner recursive 

algorithm [21] (referred to as converted polynomial, subsequently) after obtaining rn,i & kni. In all cases (with and 

without noise for all orthogonal polynomials and converted polynomials), the root mean square deviation (R) was 

computed to identify convergence and sign of overflow/underflow. The results are summarized for data with and 

without added noise (RMS value of noise added is 5907) in Table T00.  The R&n value at the highest computable 

n for orthogonal polynomial (𝑅𝑠
𝑜) , the R minimum and the corresponding n  for orthogonal and converted 

polynomials respectively (𝑅𝑠𝑚
𝑜 and 𝑅𝑠𝑚

𝑝
) and the R&n value of orthogonal polynomial at the n value at which the 

converted polynomial has the minimum (𝑅𝑠
𝑜𝑝

) are listed. The subscript s is replaced by n for data to which noise 

is added. The executable versions (ubuntu25.4) of data fitting codes and data generation code are available in the 

link:-  https://drive.google.com/drive/folders/10P0Bf4remlCH0wZsiWPtAv18vfAWKy9A?usp=sharing 

Table T00.  Listed are the degree of the polynomial along  with the root mean square deviation (with in 

brackets) for fits with Chebyshev (T), monic Gram (Gm), orthogonal gram(Go), monic (Hm) and orthogonal (Ho) 

polynomials (o).  Also listed are the R values of the polynomial (p) in the original x values obtained by the 

appropriate recursion relation (only the degree at which the minimum in R occur is listed). R have respective 

subscript s or n (Rs &Rn) without and with noise (the RMS value of noise added to the signal is 5907). An 

additional subscript m (𝑅𝑠𝑚
𝑜 𝑅𝑛𝑚

𝑜 𝑅𝑠𝑚
𝑝

𝑅𝑛𝑚
𝑝

) implies that R has the lowest value for the degree given. 

 

R 

 

Polynomial 

T Gm Go Hm Ho 

𝑅𝑠
𝑜 9999(0) 9999 (3.48 x107) 9999(3.29x107) 1585  (6.55) 9999(3.26x107 ) 

𝑅𝑛
𝑜 9999(0) 9999(3.51x107) 9999(3.31x107) 1585(5277) 9999(3.28x107 ) 

𝑅𝑠𝑚
𝑜  9999(0) 1117(5.51) 1117(5.51) 792(6.56) 1114(5.51) 

𝑅𝑛𝑚
𝑜  9999(0) 1188(5163) 1196(5160) 792(5280) 1158(5173) 

𝑅𝑠𝑚
𝑝

 43(16.2) 43(16.4) 44(16.4) 44(16.4) 45(16.4) 

𝑅𝑛𝑚
𝑝

 43(5210) 42(5563) 46(6956) 43(5563) 42(5563) 

𝑅𝑠
𝑜𝑝

 43(16.2) 44(16.4) 44(16.4) 45(16.40) 45(16.4) 

𝑅𝑛
𝑜𝑝

 43 (5210.8) 43(5563) 46(5561) 44(5563) 43(5563) 

 

https://drive.google.com/drive/folders/10P0Bf4remlCH0wZsiWPtAv18vfAWKy9A?usp=sharing
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For the Chebyshev (T) polynomial R decreases continuously from the n value of zero to N-1 without 

any sign of over/under flow. However, the converted polynomial coefficients of higher power of x could be 

computed only to around a degree of forty three due to underflow of the polynomial expansion coefficient knj. 

This n at which R have the minimum (listed in 𝑅𝑠𝑚
𝑝

  and 𝑅𝑛𝑚
𝑝

)  can be identified as the best  orthogonal polynomial 

degree to be used for data fit with optimum noise rejection. This is obvious in the data presented in the table T00  

where it can be observed that at n for which R  has the lowest value, it is closest to the RMS noise added (listed 

in 𝑅𝑠𝑚
𝑜𝑝

 and 𝑅𝑛𝑚
𝑜𝑝

 for data with and without noise). In computations with data to which noise is added, a match 

between the simulated and computed data is obtained with orthogonal polynomials (as expected) for sufficiently 

large n. This imply that T have lower noise discrimination at higher  degree and can even fit a noisy data as by 

design they should pass through all points. 

In the discrete cases, as seen in table T00, the general trend in the case of orthogonal polynomial is for 

R to fall and then start increasing resulting in a minimum (𝑅𝑠𝑚
𝑜   𝑅𝑛𝑚

𝑜 ). However, except for Hm (where sudden 

underflow occurred at low n), it was possible to compute up to n close to N-1(though R is large). The R value for 

the converted polynomial (𝑅𝑠𝑚
𝑝

 & 𝑅𝑛𝑚
𝑝

) also had a minimum due to underflow of the polynomial expansion 

coefficient knj. The R value at which its minimum occurs is larger for fit to orthogonal polynomial as compared 

to the converted polynomial (𝑅𝑠𝑚
𝑜 , 𝑅𝑠𝑚

𝑝
, 𝑅𝑛𝑚

𝑜  and 𝑅𝑛𝑚
𝑝

). 

Monitoring the computed orthogonal polynomial for various grid points showed that the 𝑅𝑛
𝑜 & 𝑅𝑠

𝑜start 

increasing from its minimum due to spike in computed values close to the boundary. When n approaches N-1, 

these spikes in the few computed values close to the x limits are large resulting in huge values of 𝑅𝑠
𝑜 & 𝑅𝑛

𝑜. R 

computed avoiding five values (there is no spikes for other x values) close to the boundaries, yields a R that is 

only  marginally larger than its minimum value, even when n approach N. This indicates that it is for x values 

close to the limits that the computational instability occurs and imposing boundary conditions via fake nodes [35], 

is the cure for it. Zero counts in three fake nodes, the boundary condition (both the polynomial and its derivative 

zero at the boundary) required for orthogonality of the discrete orthogonal polynomials [11a] will be satisfied.  

The effect of fake nodes (results are tabulated for five nodes, though in trials it is seen three is enough and above 

ten beneficial effect deteriorate) that will enforce the required boundary condition in the discrete case was 

investigated. For Gm, Go, Hm and Ho polynomials, in T50 (all 5 fake boundary values zero, thus function and 

its derivatives zero at the boundary) and T51(all boundary values are same as the original; thus function is constant 

and its derivative zero at the boundary), R values  are listed. 

 

Table T50. R values with five fake nodes of zero values.  There is no divergence at higher degree orthogonal 

polynomials (𝑅𝑠
𝑜   𝑅𝑛

𝑜) in gm & go. For hm there is not much improvements. The initial convergence is poorer 

for both converted and orthogonal polynomials. 

R 

 

Polynomial 

Gm Go Hm Ho 

𝑅𝑠
𝑜 9999(5.16) 9999(5.17) 1586 (6.5) 9999(5.22) 

𝑅𝑛
𝑜 9999(5154) 9999(5152) 1586(5284) 9999(5161) 

𝑅𝑠𝑚
𝑜  1254(5.16) 19(6721) 797(6.56) 1228(5.22) 

𝑅𝑛𝑚
𝑜  1215(5156) 19(8731) 797(5281) 1215(5159) 

𝑅𝑠𝑚
𝑝

 18(6787) 19(16285) 44(12775) 44(15338) 

𝑅𝑛𝑚
𝑝

 18(8770) 45(5151) 44(12352) 44(12183) 

𝑅𝑠
𝑜𝑝

 18(15920) 19(6721) 44(11047) 44(10838) 

𝑅𝑛
𝑜𝑝

 18(16828) 45(10046) 44(12306) 44(12306) 

 

Table T51 Computed R values with five fake nodes in which boundary values are repeated.  The divergence at 

higher degree orthogonal polynomials (𝑅𝑠
𝑜 ) in gm & go is due to the noncompliance of the boundary condition 

and in hm & ho this is further aggravated by the extended range of the variable. 

R 

 

Polynomial 

Gm Go Hm Ho 

𝑅𝑠
𝑜 9999(3.43 x107) 9999(10924) 1585(6.56) 9999( 3.2x10 7 ) 

𝑅𝑛
𝑜 9999(3.46x107 ) 9999(12200) 1585(5281) 9999( 3.3x10 7 ) 

𝑅𝑠𝑚
𝑜  33(21.03) 35(18.18) 797(6.56) 1105(5.51) 

𝑅𝑛𝑚
𝑜  48(5562) 32(5568) 797(5281) 1156(5176) 

𝑅𝑠𝑚
𝑝

 34(18.19) 44(19.89) 44(22.58) 44(20.4) 

𝑅𝑛𝑚
𝑝

 31(5568) 44(5584) 43(5565) 44(5569) 
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𝑅𝑠
𝑜𝑝

 33(20.7) 44(18.13) 44(19.8) 44(19.86) 

𝑅𝑛
𝑜𝑝

 48(5562) 44(5562) 44(5565) 44(5564) 

 

In T50 it is seen that all except Hm, are computable to the highest possible degree with R values close 

to its minimum (no divergence). However, it is noted that the initial convergence rate is smaller now as compared 

to T00 case. The convergence rate of the converted polynomial is smaller and the minimum R value at which it 

starts diverging is larger as compared to T00 case. 

The performance of Gm & Go differ from that of T though, in all, the range of x is [-1,1]. Though, 

computations up to highest power of orthogonal polynomial is possible in T without any fake node, the noise is 

discriminated only at lower degree.   In Gm and Go with fake nodes, even at the highest polynomial degree, the 

noise appears to be discriminated (T50).  The reason for the sudden divergence of Hm is not clear. 

In T51 it is seen that the convergence rate of all are almost the same and larger (minimum in R occurs at 

lower degree) than in the T00 case. However the orthogonal polynomial diverges at higher n, while the converted 

polynomial converges faster with R minimum occurring at lower n. Thus for data fit to a polynomial of lowest 

degree, Gm is better than other cases. 

 

IX. Conclusion 
With appropriate boundary conditions (as in T50), the divergence in the computation of orthogonal 

polynomial can be avoided for data on equal spaced grid. For data fit to lowest degree polynomial with maximum 

noise discrimination, Gm with three or more fake nodes with boundary values repeated (as in T51) is optimum. 
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