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Abstract:  
This study investigates the relationship between Pell numbers and Pell-Lucas numbers, which follow the same 

recurrence relation but differ in initial conditions. The goal of this study is to establish and prove general identities 

connecting the two sequences through the Principle of Mathematical Induction. Several key identities involving 

sums, products, squares, and linear combinations were derived and validated.  
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I. Introduction 
The Pell numbers 𝑃𝑛 are defined by the recurrence relation 𝑃𝑛 = 2𝑃𝑛−1 + 𝑃𝑛−2 for 𝑛 ≥ 2 with initial 

conditions 𝑃0 = 0 and 𝑃1 = 1. The first few terms of the sequence are 0, 1, 2, 5, 12, 29, 70, 169, … Pell numbers 

exhibit several interesting properties. One is that a Pell number can be prime if its index n is a prime number. For 

instance, when 𝑛 = 2, the resulting Pell number is 5, which is a prime. Another notable property is that Pell 

numbers can form Pythagorean triples (𝑎, 𝑏, 𝑐), where a and b differ by one. These triples take the form 

(2𝑃𝑛𝑃𝑛+1,𝑃𝑛+1
2− 𝑃𝑛

2, 𝑃𝑛+1
2+ 𝑃𝑛

2) [1]. Also, the sum of the Pell numbers up to 𝑃4𝑛+1 is always a perfect square. 

For instance, the sum of the Pell numbers up to 𝑃5, that is, 1 + 2 + 5 + 12 + 29 = 49, is the square of 𝑃2 + 𝑃3 =
2 + 5 = 7 [2]. 

On the other hand, Pell-Lucas numbers 𝑄𝑛 are defined by the linear recurrence relation 𝑄𝑛 = 2𝑄𝑛−1 +
𝑄𝑛−2 for 𝑛 ≥ 2 with initial conditions 𝑄0 = 𝑄1 = 2. The first few terms of the sequence are 2, 2, 6, 14, 34, 82, 

198, … Pell-Lucas numbers also possess some fascinating properties. Notably, every number in the sequence is 

even. Furthermore, for 𝑄𝑛/2 the index n must either be a prime number or a power of 2 to be a prime number. 

The indices n for which 𝑄𝑛/2 results in primes include 2, 3, 4, 5, 7, 8, 16, …  The Pell-Lucas sequence also 

alternates between even and odd terms. The odd-numbered terms in the sequence are always divisible by 2, while 

the even-numbered terms tend to be more varied in divisibility [2]. 

Though defined by the same recurrence relation, the Pell and Pell-Lucas number sequences possess distinct 

initial conditions that give rise to different properties and behaviors. While various individual identities relating 

to these two sequences are known, a gap exists in systematically deriving and proving general relationship 

identities between them. Thus, this study seeks to address this gap by establishing such identities using the 

Principle of Mathematical Induction. By doing so, this study aims to prove some key summations and product 

identities that connect to the Pell and Pell-Lucas numbers. 

 

II. Methods 
The methodology of this study consists of two main phases: formulation of identities through inspection 

and application of the Principle of Mathematical Induction (PMI). First, the study centered on analyzing patterns 

of numbers between the Pell and Pell-Lucas sequences. These sequences have distinct initial conditions but share 

similar recursive structures. By examining these properties, the study aimed to derive general identities such as 

summation formulas, product identities, and linear combinations involving Pell and Pell-Lucas numbers. Second, 

the study applied the Principle of Mathematical Induction (PMI) to prove these derived identities. The process 

begins with the base case, where the identity is proven for an initial value of 𝑛, usually 𝑛 = 0 or 𝑛 = 1. Then, in 

the inductive hypothesis, it is assumed that the identity holds for a given 𝑛 = 𝑘. Finally, the inductive step 

demonstrates that if the identity holds for 𝑛 = 𝑘, it must also hold for 𝑛 = 𝑘 + 1 [3]. By completing these steps, 

the identity is established for positive integers 𝑛, providing a rigorous mathematical foundation for the 

relationships between the Pell and Pell-Lucas number sequences.  
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III. Results And Discussion 
This section presents the general relationship between Pell and Pell-Lucas numbers, along with their proof 

using the Principle of Mathematical Induction. To establish these identities, some observable patterns were 

examined manually and mathematically. The number sequences are placed into the table to facilitate the analysis 

of the observable relationships and patterns. Table 1 presents the values of Pell and Pell-Lucas numbers for 𝑛 ≥
0. The numbers are examined to determine possible associations between them. One key observation found is that 

the sum of Pell numbers before and after 𝑛 is a Pell-Lucas number, that is, 𝑄𝑛 = 𝑃𝑛+1 + 𝑃𝑛−1 for 𝑛 ≥ 1.  

 

Table 1. Some Few Terms of Pell and Pell-Lucas Numbers for 𝒏 ≥ 𝟎 

 
 

To show that the relationship equation of Pell and Pell-Lucas numbers holds for all values of 𝑛 ≥ 1, the 

principle of mathematical induction was used. To prove this, we let 𝑄𝑛 = 𝑃𝑛+1 + 𝑃𝑛−1 for 𝑛 ≥ 1. When 𝑛 = 1, 

the right-hand side of the equation is 𝑃2 + 𝑃0 = 2 + 0 = 2 which matches the left-hand side of the equation, 𝑄1 =
2. Hence, the base case holds. Next, we assume that the statement is true for 𝑛 = 𝑘, that is, the inductive hypothesis 

is 𝑄𝑘 = 𝑃𝑘+1 + 𝑃𝑘−1. We must show that the same statement is also true for the next integer 𝑛 = 𝑘 + 1, that is,       

𝑄𝑘+1 = 𝑃𝑘+2 + 𝑃𝑘. Note that the recurrence relation for Pell-Lucas numbers 𝑄𝑘+1 = 2𝑄𝑘 + 𝑄𝑘−1. It follows that  

 

𝑄𝑘+1 = 2(𝑃𝑘+1 + 𝑃𝑘−1) + (𝑃𝑘 + 𝑃𝑘−2)                Inductive hypothesis 

 = 2𝑃𝑘+1 + 2𝑃𝑘−1 + 𝑃𝑘 + 𝑃𝑘−2                         Simplify 

 = (2𝑃𝑘+1 + 𝑃𝑘) + (2𝑃𝑘−1 + 𝑃𝑘−2)   Regrouping 

   𝑄𝑘+1  = 𝑃𝑘+2 + 𝑃𝑘  Definition of 𝑃𝑛 

 

Hence, the statement holds for 𝑛 = 𝑘 + 1. By the principle of mathematical induction, 𝑄𝑛 = 𝑃𝑛+1 + 𝑃𝑛−1  is true 

for positive integers 𝑛 ≥ 1.  

 
Another equation related to Pell and Pell-Lucas numbers, as observed from the table of values, is that the 

Pell-Lucas numbers equal half the difference between the Pell number two places ahead and the Pell number two 

places behind in the sequence. In symbols, this can be written in the form 𝑄𝑛 =
1

2
(𝑃𝑛+2 − 𝑃𝑛−2) for 𝑛 ≥ 2. By 

examining the values (presented in Table 1), it is observed that when 𝑛 = 2, the right-hand side of the equation 

becomes 
1

2
(𝑃4 − 𝑃0) =

1

2
(12 − 0) = 6 which matches the left-hand side, 𝑄2 = 6. By substituting values for 𝑛 ≥

2 until all possible values are used, it is hypothesized that this equation holds for all values of 𝑛 ≥ 2. Below is the 

proof of this identity, along with other identities. 

 
Proof of General Relationship Identities of Pell and Pell-Lucas Numbers 

Identity 1: 𝑄𝑛 =
1

2
(𝑃𝑛+2 − 𝑃𝑛−2) for 𝑛 ≥ 2. 

 

Part 1: Base Case 

Let 𝑄𝑛 =
1

2
(𝑃𝑛+2 − 𝑃𝑛−2) be the statement to be proven for all positive integers 𝑛 ≥ 2. If 𝑛 = 2, the left-

hand side of the equation is 𝑄2 = 6 while the right-hand side is 
1

2
(𝑃4 − 𝑃0) =

1

2
(12 − 0) = 6. Since we have 

shown that both sides of the equation are equal, the base case holds for 𝑛 = 2. 

 

Part 2: Inductive Hypothesis  

Assume that the statement is true for 𝑛 = 𝑘, that is, 𝑄𝑘 =
1

2
(𝑃𝑘+2 − 𝑃𝑘−2). 

 
Part 3: Inductive Step 

Show that the same statement holds for the next integer 𝑛 = 𝑘 + 1, that is, 𝑄𝑘+1 =
1

2
(𝑃𝑘+3 − 𝑃𝑘−1). Note 

that the recurrence relation for Pell-Lucas numbers 𝑄𝑘+1 = 2𝑄𝑘 + 𝑄𝑘−1 and substituting the inductive hypothesis, 

it follows that 
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𝑄𝑘+1 = 2 [
1

2
(𝑃𝑘+2 − 𝑃𝑘−2)] +

1

2
(𝑃𝑘+1 − 𝑃𝑘−3)           Inductive hypothesis 

 = 𝑃𝑘+2 − 𝑃𝑘−2 +
1

2
𝑃𝑘+1 −

1

2
𝑃𝑘−3                      Simplify 

 = (𝑃𝑘+2 +
1

2
𝑃𝑘+1) − (𝑃𝑘−2 +

1

2
𝑃𝑘−3)              Regrouping 

 = 1

2
(2𝑃𝑘+2 + 𝑃𝑘+1) −

1

2
(2𝑃𝑘−2 + 𝑃𝑘−3)         Simplify 

 = 1

2
𝑃𝑘+3 −

1

2
𝑃𝑘−1    Definition of 𝑃𝑛 

𝑄𝑘+1 = 1

2
(𝑃𝑘+3 − 𝑃𝑘−1).  Simplify 

              

Thus, the statement holds for 𝑛 = 𝑘 + 1. By the principle of mathematical induction, 𝑄𝑛 =
1

2
(𝑃𝑛+2 − 𝑃𝑛−2)  is 

true for all positive integers 𝑛 ≥ 2. 

 

Identity 2: 𝑃𝑛 =
1

8
(𝑄𝑛+1 + 𝑄𝑛−1) for 𝑛 ≥ 1. 

Part 1: Base Case 

Let 𝑃𝑛 =
1

8
(𝑄𝑛+1 + 𝑄𝑛−1) be the statement to be proven for all positive integers 𝑛 ≥ 1. If 𝑛 = 1, the left-

hand side of the equation is 𝑃1 = 1 while the right-hand side is 
1

8
(𝑄2 + 𝑄0) =

1

8
(6 + 2) = 1. We have shown that 

both sides of the equation are equal for 𝑛 = 1. When 𝑛 = 2, the left-hand side of the equation is 𝑃2 = 2 while the 

right-hand side is 
1

8
(𝑄3 + 𝑄1) =

1

8
(14 + 2) = 2. Again, we have shown that both sides of the equation are equal 

for 𝑛 = 2. Hence, the base case holds. 

 

Part 2: Inductive Hypothesis  

Assume that the statement is true for 𝑛 = 𝑘, that is, 𝑃𝑘 =
1

8
(𝑄𝑘+1 + 𝑄𝑘−1). 

 

Part 3: Inductive Step 

Show that the same statement holds for the next integer 𝑛 = 𝑘 + 1, that is, 𝑃𝑘+1 =
1

8
(𝑄𝑘+2 + 𝑄𝑘). Note 

that the recurrence relation for Pell numbers 𝑃𝑘+1 = 2𝑃𝑘 + 𝑃𝑘−1 and substituting the inductive hypothesis, then 

𝑃𝑘+1 = 2 [
1

8
(𝑄𝑘+1 + 𝑄𝑘−1)] +

1

8
(𝑄𝑘 + 𝑄𝑘−2)           Inductive hypothesis 

 = 2

8
𝑄𝑘+1+

2

8
𝑄𝑘−1 +

1

8
𝑄𝑘 +

1

8
𝑄𝑘−2     Simplify 

 = (
2

8
𝑄𝑘+1+

1

8
𝑄𝑘) + (

2

8
𝑄𝑘−1 +

1

8
𝑄𝑘−2)     Regrouping 

 = 1

8
(2𝑄𝑘+1+𝑄𝑘) +

1

8
(2𝑄𝑘−1 + 𝑄𝑘−2)      Simplify 

 = 1

8
𝑄𝑘+2 +

1

8
𝑄𝑘  Definition of 𝑄𝑛 

𝑃𝑘+1 = 1

8
(𝑄𝑘+2 + 𝑄𝑘). Simplify 

                 

Thus, the statement holds for 𝑛 = 𝑘 + 1. By the principle of mathematical induction, 𝑃𝑛 =
1

8
(𝑄𝑛+1 + 𝑄𝑛−1) is 

true for positive integers 𝑛 ≥ 1.  

 

Identity 3: 𝑃0 + 𝑃1 + 𝑃2 + ⋯ + 𝑃𝑛 =  
𝑄𝑛+1−2

4
 for 𝑛 ≥ 0. 

Part 1: Base Case  

Let 𝑃0 + 𝑃1 + 𝑃2 + ⋯ + 𝑃𝑛 =  
𝑄𝑛+1−2

4
 be the statement to be proven for all positive integers 𝑛 ≥ 0. If 𝑛 =

0, the left-hand side of the equation is 𝑃0 = 0 while the right-hand side is 
𝑄1−2

4
=

2−2

4
= 0. Since we have shown 

that both sides of the equation are equal, the base case holds for 𝑛 = 0.  

 

Part 2: Inductive Hypothesis  

Assume that the statement holds for 𝑛 = 𝑘, that is,  𝑃0 + 𝑃1 + 𝑃2 + ⋯ + 𝑃𝑘 =  
𝑄𝑘+1−2

4
. 

 

Part 3: Inductive Step 

Show that the same statement holds for the next integer 𝑛 = 𝑘 + 1, that is,  

𝑃0 + 𝑃1 + 𝑃2 + ⋯ + 𝑃𝑘 + 𝑃𝑘+1 =  
𝑄𝑘+2 − 2

4
. 
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Starting from the inductive hypothesis: 

                                                                 𝑃0 + 𝑃1 + 𝑃2 + ⋯ + 𝑃𝑘 =  
𝑄𝑘+1 − 2

4
 

Now, we add 𝑃𝑘+1 to both sides of the equation: 

              𝑃0 + 𝑃1 + 𝑃2 + ⋯ + 𝑃𝑘 + 𝑃𝑘+1 =  
𝑄𝑘+1 − 2

4
+ 𝑃𝑘+1 

From Identity 2, 𝑃𝑘 =
1

8
(𝑄𝑘+1 + 𝑄𝑘−1), it follows that 𝑃𝑘+1 =

1

8
(𝑄𝑘+2 + 𝑄𝑘). Substituting this into the right-hand 

side of the equation gives 

 

        [𝑃0 + 𝑃1 + 𝑃2 + ⋯ + 𝑃𝑘]
+ 𝑃𝑘+1 

= 𝑄𝑘+1 − 2

4
+ 𝑃𝑘+1 

Inductive hypothesis 

 = 𝑄𝑘+1 − 2

4
+

1

8
(𝑄𝑘+2 + 𝑄𝑘) 

Recalling Identity 2 

 = 2𝑄𝑘+1 − 4 + 𝑄𝑘+2 + 𝑄𝑘

8
 

Simplify 

 = (2𝑄𝑘+1 + 𝑄𝑘) + 𝑄𝑘+2 − 4

8
 

Regrouping 

 = 𝑄𝑘+2 + 𝑄𝑘+2 − 4

8
 

Definition of 𝑄𝑛 

 = 2𝑄𝑘+2 − 4

8
 

Simplify 

𝑃0 + 𝑃1 + 𝑃2 + ⋯ + 𝑃𝑘 + 𝑃𝑘+1  = 𝑄𝑘+2 − 2

4
. 

Simplify 

 

We have shown that the equation holds for 𝑛 = 𝑘. It also holds for 𝑛 = 𝑘 + 1, and the base case is verified. 

Therefore, by mathematical induction, we conclude that 𝑃0 + 𝑃1 + 𝑃2 + ⋯ + 𝑃𝑛 =  
𝑄𝑛+1−2

4
  holds for  𝑛 ≥ 0.  

 

Identity 4: 𝑄𝑛
2 + 𝑄𝑛+1𝑄𝑛−1 = 16𝑃𝑛

2 for all 𝑛 ≥ 1. 

Part 1: Base Case  

Let 𝑄𝑛
2 + 𝑄𝑛+1𝑄𝑛−1 = 16𝑃𝑛

2 be the statement to be proven for all positive integers 𝑛 ≥ 1. If 𝑛 = 1, the 

left-hand side of the equation becomes  𝑄1
2 + 𝑄2𝑄0 = (2)2 + (6)(2) = 16 while the right-hand side of the 

equation is 16𝑃1
2 = 16(1)2 = 16. Since we have shown that both sides are equal, the base case holds for 𝑛 = 1. 

 

Part 2: Inductive Hypothesis  

Assume that the statement holds for 𝑛 = 𝑘, that is, 𝑄𝑘
2 + 𝑄𝑘+1𝑄𝑘−1 = 16𝑃𝑘

2.  
 

Part 3: Inductive Step 

We must show that the statement holds for the next integer 𝑛 = 𝑘 + 1, that is,  𝑄𝑘+1
2 + 𝑄𝑘+2𝑄𝑘 =

16𝑃𝑘+1
2. Using the recurrence relations of Pell-Lucas numbers 𝑄𝑘+2 = 2𝑄𝑘+1 + 𝑄𝑘 , we express 𝑄𝑘+1

2 +

𝑄𝑘+2𝑄𝑘  in terms of its recurrence relation, and relate it to 16𝑃𝑘+1
2. The equation now becomes, 

 

  𝑄𝑘+1
2 + 𝑄𝑘+2𝑄𝑘 = 𝑄𝑘+1

2 + (2𝑄𝑘+1 + 𝑄𝑘)𝑄𝑘       Definition of  𝑄𝑛 

 = 𝑄𝑘+1
2 + 2𝑄𝑘+1𝑄𝑘 + 𝑄𝑘

2  Simplify 

𝑄𝑘+1
2 + 𝑄𝑘+2𝑄𝑘 = (𝑄𝑘+1 + 𝑄𝑘)2. Applying factoring 

 

Simplifying further the equation, since it has been established that 𝑄𝑘 = 𝑃𝑘+1 + 𝑃𝑘−1, it also follows that 

𝑄𝑘+1 = 𝑃𝑘+2 + 𝑃𝑘. Using the recurrence relation for the Pell number 𝑃𝑘+1 = 2𝑃𝑘 + 𝑃𝑘−1, it now follows that 

 

  𝑄𝑘+1
2 + 𝑄𝑘+2𝑄𝑘 = (𝑄𝑘+1 + 𝑄𝑘)2    

 = [(𝑃𝑘+2 + 𝑃𝑘) + (𝑃𝑘+1 + 𝑃𝑘−1)]2 Recalling Identity 

 = [(2𝑃𝑘+1 + 𝑃𝑘) + 𝑃𝑘 + (𝑃𝑘+1 + 𝑃𝑘−1)]2      Definition of 𝑃𝑛 

 = (2𝑃𝑘+1 + 𝑃𝑘 + 𝑃𝑘 + 𝑃𝑘+1 + 𝑃𝑘−1)2              Simplify 

 = (3𝑃𝑘+1 + 2𝑃𝑘 + 𝑃𝑘−1)2 Combining like terms 

 = [3𝑃𝑘+1 + (2𝑃𝑘 + 𝑃𝑘−1)]2   Regrouping 

 = (3𝑃𝑘+1 + 𝑃𝑘+1)2         Definition of 𝑃𝑛 

 = (4𝑃𝑘+1)2  Simplify 

𝑄𝑘+1
2 + 𝑄𝑘+2𝑄𝑘 = 16𝑃𝑘+1

2.    Simplify 
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We have shown that the equation holds for 𝑛 = 𝑘. Further, it also holds for 𝑛 = 𝑘 + 1, and the base case is 

verified. Thus, by mathematical induction, we conclude that 𝑄𝑛
2 + 𝑄𝑛+1𝑄𝑛−1 = 16𝑃𝑛

2 holds for 𝑛 ≥ 1.   

 

Identity 5: 𝑃𝑛
2 + 𝑃𝑛+1𝑃𝑛−1 =

1

4
𝑄𝑛

2 for all 𝑛 ≥ 1. 

Part 1: Base Case  

Let 𝑃𝑛
2 + 𝑃𝑛+1𝑃𝑛−1 =

1

4
𝑄𝑛

2 be the statement to be proven for all positive integers 𝑛 ≥ 1. If 𝑛 = 1, the 

left-hand side of the equation becomes 𝑃1
2 + 𝑃2𝑃0 = (1)2 + (2)(0) = 1 while the right-hand side of the equation 

is  
1

4
𝑄1

2 =
1

4
(2)2 = 1. Since we have shown that both sides are equal, the base case holds for 𝑛 = 1. 

 

Part 2: Inductive Hypothesis  

Assume that the statement holds for 𝑛 = 𝑘, that is, 𝑃𝑘
2 + 𝑃𝑘+1𝑃𝑘−1 =

1

4
𝑄𝑘

2. 

 

Part 3: Inductive Step 

We must show that the same statement holds for the next integer 𝑛 = 𝑘 + 1, i.e.,  𝑃𝑘+1
2 + 𝑃𝑘+2𝑃𝑘 =

1

4
𝑄𝑘+1

2. Using the recurrence relations of Pell numbers, 𝑃𝑘+1 = 2𝑃𝑘 + 𝑃𝑘−1, we express 𝑃𝑘+1
2 + 𝑃𝑘+2𝑃𝑘 in terms 

of its recurrence relation, and relate it to 
1

4
𝑄𝑘+1

2
. The equation now becomes, 

 

𝑃𝑘+1
2 + 𝑃𝑘+2𝑃𝑘 = 𝑃𝑘+1

2 + (2𝑃𝑘+1 + 𝑃𝑘)𝑃𝑘     Definition of  𝑃𝑛 

 = 𝑃𝑘+1
2 + 2𝑃𝑘+1𝑃𝑘 + 𝑃𝑘

2  Simplify 

𝑃𝑘+1
2 + 𝑃𝑘+2𝑃𝑘 = (𝑃𝑘+1 + 𝑃𝑘)2. Applying factoring 

 

Since it has been established that 𝑃𝑘 =
1

8
(𝑄𝑘+1 + 𝑄𝑘−1), it also follows that 𝑃𝑘+1 =

1

8
(𝑄𝑘+2 + 𝑄𝑘). Using 

the recurrence relations of Pell-Lucas numbers 𝑄𝑘+1 = 2𝑄𝑘 + 𝑄𝑘−1 and some formulations, the equation now 

becomes 

 

𝑃𝑘+1
2 + 𝑃𝑘+2𝑃𝑘 = (𝑃𝑘+1 + 𝑃𝑘)2  

 = 
[

1

8
(𝑄𝑘+2 + 𝑄𝑘) +

1

8
(𝑄𝑘+1 + 𝑄𝑘−1)]

2

  
Recalling Identity 2 

 = [
1

8
(2𝑄𝑘+1 + 𝑄𝑘) +

1

8
𝑄𝑘 +

1

8
(𝑄𝑘+1 +

𝑄𝑘−1)]
2

   

Definition of 𝑄𝑛 

 = 
(

2

8
𝑄𝑘+1 +

1

8
𝑄𝑘 +

1

8
𝑄𝑘 +

1

8
𝑄𝑘+1 +

1

8
𝑄𝑘−1)

2

       
Simplify 

 = 
(

3

8
𝑄𝑘+1 +

2

8
𝑄𝑘 +

1

8
𝑄𝑘−1)

2

       
Combining like terms 

 = 
[

3

8
𝑄𝑘+1 +

1

8
(2𝑄𝑘 + 𝑄𝑘−1)]

2

    
Applying factoring 

 = 
(

3

8
𝑄𝑘+1 +

1

8
𝑄𝑘+1)

2

  
Definition of 𝑄𝑛 

 = 
(

4

8
𝑄𝑘+1)

2

  
Combining like terms 

𝑃𝑘+1
2 + 𝑃𝑘+2𝑃𝑘 = 1

4
𝑄𝑘+1

2
.   Simplify 

   

We have shown that the equation holds for 𝑛 = 𝑘. Furthermore, it also holds for 𝑛 = 𝑘 + 1, and the base case is 

verified. Therefore, by mathematical induction, we conclude that 𝑃𝑛
2 + 𝑃𝑛+1𝑃𝑛−1 =

1

4
𝑄𝑛

2 holds for 𝑛 ≥ 1.  

 

IV. Conclusion 

This study has successfully investigated and established several general relationship identities between the 

Pell and Pell-Lucas number sequences. Through a detailed exploration of their recursive definitions, algebraic 

properties, and summation identities, it has uncovered significant associations that highlight the connection 

between these two number sequences. It has been demonstrated that Pell and Pell-Lucas numbers, despite their 

differing initial conditions, share fundamental structural similarities, which gave rise to some of the general 

identities of Pell and Pell-Lucas numbers. The study proved identities that link the squares, products, and 

summation by employing the principle of mathematical induction. These findings extend existing knowledge on 

recurrence relations and shed light on the algebraic and combinatorial properties inherent in both sequences. 
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