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Abstract 
The present paper deals with the determination of transient thermal stresses in a thick annular disc with internal 

heat generation. A thick annular disc is considered having zero initial temperature and arbitrary heat supply is 

applied on the upper and lower surface where as the fixed circular edge are at zero temperature. Here we 

compute the effects of internal heat generation of a thick annular disc in terms of stresses along radial direction. 

The governing heat conduction equation has been solved by the method of integral transform technique. The 

results are obtained in a series form in terms of Bessel’s functions. The results for temperature change and 

stresses have been computed numerically and illustrated graphically. 
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I. Introduction 
The study of thermal stresses in annular disc is an important problem in engineering. During the second 

half of the twentieth century, nonisothermal problems of the theory of elasticity became increasingly important. 

This is due to their wide application in diverse fields. The high velocities of modern aircraft give rise to 

aerodynamic heating, which produces intense thermal stresses that reduce the strength of the aircraft structure. 

Nowacki (1957) has determined the steady state thermal stresses in circular disk subjected to an 

axisymmetric temperature distribution on the upper face  with zero temperature on the lower face and the 

circular edge. Shang Sheng Wu (1997) studied the direct thermoelastic  problem in an annular  fin with its base 

subjected to a heat flux of a decayed exponential function of time. Kulkarni and Deshmukh (2007) has 

determined the quasi-static transient thermal stresses in thick annular disc. 

Bhongade and Durge (2013) considered thick annular disc and discuss steady state thermal stresses due 

to arbitrary heat is applied on the upper surface and heat dissipates by convection from the lower boundary 

surface into the surrounding at the zero temperature and the circular edges are thermally insulated, now here we 

consider thick annular disc with internal heat generation and discussed thermal stresses due to arbitrary heat 

supply is applied on the upper and lower surface of a thick annular disc and we compute the effects of internal 

heat generation in terms of stresses along radial direction. To obtain the temperature distribution, integral 

transform method is applied. The results are obtained in series form in terms of Bessel’s functions and the 

temperature change, stresses have been computed numerically and illustrated graphically. A mathematical 

model has been constructed of a thick annular disc with the help of numerical illustration by considering 

aluminum (pure) annular disc. No one previously studied such type of problem. This is new contribution to the 

field. 

The direct problem is very important in view of its relevance to various industrial mechanics subjected 

to heating such as the main shaft of lathe, turbines and the role of rolling mill, base of furnace of boiler of a 

thermal power plant, gas power plant and the measurement of aerodynamic heating. 

 

Formulation of the problem 

Consider a thick annular disc of thickness 2h defined by  𝑎 ≤ 𝑟 ≤ 𝑏,−ℎ ≤ 𝑧 ≤ ℎ. The initial 

temperature in a thick annular disc is zero. The arbitrary heat supply  ± 𝑓(𝑟, 𝑡)  is applied over the upper surface 

( z = h ) and the lower surface ( z = - h ) of disc. Assume the circular boundary of a thick annular disc is free 

from traction. Under these prescribed conditions, the thermal transient temperature and stresses in a thick 

annular disc with internal heat generation are required to be determined. 

The differential equation governing the displacement potential function 𝜙(𝑟, 𝑧, 𝑡) is given in Noda et al. (2003) 

as 
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where K is the restraint coefficient and temperature change 𝜏 = 𝑇 − 𝑇𝑖,  𝑇𝑖   is initial temperature. 

Displacement function 𝜙 is known as Goodier’s thermoelastic displacement potential. 

Temperature of the disc at time t satisfying heat conduction equation as follows, 
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𝑇 = 0 𝑎𝑡 𝑟 = 𝑎 , −ℎ ≤ 𝑧 ≤ h                

(3) 

𝑇 = 0 𝑎𝑡 𝑟 = 𝑏 , −ℎ ≤ 𝑧 ≤ h                

(4) 

𝑇 = ± 𝑓(𝑟, 𝑡)  at 𝑧 = ± ℎ , 𝑎 ≤ 𝑟 ≤ 𝑏                   (5) 

𝑞(𝑟, 𝑧, 𝑡) =  𝛿(𝑟 − 𝑟0) sin(𝛽𝑚𝑧) (1 − 𝑒
−𝑡)                 (6) 

and the initial condition 

𝑇 = 0 𝑎𝑡 𝑡 = 0 ,   𝑎 ≤ 𝑟 ≤ 𝑏                     (7) 

where 𝛼 is the thermal diffusivity of the material of the disc, k is the thermal conductivity of the material of the 

disc, q is the internal heat generation and 𝛿(𝑟) is well known dirac delta function of argument r. 

The Michell’s function M must satisfy 

∇2∇2𝑀 = 0                             (8) where 
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The components of the stresses are represented by the thermoelastic displacement potential 𝜙 and Michell’s 

function M as 
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where G and v are the shear modulus and Poisson’s ratio respectively. 

For traction free surface stress functions 

𝜎𝑟𝑟 = 𝜎𝑟𝑧 = 0 𝑎𝑡 𝑧 = ℎ, 𝑟 = 𝑎 𝑎𝑛𝑑 𝑟 = 𝑏.           (14) 

Equations (1) to (14) constitute mathematical formulation of the problem. 

Solution 

Temperature change 

To obtain the expression for temperature T (r, z, t ), we introduce the finite Hankel transform 

over the variable r and its inverse transform defined by Ozisik (1968)  as 

�̅�(𝛽𝑚, 𝑧, 𝑡) =  ∫ 𝑟 𝐾0(𝛽𝑚, 𝑟)
𝑏

𝑎
 𝑇(𝑟, 𝑧, 𝑡) 𝑑𝑟                            (15) 

𝑇(𝑟, 𝑧, 𝑡)  =  ∑ 𝐾0(𝛽𝑚, 𝑟)
∞
𝑚=1  �̅�(𝛽𝑚 , 𝑧, 𝑡)                        (16) 
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(17) 

where  𝑅0(𝛽𝑚, 𝑟) = [
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The normality constant 
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where  𝐽𝑛(𝑥) is Bessel function of the first kind of order n and  𝑌𝑛(𝑥) is Bessel function of the second kind of 

order n. 

On applying the finite Hankel transform defined in the Eq. (15), its inverse transform defined in (16) and 

applying Laplace transform and its inverse by residue method successively to the Eq. (2), one obtains the 

expression for temperature as 
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where 
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−𝛼 [𝛽𝑚

2+
𝑛2𝜋2

4ℎ2
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 ]. 

Since initial temperature 𝑇𝑖 = 0, 𝜏 = 𝑇 − 𝑇𝑖  
𝜏 = 𝑇                  (22) 

 

MICHELL’S FUNCTION M 

Now suitable form of M which satisfy Eq. (8) is given by 

𝑀 =∑ ∑𝐾 F(𝛽𝑚, 𝑡)

∞

𝑛=1

∞
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× [𝐵𝑚𝑛 𝑠𝑖𝑛 ℎ(𝛽𝑚𝑧) + 𝐶𝑚𝑛 𝛽𝑚𝑧  𝑐𝑜𝑠 ℎ(𝛽𝑚𝑧) ]                           (23) 

where 𝐵𝑚𝑛  and 𝐶𝑚𝑛  are arbitrary functions, which can be determined finally by using condition (14). 

 

Goodiers Thermoelastic Displacement Potential 𝝓(𝐫, 𝐳, 𝐭) 
 

Assuming the displacement function 𝜙(𝑟, 𝑧, 𝑡) which satisfies Eq. (1) as 
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1

(𝛽𝑚
2 +

𝑛2𝜋2

4ℎ2
)√𝑁

∞

𝑛=1

 [
𝐽0(𝛽𝑚𝑟)

𝐽0(𝛽𝑚𝑏)
−
𝑌0(𝛽𝑚𝑟)

𝑌0(𝛽𝑚𝑏)
]

∞ 

𝑚=1

 

×    [(
𝑛𝜋𝛼

2(−1)𝑛 ℎ2
)𝑔(𝑡) ( 𝑠𝑖𝑛 [

𝑛𝜋

2ℎ
 (𝑧 + ℎ)]  + 𝑠𝑖𝑛 [

𝑛𝜋

2ℎ
 (𝑧 − ℎ)] )] 

−(
𝛼 𝐷𝑚 𝑛

2𝜋2

4 𝑘ℎ2𝛽𝑚
2 ) [

1

2𝛼𝛽𝑚
2 +

𝑒−𝑡

1−2𝛼𝛽𝑚
2 +

𝑒−2𝛼𝛽𝑚
2𝑡

2𝛼𝛽𝑚
2(2𝛼𝛽𝑚

2−1)
] 𝑠𝑖𝑛(𝛽𝑚𝑧)                (24) 

 

Now using Eqs. (22), (23) and (24) in Eqs. (10), (11), (12) and (13), one obtains the expressions for stresses 

respectively as 
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𝑌1(𝛽𝑚𝑟)

𝑌0(𝛽𝑚𝑏)
]       

∞ 

𝑚=1

 

×   
1

(𝛽𝑚
2+

𝑛2𝜋2

4ℎ2
) 
 [

(
α 𝑛2𝜋2

4(−1)𝑛 ℎ3
) ( cos [

𝑛𝜋

2ℎ
 (z + h)]  + cos [

𝑛𝜋

2ℎ
 (z − h)] ) 𝑔(𝑡)

− (
α 𝑛2𝜋2𝐷𝑚

4 𝑘ℎ2𝛽𝑚
) [

1

2αβm
2 +

𝑒−𝑡

1−2αβm
2 +

𝑒−2αβm
2𝑡

2αβm
2(2αβm

2−1)
] cos(βm𝑧)   

] 

− F(𝛽𝑚, 𝑡)𝛽𝑚
2 [𝐵𝑚𝑛 sin h(βm𝑧) + 𝐶𝑚𝑛 〈

βm𝑧 cosh(βm𝑧)

+2(1 + 𝑣)𝑠𝑖𝑛h(βm𝑧)
〉 ]                      (28) 

Determination of unknown arbitrary functions  𝐵𝑚𝑛  and 𝐶𝑚𝑛 

In order to satisfy condition (14), solving Eqs. (25) and (28) for 𝐵𝑚𝑛 and 𝐶𝑚𝑛 one obtain, 

𝐵𝑚𝑛 = (
𝛼 𝑛2𝜋2

4 ℎ2𝛽𝑚
2)

1

(2𝑣 + 1)

1

(𝛽𝑚
2 +

𝑛2𝜋2

4ℎ2
) 

1

𝐹(𝛽𝑚, 𝑡)  𝑠𝑖𝑛 ℎ(𝛽𝑚𝑧)𝑐𝑜𝑠ℎ(𝛽𝑚𝑧)
 

×     [𝑐𝑜𝑠 ℎ(𝛽𝑚ℎ) + 𝛽𝑚ℎ  𝑠𝑖𝑛 ℎ(𝛽𝑚ℎ) ](1 + (−1)
𝑛)

𝑔(𝑡)

ℎ(−1)𝑛
 

− [𝑐𝑜𝑠ℎ2(𝛽𝑚ℎ) + 2(1 + 𝑣) 𝑠𝑖𝑛(𝛽𝑚ℎ)  𝑠𝑖𝑛 ℎ(𝛽𝑚ℎ) ]
𝐷𝑚
𝑘 𝛽𝑚

 

× [
1

2𝛼𝛽𝑚
2 +

𝑒−𝑡

1−2𝛼𝛽𝑚
2 +

𝑒−2𝛼𝛽𝑚
2𝑡

2𝛼𝛽𝑚
2(2𝛼𝛽𝑚

2−1)
]                        (29) 

 

𝐶𝑚𝑛 = (
−𝛼 𝑛2𝜋2

4 ℎ2𝛽𝑚
2 )

1

(2𝑣 + 1)

1

(𝛽𝑚
2 +

𝑛2𝜋2

4ℎ2
) 

1

𝐹(𝛽𝑚, 𝑡)   𝑠𝑖𝑛 ℎ(𝛽𝑚𝑧)𝑐𝑜𝑠ℎ(𝛽𝑚𝑧)
 

×   (1 + (−1)𝑛)
𝑔(𝑡)

ℎ(−1)𝑛
+

𝐷𝑚

𝑘 𝛽𝑚
[𝑠𝑖𝑛(𝛽𝑚ℎ) 𝑠𝑖𝑛 ℎ(𝛽𝑚ℎ) −𝑐𝑜𝑠ℎ(𝛽𝑚ℎ)] 

× [
1

2𝛼𝛽𝑚
2 +

𝑒−𝑡

1−2𝛼𝛽𝑚
2 +

𝑒−2𝛼𝛽𝑚
2𝑡

2𝛼𝛽𝑚
2(2𝛼𝛽𝑚

2−1)
]               (30) 

 

 

SPECIAL CASE AND NUMERICAL CALCULATIONS 

Setting 

𝑓(𝑟, 𝑡) = 𝛿(𝑟 − 𝑟0)𝑡,                  (31) 

where 𝛿(𝑟) is well known dirac delta function of argument r. 

Applying  finite Hankel transform as defined in Eq.(15) to the Eq.(31), one obtains 
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𝐹( 𝛽𝑚, 𝑡) =
𝑟0

√𝑁
[
𝐽0(𝛽𝑚 𝑟0  )

𝐽0
′ (𝛽𝑚𝑏)

−
𝑌0(𝛽𝑚 𝑟0  )

𝑌0
′(𝛽𝑚𝑏)

] 𝑡 

𝑎 = 1𝑚, 𝑏 = 2𝑚, 
ℎ = 0.3𝑚, 𝑟0 = 1.5𝑚 and 𝑡 = 2 𝑠𝑒𝑐. 

 

Material Properties 

The numerical calculation has been carried out for aluminum (pure) annular disc with the material properties 

defined as 

Thermal diffusivity 𝛼 = 84.18× 10−6 m2s−1, 
Specific heat 𝑐𝜌 = 896 J/kg, 

Thermal conductivity k = 204.2 W/m K, 

Shear modulus 𝐺 = 25.5 𝐺 pa, 
Poisson ratio 𝜗 = 0.281. 

 

Roots of Transcendental Equation 

The 𝛽1 = 3.120,  𝛽2 = 6.2734,  𝛽3 = 9.4182,  𝛽4 = 12.5614,  𝛽5 = 15.7040 are the roots of transcendental 

equation 
𝐽0(𝛽𝑚𝑎)

𝐽0(𝛽𝑚𝑏)
−

𝑌0(𝛽𝑚𝑎)

𝑌0(𝛽𝑚𝑏)
. The numerical calculation and the graph has been carried out with the help of 

mathematical software Mat lab. 

 

II. Discussion 
 In this paper a thick annular disc is considered and determined the expressions for 

temperature, displacement and stresses due to internal heat generation within it and we compute the effects of 

internal heat generation in terms of stresses along radial direction. As a special case mathematical model is 

constructed for considering aluminum (pure) annular disc with the material properties specified above. 

 

 
Figure 1 The temperature change of                    Figure 2 The temperature change of 

disc for (q≠0).               disc for (q=0). 

 

 
Figure 3 Radial stress 

σrr

K
  for (q≠0).           Figure 4 Radial stress 

σrr

K
  for (q=0). 
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Figure 5  Angular stress 

σθθ

K
  for (q≠0).                        Figure 6  Angular stress 

σθθ

K
  for (q= 0). 

 

 
Figure 7 Axial stress 

σzz

K
  for (q ≠0).            

 

 
Figure 8 Axial stress 

σzz

K
  for (q = 0). 
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Figure 9 Stress function 

σrz

K
  for (q≠ 0).   Figure 10 Stress function 

σrz

K
  for (q= 0). 

 

From figure 1 and 2, it is observed that the temperature of annular disc remains same with heat 

generation and without heat generation along radial direction. 

From figure 3 and 4, it is observed that there is no effect of heat generation on radial stress 
𝜎𝑟𝑟

𝐾
 along 

radial direction. 

From figure 5 and 6, it is observed that  there is no effect of heat generation on angular stress 
σθθ

K
 along 

radial direction. 

From figure 7 and 8, it is observed that the axial stress 
σzz

K
 remains same  that is there is   no effect of 

heat generation along radial direction. 

From figure 9 and 10, it is observed that the axial stress 
σrz

K
 remains same  that is there is no effect of 

heat generation along radial direction. 

 

III. Conclusion 
We can conclude that there is no effect of internal heat generation on temperature, the radial stress 

function 
σrr

K
, the angular stress function 

σθθ

K
 , axial stress function 

σzz

K
 and stress function 

σrz

K
 along radial 

direction. 

The results obtained here are useful in engineering problems particularly in the determination of state 

of stress in a thick annular disc, base of furnace of boiler of a thermal power plant, gas power plant and the 

measurement of aerodynamic heating. 
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