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I. Introduction 
We will give an  answer to the following : 

Let ℋ be the space  of  Dirichlet  series  with square  summable coefficients, f ∈  ℋ means that the function has 

the form 

𝑓(𝑠) = ∑ 𝑎𝑛
∞
𝑛=1 𝑛−𝑠                      (1) 

With ∑ |𝑎𝑛|2 < ∞∞
𝑛=1 . By the Cauchy–Schwarz inequality, the functions in ℋ are all  holomorphic  on  the  

half-plane   ℂ1/2 = {𝑠 ∈ ℂ: ℜ𝑠 > 1/2}. The  coefficients {𝑎𝑛}𝑛  can  be  retrieved  from  the  holomorphic  

function  𝑓(𝑠)  so that   ‖𝑓‖ℋ
𝑐 = ∑ |𝑎𝑛|2∞

𝑛=1  defines a Hilbert space norm on ℋ. 
This chapter deals with the boundary behavior of functions in the Hardy  spaces  ℋ𝑝  for ordinary  Dirichlet  

series. The  main  result,  answering  a question of   𝐻.   Hedenmalm, shows that the classical 𝐹.   Carlson  

theorem  on integral means does  not  extend to  the imaginary axis for functions in   ℋ∞, i.e., for ordinary  

Dirichlet series in  𝐻∞ of the right half-plane. 

 

Section(3.1):        Composition Operators on the Space of  Dirichlet Series 

In this section, a complete  answer to this question is found. In the  process, we 

encounter the  space  𝒟 of functions  f,  which in some half-plane : 

ℂ𝜃 = {𝑐 ∈ ℂ: ℜ𝑠 > 𝜃} , (𝜃 ∈ ℝ)  admit  representation  by  a convergent  Dirichlet 

series  (1).  It  is,  in a  sense,  a  space  of  germs  of  holomorphic  functions.  It  is 

important to note that if  a Dirichlet  series  converges on  ℂ𝜃  then it converges ab-solutely and  uniformly on  

ℂ𝜗 , provided   𝜗 > 𝜃 + 1 (see e.g.  [1]).In terms of the 

coefficients, f ∈  𝒟 means that 𝑎𝑛 grows at most polynomially in the index variable 

n. We shall use  the notation ℂ+ to denote the right half-plane, ℂ+ = { 𝑠 ∈ ℂ: ℜ𝑠 > 0},although strictly speaking 

we probably ought to keep the notation consistent and write ℂ0 instead. Throughout the section, the term half-

plane will be used in the re-stricted  sense of  a half-plane of  the type  ℂ𝜃 for some  𝜃 ∈ ℝ. It  should  be  men-

tioned  that, by the  closed  graph  theorem, every composition  operator  𝐶Φ : ℋ → ℋ is automatically 

bounded. 

The first question that arises naturally in connection with this problem is: For what functions  Φ  analytic in  

some  half-plane  ℂ𝜃  and  mapping it into  ℂ1/2  does  the composition operator 𝐶Φ map the space ℋinto 𝒟 ? 

The next theorem answers the original question posed  above. 

 

Theorem(3.1.1)        An analytic function Φ: ℂ1/2 → ℂ1/2 defines a bounded composition operator  𝐶Φ : ℋ → 

ℋ if and only if: 

(a) it is of the form 

Φ(s) = 𝑐0𝑠 + 𝜑(𝑠)     𝑤ℎ𝑒𝑟𝑒 𝑐0 ∈ ℕ ∪ {0}   𝑎𝑛𝑑  𝜑 ∈ 𝒟. 
(b) Φ has an analytic extension to  𝐶+,  also denoted by Φ, such that 

(i)   Φ(𝐶+) ⊂ 𝐶+      𝑖𝑓    0 < 𝑐0,   𝑎𝑛𝑑 

(ii)  Φ(𝐶+) ⊂ 𝐶+      𝑖𝑓   𝑐0 = 0. 
This Theorem is a Dirichlet series analog of the classical Littlewood subordination 
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principle [2].Indeed, in case Φ fixes the point +∞, which happens precisely when 0 < 𝑐0, the composition 

operator 𝐶Φ is a contraction on ℋ. 
The  nonegative   integer  𝑐0,  which  appears  both in  Theorem (3.1.1) and  in Theorem (3.1.2), contains much  

information  about the  mapping function  Φ.  We call this  𝑐0 the characteristic of Φ. 
 

Theorem(3 .1.2) (𝜃 ∈ ℝ) An analytic function  Φ: ℂ𝜃 → ℂ1/2  generates  a composition operator 𝐶Φ : ℋ → 𝒟 

if and only if it has the form 

Φ(s) = 𝑐0𝑠 + 𝜑(𝑠)     𝑤ℎ𝑒𝑟𝑒 𝑐0 ∈ ℕ ∪ {0}   𝑎𝑛𝑑  𝜑 ∈ 𝒟. 
Proof:   we shall need this simple and well-known lemma. 

Lemma(3.1.3) Let m be a positive integer, and let 𝑓(𝑠) = ∑ 𝑎𝑛
∞
𝑛=1 𝑛−𝑠 be a 

Dirichlet series from the class 𝒟, starting from the index m: Then  𝑚𝑠𝑓(𝑠) →  𝑎𝑚 

uniformly as ℜ𝑠 → +∞. 
We are now able to prove the necessity part of  Theorem(3.1.2). Suppose that 𝑓𝜊Φ ∈  𝒟 for every f ∈ ℋ, In 

particular, 𝑘−Φ(s) ∈  𝒟 for all k ∈ ℕ. Denote the cor-responding  series by 

𝑘−Φ(s) = ∑ 𝑏𝑛
(𝑘)∞

𝑛=𝑁(𝑘) 𝑛−𝑠                                                                          (2) 

Where  𝑁(𝑘) ∈ ℕ  is the index  of  the  first  nonzero  coefficient.  Multiplying  the equality (2) by N(𝑘)𝑠 and 

applying Lemma(3.1.3), we arrive at 

𝑒𝑥𝑝(𝑠𝑙𝑜𝑔𝑁(𝑘) − Φ(s)𝑙𝑜𝑔𝑘) → 𝑏𝑁(𝑘)
(𝑘)

  as  ℜ𝑠 → +∞.                                         (3) 

With uniform convergence. Here,  “log” stands  for natural logarithm. Observe that 

the  function of  s  in the exponent on the left-hand side  is holomorphic in  ℂ𝜃 ( the 

half-plane  appearing in the formulation of  Theorem (3.1.2)),  so it maps  ℂ𝜃 into a  connected  domain.  

Moreover, it  maps  any half-plane  ℂ𝜗 contained  in  ℂ𝜃 into a connected domain as well. On the  other  hand,  it 

follows from (3) that, for  s  with sufficiently large  real part, the  values of  𝑠𝑙𝑜𝑔𝑁(𝑘) − Φ(s)𝑙𝑜𝑔𝑘 are  

contained in the set  𝑈(𝑘) + 2𝜋𝑖ℤ where  ℤ  is the set  of  all integers  and  𝑈(𝑘) is an arbitrarily small open 

neighborhood of the point 𝑙𝑜𝑔𝑏𝑁(𝑘)
(𝑘)

 (here “𝑙𝑜𝑔” stands for the principal branch of the logarithm). Hence, there 

must exist an integer q such that 

𝑠𝑙𝑜𝑔𝑁(𝑘) − Φ(s)𝑙𝑜𝑔𝑘 →  𝑙𝑜𝑔𝑏𝑁(𝑘)
(𝑘)

+ 2𝜋𝑖𝑞  as  ℜ𝑠 → +∞.             (4) 

Dividing the both parts of (3) by  s log k (for k >1), we have 

 

lim
ℜ𝑠→+∞

Φ(s)

𝑠
=

𝑙𝑜𝑔𝑁(𝑘)

𝑙𝑜𝑔𝑘
 

with uniform convergence (by Lemma(3.1. 3). It follows that the real number 

𝑐0 =
𝑙𝑜𝑔𝑁(𝑘)

𝑙𝑜𝑔𝑘
 

does not depend on k: We can look at this relation from the other side: 𝑁(𝑘) = 𝑘𝑐0 

is an integer for all positive integers k. 

The following result is indubitably known: 

Lemma(3.1.4)       A real number c such that 𝑛𝑐 is an integer for all positive  integers n is itself a nonnegative 

integer. 

Proof.         In the case c < 0 the  statement is obvious: on the one hand,  𝑛𝑐 → 0 as n → +∞ on the other, it 

must be an integer for all n. Hence 𝑛𝑐 = 0, for  sufficiently 

large n, which is impossible. 

The case  c > 0 can be reduced  to a similar  situation by means of  taking  finite 

differences. We  recall the definition of  the  first difference of a sequence  {𝑥𝑛}𝑛=1
∞  

as the sequence {∆𝑥𝑛}𝑛=1
∞ where ∆𝑥𝑛 = 𝑥𝑛+1 − 𝑥𝑛 The differences of higher orders 

are then defined inductively. 

Let  k  be  the least  integer that is  ≥c.  We  consider  the  sequence  {𝑦𝑛}𝑛=1
∞  , 𝑦𝑛 = ∆𝑘𝑥𝑛,  with 𝑥𝑛 = 𝑛𝑐 .  We  

observe that  𝑦𝑛 = 𝑂(𝑛𝑐−𝑘)  as n → ∞ , and  we consider a series of the form  𝑓(𝑡) = ∑ 𝑎𝑗
∞
𝑗=0 𝑡𝑐−𝑗   that is 

absolutely convergent for t > 1. 

The difference operation ∆𝑓(𝑡) = 𝑓(𝑡 + 1) − 𝑓(𝑡) carries it into a series of the 

same kind, but starting from  j = 1, as 

(𝑡 + 1)𝑐 − 𝑡𝑐 = 𝑡𝑐((1 + 1/𝑡)𝑐 − 1) = 𝑐𝑡𝑐−1 +
𝑐(𝑐 − 1)

2
𝑡𝑐−2 + ⋯ ,     𝑡 > 1, 

with  absolute convergence on the  indicated  interval. It follows that k applications of the  operation ∆ to  𝑓(𝑡) 

results in a series starting from  j = k,  which proves the observation. 
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Hence,  𝑦𝑛 = 0 as n → ∞ unless c equals the integer k. Since the numbers 𝑦𝑛 are integers,  we must then  have  

𝑦𝑛 = 0  for sufficiently large  n;  say  n ≥ N. On the other hand, the sequence  {𝑦𝑛}𝑛=1
∞  is the  restriction to the 

set ℕ of a  function  y(z), 

which is holomorphic on  ℂ(−∞, 0]  and grows no faster than a power of  | 𝑧 | as 

| 𝑧 |→ ∞. If such a function vanishes on the set  ℕ ∩ [𝑁, +∞), it must be identically 

zero. Hence 𝑦𝑛 = 0, and since the kernel of  ∆𝑘 consists of those sequences that are polynomials  in  n  of  

degree  k -1  or  less,  the  original  sequence    𝑥𝑛 = 𝑛𝑐  is  a polynomial of degree at most k -1This is possible 

only if c ≤ k -1which contradicts the definition of k. Hence c = k ∈ ℕ as desired. 

The case c = 0 is trivial. 

From the lemma we conclude that  𝑐0 ∈ ℕ ∪ {0}. We shall now consider more closely the function 𝜑(𝑠) =
Φ(𝑠) − 𝑐0𝑠. We claim that 𝜑 belongs to 𝒟. 
Multiplying (2)  by 𝑘𝑐0𝑠 we obtain 

 

𝑘−𝜑(𝑠) = ∑ 𝑏𝑚
(𝑘)

∞

𝑚=𝑘𝑐0

(
𝑚

𝑘𝑐0
)

−𝑠

 

Dropping the superscript, we can write this relationship as 

𝑘−𝜑(𝑠) = �̃�0 + �̃�1(1 +
1

𝑘𝑐0
)−𝑠 + �̃�2(1 +

2

𝑘𝑐0
)−𝑠 + ⋯ = �̃�0 + ℎ(𝑠)                         (5) 

where the notation �̃�𝑗 stands for the shifted coefficients, �̃�𝑗 = 𝑏
𝑘𝑐0+𝑗

(𝑘)
 . Combining 

(5) with (4), we obtain 

− 𝜑(𝑠)𝑙𝑜𝑔𝑘 = 𝑙𝑜𝑔�̃�0 + 𝑙𝑜𝑔 (1 +
ℎ(𝑠)

�̃�0

) + 2𝜋𝑖𝑞 

on a half-plane where the principal branch of the logarithm defines a holomorphic 

function, which is assured if  |ℎ(𝑠)| < |�̃�0| there. The Dirichlet series 

∑ 𝑏𝑚
(𝑘)

∞

𝑚=𝑘𝑐0

𝑚−𝑠 

 

is in 𝒟, so that (by Lemma(3.1.3)) the function ℎ(𝑠) defined by (5) tends to 0 unif-ormly as ℜ𝑠 → +∞. 
Expanding  𝑙𝑜𝑔(1 + 𝑧)  in a Taylor series around  𝑧 = 0 with: 

𝑧 = 
ℎ(𝑠)

�̃�0
, we have 

 

− 𝜑(𝑠)𝑙𝑜𝑔𝑘 = ∑
(−1)𝑛−1

𝑛

∞

𝑛=1

�̃�0
−𝑛

ℎ(𝑠)𝑛 + 𝑙𝑜𝑔�̃�0 + 2𝜋𝑖𝑞, 

with convergence for s with |ℎ(𝑠)| < |�̃�0|. 

Let us open the brackets in every expression ℎ(𝑠)𝑛 and rearrange the terms, 

which is allowed in the half-plane of absolute convergence of ℎ(𝑠). It follows that 

𝜑(𝑠) is a series of the form 

𝜑(𝑠) = ∑ ∑ 𝛽𝑛1,…,𝑛𝑞

∞
𝑛1,…,𝑛𝑞=1

∞
𝑞=0 (1 +

𝑛1

𝑘𝑐0
)

−𝑠

…(1 +
𝑛𝑞

𝑘𝑐0
)

−𝑠

, 

which converges absolutely in some half-plane. In other words, 𝜑(𝑠) is a converg-ent. 

Dirichlet series over the multiplicative semigroup 𝔖(𝑘𝑐0) generated by the  set {1 + 𝑗/𝑘𝑐0}𝑗∈ℕ . Note  that  𝜑(𝑠)  

does  not depend on  k, and  that it  is  a Dirichlet series over 𝔖(𝑘𝑐0) for every 𝑘 ∈ ℕ.The following lemma now 

completes the proof of the assertion that 𝜑(𝑠) belongs to the class 𝒟. 
 

Lemma(3.1.5)  (𝑐0 ∈ ℕ ∪ {0}) The  intersection   of   𝔖(𝑘𝑐0)  over all  k ∈ ℕ consists only of positive integers. 

Hence a Dirichlet series over the intersection of all 𝔖(𝑘𝑐0)  is an ordinary Dirichlet 

series. 

Proof .      Suppose  that a number 𝛼 lies in the intersection of 𝔖(2𝑐0),  and 𝔖(3𝑐0).  As an element of  𝔖(2𝑐0),
𝛼 admits a representation by a fraction with  denomina-tor  (2𝑐0)𝑛 for some  n ∈ ℕ.  Similarly,  𝛼  is a  fraction  

with denominator  (3𝑐0)𝑚  for  some  m ∈ ℕ.  Since  𝑐0  is a  nonnegative integer, this is possible only if  𝛼 is an 

integer. 

It now follows that Φ has the form Φ(s) = 𝑐0𝑠 + 𝜑(𝑠)  where 𝑐0 ∈ ℕ ∪ {0} and 

𝜑 ∈ 𝒟. This completes the necessity part of Theorem(3.1.2). 

We turn to the sufficiency part, and suppose that Φ is a holomorphic mapping 

ℂ𝜃 → ℂ1

2

  of the form 



Square Summable Coefficients And Integral Means With Boundary Limits Of Dirichlet Series 

DOI: 10.9790/5728-2104014461                           www.iosrjournals.org                                                  47 | Page 

Φ(s) = 𝑐0𝑠 + ∑ 𝑐𝑛

∞

𝑛=1

𝑛−𝑠 

Where  𝑐0 ∈ ℕ ∪ {0}  and  the series  𝜑(𝑠) = ∑ 𝑐𝑛
∞
𝑛=1 𝑛−𝑠 converges in  some half plane.A series in 𝒟,the space 

of convergent Dirichlet series,actually converges 

absolutely  in the  half-plane one unit to the right of the half-plane of convergence, in particular, this applies to 

𝜑. We shall show that the composition f 𝜊 Φ belongs to  𝒟 for every function f ∈ ℋ.  For k = 1, 2, 3, …, we 

expand 

 

𝑘−Φ(s) = 𝑘−𝑐0𝑠. 𝑘−𝜑(𝑠) = 𝑘−𝑐0𝑠−𝑐1𝑒𝑥𝑝 (−(𝑙𝑜𝑔𝑘) ∑ 𝑐𝑛

∞

𝑛=2

𝑛−𝑠) 

= 𝑘−𝑐0𝑠−𝑐1 ∏ 𝑒𝑥𝑝(−(𝑙𝑜𝑔𝑘)𝑐𝑛𝑛−𝑠)∞
𝑛=2                                       (6) 

 

The relationship (6) holds in the  half-plane of absolute convergence  of the series 𝜑(𝑠).  Let us take an  element  

𝑓(𝑠) = ∑ 𝑎𝑘
∞
𝑘=1 𝑘−𝑠,   f ∈ ℋ.  We want to plug the Dirichlet series expansion for every 𝑘−Φ(s)obtained by 

opening the brackets in the product in (6), into  f 𝜊 Φ(s)  and so derive a  Dirichlet  series for the composition 

f 𝜊 Φ  by rearrangement of  the terms. To  justify  this operation, we need to check that the series formally 

obtained this way converges absolutely in some half-plane. That is, we need to prove the absolute convergence 

of the Dirichlet series obtained by expanding 

∑ 𝑎𝑘
∞
𝑘=1 𝑘−Φ(s)  = ∑ 𝑎𝑘

∞
𝑘=1 𝑘−𝑐0𝑠−𝑐1  ∏ (1 + ∑

(−𝑐𝑛𝑙𝑜𝑔𝑘)𝑗

𝑗!

∞
𝑗=1 𝑛−𝑗𝑠)∞

𝑛=2               (7) 

The absolute convergence of the Dirichlet series expanded from (7) follows from 

the convergence of 

 

∑|𝑎𝑘|

∞

𝑘=1

𝑘−ℜ(𝑐0𝑠+𝑐1)  ∏ (1 + ∑
(|𝑐𝑛|𝑙𝑜𝑔𝑘)𝑗

𝑗!

∞

𝑗=1

𝑛−𝑗ℜ𝑠)

∞

𝑛=2

 

 

= ∑|𝑎𝑘|

∞

𝑘=1

𝑘−ℜ(𝑐0𝑠+𝑐1)  ∏ 𝑘|𝑐𝑛|𝑛−ℜ𝑠  

∞

𝑛=2

 

 

= ∑ |𝑎𝑘|∞
𝑘=1 𝑘−ℜ(𝑐0𝑠+𝑐1)  𝑒𝑥𝑝(𝑙𝑜𝑔𝑘 ∑ |𝑐𝑛|∞

𝑛=2 𝑛−ℜ𝑠)                               (8) 

 

The expression    ∑ |𝑐𝑛|∞
𝑛=2 𝑛−ℜ𝑠  is uniformly bounded in some half-plane  𝑠 ∈ ℂ𝜗  (𝜗 ∈ ℝ). In the case of 

characteristic 𝑐0 = 1, 2, 3,…  the absolute converg- -ence of  the right-hand side of (8) in ℂ𝜗 follows, provided 𝜗 

is positive and suffic- iently large. 

In case of characteristic  𝑐0 =  0, we need to check that  ℜ𝑐1 >1/2 . Once this has 

been done, by Lemma(3.1.3) it follows that 

∑ |𝑐𝑛|∞
𝑛=2 𝑛−ℜ𝑠  → 0            as     ℜ𝑠 → +∞ 

with uniform convergence. Hence, in some  sufficiently remote half-plane  ℂ𝜗, the 

inequality 

 

∑|𝑎𝑘|

∞

𝑘=1

𝑘−ℜ𝑐1  𝑒𝑥𝑝 (𝑙𝑜𝑔𝑘 ∑|𝑐𝑛|

∞

𝑛=2

𝑛−ℜ𝑠) ≤ ∑|𝑎𝑘|

∞

𝑘=1

𝑘−
1
2

−𝜀  
 

holds with some   𝜀 > 0, and the  convergence of the right-hand part of (8) follows. 

We turn to the assertion  ℜ𝑐1 >1/2.  The function Φ: ℂ𝜃 → ℂ1

2

  has the expansion 

Φ(s) = φ(s) = ∑ 𝑐𝑛
∞
𝑛=1 𝑛−𝑠,  and by Lemma(3.1.3),  𝑐1 equals  the limit  of   Φ(s)  as  ℜ𝑠 → +∞.  Hence  ℜ𝑐1 

≥ 1/2,almost what  we want to prove. If Φ is constant,  then  Φ(s) = 𝑐1  and  ℜ𝑐1 >1/2.  If Φ is not constant 

then there is a first index  n = 2,3, 4,…, such  that  the coefficient  𝑐𝑛  is different than 0, call  this index  N.  

Then, for large positive values of  ℜ𝑠, 

Φ(s) = φ(s) = 𝑐1 + 𝑐𝑁𝑁−𝑠 + 𝑂((𝑁 + 1)−ℜ𝑠)                                                   (9) 

In a sufficiently remote half-plane  ℂ𝜗, the error term is  negligible compared with 

the  second term  𝑐𝑁𝑁−𝑠,   so that the image of  ℂ𝜗 under  Φ is a slightly perturbed 

(punctured) disk centered at 𝑐1.  In particular, since  Φ  maps  ℂ𝜃 into ℂ1

2

, the point 
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𝑐1 must be an interior point in ℂ1

2

. 

The proof of  Theorem (3.1.2) is now completed. 

Here, we shall obtain the following partial result. 

 

Proposition( 3.1.6)        If  the  holomorphic  function  Φ: ℂ1

2

→ ℂ1

2

   has the property that it induces a bounded 

composition operator 𝐶Φ: ℋ → ℋ then almost every function Φ𝜒 has an analytic extension to ℂ+. 

Proof.                    By Theorem (3.1.2)    Φ    has the  form    Φ(s) = 𝑐0𝑠 + φ(s)   where  𝑐0 ∈ ℕ ∪ {0} and  

φ ∈ 𝒟.  For each   n = 1, 2, 3,…, 𝑛−𝑠  is in  ℋ,   so that  𝐶Φ(𝑛−𝑠) = 𝑛−Φ(s)  is in  ℋ, because of the assumption. 

It follows that (𝑛−Φ)𝜒  is holomorphic in ℂ+ almost surely in  𝜒 [1], we have 

𝑛−Φ𝜒(s) = 𝜒(𝑛)−𝑐0(𝑛−Φ)𝜒(𝑠)                                                                              (10) 

in the half-plane of uniform convergence for the Dirichlet series  φ .The right-hand 

side of (10) provides an analytic extension of the function 𝑛−Φ𝜒(s) to ℂ+ for almost 

every character  𝜒.  Since a countable union of null sets is a null set, it follows that, almost surely in 𝜒, the 

functions 𝑛−Φ𝜒(s)(n = 1, 2, 3,…) are all analytic in ℂ+. Fix a character 𝜒 with this property and consider the 

functions 𝑛−Φ𝜒(s) for all n ∈ ℕ. The only possible singularities in ℂ+ of the function Φ𝜒(s) are at the zeros of 

the funct-ion  𝑛−Φ𝜒 =  𝜒(𝑛)−𝑐0(𝑛−Φ)𝜒. Let 𝑠0 ∈ ℂ+, and let 𝑚𝑛(𝑠0 , 𝜒) stand for the multip-licity of the zero at 

𝑠0 that the analytic extension of the function 𝑛−Φ𝜒  develops (if 𝑚𝑛(𝑠0 , 𝜒) = 0  then there is no zero). We 

calculate that, in the half-plane of absol-ute convergence for the Dirichlet series φ(s), 

(𝑛−Φ𝜒(s)
)

′

𝑛−Φ𝜒(s) = Φ𝜒
′ (𝑠)𝑙𝑜𝑔𝑛                                                                           (11) 

The left-hand part of (11) is a meromorphic function in ℂ+,  with at most simple 

poles, so the relationship (11) provides such a meromorphic continuation of the fu-nction   Φ𝜒
′ (𝑠)  to  ℂ+ . Let   

𝜌(𝑠0 , 𝜒) = lim
𝑠→𝑠0

(𝑠 − 𝑠0) Φ𝜒
′ (𝑠)  be  the  residue of  Φ𝜒

′ (𝑠)  at 𝑠 = 𝑠0. The residue of the left-hand side of (11) at 

the point  𝑠 = 𝑠0  equ-als  the multiplicity  𝑚𝑛(𝑠0 , 𝜒),  an integer.  Therefore,  for each  n = 2, 3, 4,…, the 

number   𝜌(𝑠0 , 𝜒)log n   is an integer,  which is  possible only  if  𝜌(𝑠0 , 𝜒) = 0,  in 

which case 𝑚𝑛(𝑠0 , 𝜒) = 0 for all n. The proof of the proposition is complete. 

In this section we shall demonstrate the following : 

claim(3.1.7): 

If a function  Φ: ℂ1

2

→ ℂ1

2

  generates a  continuous composition operator  𝐶Φ: ℋ → ℋ , so  that  Φ(s) = 𝑐0𝑠 +

φ(s)   where  𝑐0 ∈ ℕ ∪ {0}  and  φ ∈ 𝒟,   then: (a) if 𝑐0 = 0 then Φ extends to a holomorphic mapping ℂ+ →
ℂ1

2

  and  (b)  if 𝑐0 > 0 then Φ extends to a holomorphic mapping ℂ+ → ℂ+. 

Proof.  We assume that Φ: ℂ1

2

→ ℂ1

2

  generates a continuous  composition  operator 

𝐶Φ: ℋ → ℋ and  let  f ∈ ℋ, for every 𝜒 ∈ Ξ we have that 

 
(𝑓𝜊Φ)𝜒(𝑠) = 𝑓𝜒𝑐0𝜊Φ𝜒(𝑠),               𝑠 ∈ ℂ1

2

                                                   (12) 

 

Since 𝑓𝜊Φ ∈ ℋ,[49] shows that, almost surely in  𝜒 , (𝑓𝜊Φ)𝜒 extends Holomorph-ically to  ℂ+.  Also, by 

Proposition (3.1.6)  Φ𝜒  extends  analytically to  ℂ+ almost surely in 𝜒. Moreover,for characteristic 𝑐0=1,2,3,…, 

𝑓𝜒𝑐0  is almost surely holomor-phically extendable to  ℂ+ because the transformation 𝜒 ↦ 𝜒𝑐0  is measure-

preserv-ing  (the pre-image of a set has the same mass as the set itself ). However, for char-acteristic 𝑐0 = 0 we 

have  𝑓𝜒𝑐0 = f, and all we  know about this function is that it is holomorphic on ℂ1

2

. 

We first consider the case of characteristic 𝑐0 =1, 2, 3,…,  and let 𝜒 ∈ Ξ belong 

to the set of full measure with the properties that (𝑓𝜊Φ)𝜒 , Φ𝜒  and  𝑓𝜒𝑐0   all extend 

analytically to ℂ+. We wish to prove that Φ𝜒 maps ℂ+ to ℂ+ (after all, Φ is a verti-cal limit function of Φ𝜒). The 

image Φ𝜒(ℂ+) of ℂ+ under  Φ𝜒  is a connected open subset of ℂ, because the holomorphic mapping  Φ𝜒 is 

nonconstant. 

Let Ω consist of all points s ∈ ℂ+for which  Φ𝜒(𝑠) ∈ ℂ+ it is an open subset of  ℂ+. Since  Φ𝜒 maps ℂ1

2

 to ℂ1

2

, it 

follows that Ω contains the half-plane ℂ1

2

. Let Ω0 be the  connectivity component of  Ω that contains ℂ1

2

. Then, 

by analytic continuation, (12) holds for all s ∈ Ω0. If Ω is not all of ℂ+then the same goes for Ω0, and we can 

find a boundary point  𝑠0 ∈ 𝜕Ω0  with  𝑠0 ∈ ℂ+.  By wiggling the point slightly, we can make sure that Φ𝜒
′ (𝑠) ≠

0, so that  Φ𝜒 is conformal near 𝑠0. The point  Φ𝜒(𝑠)  lies on the imaginary axis 𝜕ℂ+, and (12)(which is valid 
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for s ∈ Ω0) shows that  𝑓𝜒𝑐0  has an analytic  extension  across  a small  segment of  the imaginary axis  near 

 Φ𝜒(𝑠).     This extension is given by , (𝑓𝜊Φ)𝜒𝜊 Φ𝜒
−1 where the mapping  Φ𝜒

−1 refers to the inverse to the 

conformal map that Φ𝜒 defines from a neighborhood of  𝑠0 to a neig-hborhood of  Φ𝜒(𝑠0).  In conclusion, if Φ𝜒 

does not map ℂ+  to ℂ+ , then 𝑓𝜒𝑐0  nec-essarily extends holomorphically across a small segment of the 

imaginary axis. 

We shall see that there is a function 𝑓 ∈ ℋ such that, almost surely in  𝜒, 𝑓𝜒 does 

not extend analytically to any region larger than ℂ+  (in other words, the imaginary 

axis is a natural boundary for the function 𝑓𝜒), hence, the same can be said for  the function  𝑓𝜒𝑐0 . This means 

that, for many (in fact, almost all) characters 𝜒 conside-red here, 𝑓𝜒𝑐0 , has 𝜕ℂ+  as a natural boundary, which 

forces Φ𝜒 to map  ℂ+ to ℂ+ , as claimed. 

We turn to the remaining case of characteristic 𝑐0 = 0, where the relation (12) 

simplifies a bit as follows: 

 
(𝑓𝜊Φ)𝜒(𝑠) = 𝑓𝜊Φ𝜒(𝑠),               𝑠 ∈ ℂ1

2

                                                           (13) 

Let 𝜒 ∈ Ξ belong to the set of full measure with the properties that (𝑓𝜊Φ)𝜒 and 

Φ𝜒  both extend  analytically to  ℂ+. We  wish to prove that  Φ𝜒 maps ℂ+ to ℂ1

2

 for 

applying  Φ𝜒 in place of  Φ, guarantees that Φ also maps ℂ+ to ℂ1

2

. As before, let Ω  be the open set  of all points  

s ∈ ℂ+ for which  Φ𝜒(𝑠) ∈ ℂ1

2

. Since  Φ𝜒  maps ℂ1

2

 to  ℂ1  

2

, Ω  contains the half-plane ℂ1

2

. Let Ω0 be the 

connectivity component of Ω  that contains ℂ1

2

. Then, by analytic continuation,(13) holds for all s ∈ Ω0. If Ω  is 

not all of  ℂ+ then the same goes for  Ω0, and we can find a boundary point 𝑠0 ∈ 𝜕Ω0 with 𝑠0 ∈ ℂ1

2

. By wiggling 

the point slightly, we can make sure that  Φ𝜒
′ (𝑠) ≠ 0 , so that Φ𝜒 is conformal near  𝑠0. The point Φ𝜒(𝑠0)  lies 

on the vertical line 𝜕ℂ1  

2

, and (13), valid for  s ∈ Ω0, shows that  f  has an analytic extension across a small 

segment of the line 𝜕ℂ1  

2

. In conclusion, if  Φ𝜒 does not map ℂ+ to ℂ1  

2

, then f  necessarily exte-nds 

holomorphically across a small segment of the vertical line 𝜕ℂ1  

2

. 

We shall see that there is a function f ∈ ℋ that does not extend holomorphically 

to any region larger than ℂ1  

2

.This forces Φ𝜒 to map ℂ+ to ℂ1  

2

, as claimed. 

Let us consider the function 

𝑓(𝑠) = ∑ 𝑎𝑝

𝑝

𝑝−𝑠 

where the summation runs over the primes p and 

𝑎𝑝 =
1

√𝑝𝑙𝑜𝑔𝑝
 

Clearly, f ∈ ℋ .The vertical limit functions of  f  are 

 

𝑓𝜒 = ∑ 𝑎𝑝𝑝 𝜒(𝑝)𝑝−𝑠, 

Where  𝜒(𝑝),   p = 2, 3, 5, 7, 11,…, are to be thought of  as independent  uniformly 

distributed stochastic variables on 𝕋, so they have mean value 0 and variance 1. By 

H. Helson (see[1]),the Dirichlet series 𝑓𝜒(𝑠) converges on ℂ+, so that 𝑓𝜒(𝑠) is hol-omorphic  on  ℂ+ almost 

surely  in  𝜒.  The stochastic variable  𝑓𝜒(𝑠)  has variance ∑ |𝑎𝑝|
2

𝑝 𝑝−2ℜ𝑠, which diverges for  ℜ𝑠 < 0 hence, by 

the central limit [4] (applic-able because of the regular behavior of each term |𝑎𝑝|
2

𝑝−2ℜ𝑠 ), the quantity 

 
∑ 𝑎𝑝𝜒(𝑝)𝑝−𝑠

𝑝:𝑝≤𝑁

∑ |𝑎𝑝|
2

𝑝:𝑝≤𝑁 𝑝−2ℜ𝑠
 

 

tends to the unit Gaussian distribution in the complex plane as N → ∞ for ℜ𝑠 < 0  so that  𝑎𝑝𝜒(𝑠)𝑝−𝑠 diverges 

almost surely. It follows that the abscissa of converg-ence for 𝑓𝜒 is almost surely the line ℜ𝑠 < 0  . The 

derivative of  the function 𝑓𝜒 is 

 

𝑓𝜒
′ = − ∑ 𝜒(𝑝)𝑝−𝑠−1/2

𝑝
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Proposition(3.1.8)                Let 𝘨𝜒 be the Dirichlet series 

 

𝘨𝜒(𝑠) = ∑ 𝜒(𝑝)𝑝−𝑠−1/2

𝑝

 

(a) For a dense set of characters  𝜒, the line ℜ𝑠 = 1/2 is both abscissa of conver-gence and natural boundary 

for the series 𝘨𝜒. 

(b) For almost  all characters 𝜒,  the line ℜ𝑠 = 0 is both  abscissa of convergence and natural boundary for the 

series 𝘨𝜒. 

We now show that f does not extend beyond  ℂ1  

2

. It follows from the relation 

𝑓𝜒
′ = −𝘨𝜒 that the function 𝑓𝜒 has the same two properties (a) and (b) of  proposit-ion (3.1.8) as does the 

function  𝘨𝜒 .   The final touches of the  proof run as follows.  For a dense  set of  𝜒,  𝑓𝜒 has ℂ1  

2

 as its maximal 

domain of  holomorphy (i.e., it has  𝜕ℂ1  

2

 as natural  boundary ),  so this is  true in  particular for  a  single 

character  𝜒0.  We then let the function  𝑓𝜒0
  play the  role of   f   in the argument treating  the case  𝑐0 = 0.  

Moreover,  for almost all  𝜒, 𝑓𝜒  has  ℂ+ as its maximal domain of holomo-rphy.  The claim is proved. 

Section(3.2):           Dirichlet Series on Hilbert spaces 

Let  𝒲 = ‖𝜔𝑛‖𝑛=𝑛0
∞   be a sequence of  positive numbers. In this section we are  concerned  with Hilbert spaces 

of functions  representable  by Dirichlet series: 

 

ℋ𝜔 = {𝑓(𝑠) = ∑ 𝑎𝑛𝑛−𝑠∞
𝑛=𝑛0

|‖𝑓‖ℋ𝜔

2 = ∑ |𝑎𝑛|2∞
𝑛=𝑛0

𝜔𝑛 < ∞}                           (14) 

The prototypical case,where 𝜔𝑛 ≡1, 𝑛 ≥1,was first studied By H. Hedenmalm,  P.  Lindqvist  and  K. Seip  [1].  

Among   other  results,  they  characterized   the multipliers of the space . 

One purpose of this section is to consider the scale of spaces obtained from the weight sequences  𝜔𝛼, defined 

for 𝑛 ≥2 by 

𝜔𝑛
𝛼 = (𝑙𝑜𝑔𝑛)𝛼                                                                                                       (15) 

For brevity, we shall write ℋ𝛼  for the space ℋ𝜔𝛼 , specifically 

 

ℋ𝛼 = {𝑓(𝑠) = ∑ 𝑎𝑛𝑛−𝑠

∞

𝑛=𝑛0

| ∑ |𝑎𝑛|2

∞

𝑛=𝑛0

(𝑙𝑜𝑔𝑛)𝛼 < ∞} 

(When 𝛼 = 0, it is more natural to let 𝑛0= 1 and to include the constant functions in ℋ0. It is not essential to any 

of the issues we discuss here). 

Before going  further, let us remind some basic facts  about Dirichlet  series. A nice treatment can be found in 

Titchmarsh [5]. 

We  shall follow the convention of  writing the complex variable   𝑠 = 𝜎 + 𝑖𝑡. A 

Dirichlet series is a series of the form 

 
∑ 𝑎𝑛𝑛−𝑠∞

𝑛=1                                                                                                            (16) 

 

Such a series may converge  for no values of 𝑠, if it converges for any particular 𝑠0, then it converges for all s 

with 𝜎 > ℜ(𝑠0). Therefore the largest open  set in  which a  series (16)  converges  is a  half-plane  ( at what  

points on  the boundary of  the half-plane the series converges is, in general, a delicate question). Let us adopt 

the notation, for 𝜌 a real number Ω𝜌 is the half-plane 

 

Ω𝜌 = {𝑠 ∈ ℂ|𝜎 > 𝜌} 

Let           𝜎𝑐 = 𝑖𝑛𝑓{ℜ(𝑠): ∑ 𝑎𝑛𝑛−𝑠∞
𝑛=1      converges} 

this is called the  abscissa of  convergence  of  the series. The largest domain of convergence of the series is Ω𝜎𝑐
. 

There are three other abscissae assoc-iated with the series (16) which we shall need. The  first  is the abscissa  of 

absolute convergence, 𝜎𝑎, defined by 

𝜎𝑎 = 𝑖𝑛𝑓 {ℜ(𝑠): ∑ 𝑎𝑛𝑛−𝑠

∞

𝑛=1

     converges absolutely} 

Obviously 𝜎𝑎 ≥ 𝜎𝑐 , it is straightforward that 𝜎𝑎 ≤ 𝜎𝑐 + 1, because if 

∑ 𝑎𝑛𝑛−𝑠∞
𝑛=1   converges, then  |𝑎𝑛|𝑛−𝜎 = 𝑜(1). The second is the abscissa of boundednes 𝜎𝑏, defined by 
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𝜎𝑏 = 𝑖𝑛𝑓 {𝜌: ∑ 𝑎𝑛𝑛−𝑠

∞

𝑛=1

     converges to a bounded function in Ω𝜌} 

The third abscissa is the abscissa of uniform convergence 𝜎𝑢, defined by 

 

𝜎𝑢 = 𝑖𝑛𝑓 {𝜌: ∑ 𝑎𝑛𝑛−𝑠

∞

𝑛=1

     converges uniformly in Ω𝜌} 

Clearly  𝜎𝑢 ≥ 𝜎𝑏 ,  H. Bohr proved that   𝜎𝑢 = 𝜎𝑏, and   𝜎𝑎 ≤ 𝜎𝑏 + 1/2 [6]. Note 

that  the  series  does  not  necessarily define  a bounded  function in   Ω𝜎𝑏
 , but  the function  it  represents is  

bounded  in  all    strictly smaller  half-planes.  If  all  the coefficients 𝑎𝑛 are positive, then all three of 𝜎𝑐, 𝜎𝑏, 𝜎𝑎 

coincide. 

We shall let  𝒟 denote the set of functions that can be represented in some half-  plane  by a Dirichlet series. 

Let 𝑓(𝑠) be holomorphic in the half-plane Ω𝜌. Let   𝜀 > 0. A real number  𝒯 is called an 𝜀 translation number of 

𝑓 if 

𝑠𝑢𝑝𝑠∈Ω𝜌
|𝑓(𝑠 + 𝑖𝒯) − 𝑓(𝑠)| ≤ 𝜀 

The function  𝑓(𝑠) is called uniformly almost periodic in the half-plane Ω𝜌  if, for every 𝜀 > 0, there exists a 

positive real number 𝑀 such that every interval in ℝ of length 𝑀 contains at least one 𝜀 translation number of 𝑓. 

We shall need the following theorem. The proof can be found in [7]. 

 

Theorem(3.2.99  Suppose that  𝑓(𝑠)  is represented by a Dirichlet series  that  converges  uniformly  in the 

half-plane  Ω𝜌. Then  𝑓 is uniformly almost periodic in Ω𝜌. 

Returning to the spaces ℋ𝛼 , it follows from the Cauchy-Schwarz inequality that any function in any space ℋ𝛼 

has 𝜎𝑎 ≤ 1/2.  Moreover, for all 𝜀 > 0,the function 

 

𝜁 (
1

2
+ 𝜀 + 𝑠) − 1 = ∑

1

𝑛
1
2

+𝜀

∞

𝑛=2

𝑛−𝑠 

is in  every   ℋ𝛼  and has a  pole at    
1

2
− 𝜀,   so the  largest  common  domain  of 

analyticity of the functions in any ℋ𝛼   is  Ω1/2. The reproducing  kernel for ℋ𝜔  is 

𝑘(𝑠, 𝑢) = ∑
1

𝜔𝑛

∞
𝑛=𝑛0

𝑛−𝑠−𝑢                                                                                   (17) 

for the  spaces  ℋ𝛼  this is essentially a fractional  derivative or  integral of  the ζ  function at 𝑠 + �̅�. 
We claim that the scale  of spaces ℋ𝛼  is in many ways analogous to the scale  of spaces of holomorphic 

functions in the unit disk defined by 

 

𝐾𝛼 = {𝑔(𝑧) = ∑ 𝑎𝑛𝑧𝑛∞
𝑛=0 | ∑ |𝑎𝑛|2∞

𝑛=0 (𝑛 + 1)𝛼 < ∞}                                    (18) 

To discuss the  Bergman-like Spaces, throughout this  discussion,  𝜇  will be a positive Radon measure on [0,∞) 

for which 

∫ 𝑛0
−2𝜎∞

0
𝑑𝜇(𝜎) = ∫ 𝑒−2(𝑙𝑜𝑔𝑛0)𝜎∞

0
𝑑𝜇(𝜎) < ∞                                                   (19) 

for some positive integer 𝑛0. We also assume that 

0 is in the support of 𝜇.                                                                                        (20) 

We define 𝜔𝑛, for 𝑛 ≥ 𝑛0, by 

𝜔𝑛 = ∫ 𝑛−2𝜎∞

0
𝑑𝜇(𝜎).                                                                                          (21) 

Letting 𝜇𝛼 be the measure 

𝑑𝜇𝛼(𝜎) =
2−𝛼

Γ(−𝛼)
𝜎−1−𝛼 

gives the weights from (15) for 𝛼 < 0: 

 

∫ 𝑛−2𝜎∞

0
𝑑𝜇𝛼(𝜎) = (𝑙𝑜𝑔𝑛)𝛼 ,            𝑛 ≥= 2,    𝛼 < 0. 

We let 𝜇0 be the unit point mass at 0,which has all of its moments equal to1.For any measure satisfying(19) 

and(20),the moments 𝜔𝑛 are a decreasing sequence that decays more slowly than any negative power of 𝑛:for 

all  𝜀>0, there exists  𝑐 > 0 so that 

𝜔𝑛 > 𝑐𝑛−𝜀                                                                                                       (22) 

Therefore, every space ℋ𝜔 consists of functions analytic in  Ω1/2, and contains  functions  that  are  not 

analytically  extendable  to any  larger domain. 
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Nonetheless there is a dense  subspace of  functions in  ℋ𝜔  whose norms can be  obtained by evaluating 

suitable integrals over the larger half-plane Ω0. For the case of ℋ0, the following theorem is due to F.Carlson 

[9]. Note that we do not assume that either side of (23) is finite. 

 

Theorem(3.2.10)          Let 𝑓(𝑠) = ∑ 𝑎𝑛𝑛−𝑠∞
𝑛=𝑛0

 be a function in 𝒟 that has 𝜎𝑏 = 0   Let 𝜇 satisfy (19) and (20), 

and let 𝜔𝑛 be given by (21). Then 

∑ |𝑎𝑛|2𝜔𝑛 = lim
𝑐→0+

lim
𝑇→∞

1

2𝑇
∫ 𝑑𝑡 ∫ 𝑑𝜇(𝜎)|𝑓(𝑠 + 𝑐)|2∞

0

𝑇

−𝑇
∞
𝑛=𝑛0

                     (23) 

Proof: Fix 0 < 𝑐 < 1, and let 𝜀 > 0. Let 𝛿 be given by 

 

𝛿 =
𝜀

(1 + 𝜇 [𝑐,
1
𝑐

+ 𝑐]) (1 + ‖𝑓‖Ω0
)

. 

By Bohr’s theorem, the Dirichlet series of  𝑓 converges uniformly in  Ω𝑐
̅̅ ̅, so there exists 𝑁 so that 

 

| ∑ 𝑎𝑛𝑛−𝑠 − 𝑓(𝑠)

𝑁′

𝑛=𝑛0

| < 𝛿      ∀𝑠 ∈ Ω𝑐
̅̅ ̅,   ∀𝑁′ ≥ 𝑁. 

Then 

Lim
𝑇→∞

1

2𝑇
∫ 𝑑𝑡 ∫ 𝑑𝜇(𝜎)|𝑓(𝑠 + 𝑐)|2

1
𝑐

0

𝑇

−𝑇

 

= lim
𝑇→∞

1

2𝑇
∫ 𝑑𝑡 ∫ 𝑑𝜇(𝜎)

1/𝑐

0

𝑇

−𝑇
|∑ 𝑎𝑛𝑛−(𝑠+𝑐)𝑁′

𝑛=𝑛0
|

2
+ 𝑂(𝜀)                      (24) 

As 

lim
𝑇→∞

1

2𝑇
∫ 𝑑𝑡

𝑇

−𝑇

𝑛−(𝜎+𝑖𝑡)𝑚−(𝜎−𝑖𝑡) = 𝛿𝑚𝑛𝑛−2𝜎 , 

We get from (24) that 

 

Lim
𝑇→∞

1

2𝑇
∫ 𝑑𝑡 ∫ 𝑑𝜇(𝜎)|𝑓(𝑠 + 𝑐)|2

1
𝑐

0

𝑇

−𝑇

= 

∑ |𝑎𝑛|2𝑁′

𝑛=𝑛0 ∫ 𝑑𝜇(𝜎)𝑛−2𝜎−2𝑐
1

𝑐
0

+  𝑂(𝜀)                                                   (25) 

for all 𝑁′ ≥ 𝑁.Taking the limit in (25) as 𝑐 decreases to 0, and noting that 𝜀 can be made arbitrarily small for 𝑁 

large enough, we get 

 

∑ |𝑎𝑛|2

∞

𝑛=𝑛0

𝜔𝑛 = lim
𝑐→0+

lim
𝑇→∞

1

2𝑇
∫ 𝑑𝑡 ∫ 𝑑𝜇(𝜎)|𝑓(𝑠 + 𝑐)|2

1/𝑐

0

𝑇

−𝑇

. 

But this is the same limit as (23). 

Note that the integrals 

 

1

2𝑇
∫ 𝑑𝑡|𝑓(𝜎 + 𝑖𝑡)|2

𝑇

−𝑇

 

Are  monotonically decreasing as a function of  𝜎, so if  𝜇 ({0}) = 0, the  monotone convergence theorem yields: 

 

Corollary(3.2.11)   Assume the hypotheses of Theorem(3.2.10), and also that 𝜇 ({0}) = 0. Then 

∑ |𝑎𝑛|2∞
𝑛=𝑛0

𝜔𝑛 = lim
𝑇→∞

1

2𝑇
∫ 𝑑𝑡 ∫ 𝑑𝜇(𝜎)|𝑓(𝑠)|2∞

0

𝑇

−𝑇
                                       (26) 

By a multiplier of ℋ𝜔 we mean a function  𝜙 with the property that  𝜙𝑓 is in  ℋ𝜔  for every 𝑓 in ℋ𝜔. It follows 

from the closed graph theorem that for any multiplier  𝜙,  the  operator  of  multiplication  by  𝜙, which we  

denote  𝑀𝜙,  is bounded. It is somewhat surprising that, although the spaces  ℋ𝜔 consist of  functions analytic in  

Ω1/2, the  multipliers are somehow forced to extend to be analytic on all of Ω0. For the case 𝜇 = 𝜇0, the 

following theorem is due to Hedenmalm, Lindqvist and Seip [1]. 
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Theorem(3.2.12)      Let 𝜇 satisfy (19) and (20), and let 𝜔𝑛 be given by (21).  Then  the  multiplier  algebra  of   

ℋ𝜔  is  isometrically  isomorphic  to   𝐻∞(Ω0)∩𝒟,  where the norm on   𝐻∞(Ω0)∩𝒟   is the  supremum  of  the  

absolute value on Ω0. 

 

Proof:             It is clear that any multiplier  𝜙  must be in  𝒟,  just by  considering 

𝜙(𝑠)·𝑛0
−𝑠. We shall prove the theorem in two parts: 

(A) Show that if 𝜙 ∈ 𝒟 has 𝜎𝑏 = 0, then 

‖𝑀𝜙‖ = ‖𝜙‖Ω0
                                                                                                    (27) 

(B) Show that if 𝜙 is a multiplier of  ℋ𝜔,then 𝜙 is analytic and bounded in Ω0. 

 

Proof of (A):        Suppose 𝜙(𝑠) = ∑ 𝑏𝑛
∞
𝑛=1 𝑛−𝑠 is bounded in all half-planes 

strictly smaller than Ω0. Let 𝑓(𝑠) = ∑ ∑ 𝑎𝑛
∞
𝑛=1 𝑛−𝑠𝑁

𝑛=𝑛0
 be a finite sum in ℋ𝜔. 

Then 𝜙𝑓 has 𝜎𝑏 = 0, so by Theorem(3.2.10): 

 

‖𝑀𝜙𝑓‖
2

= lim
𝑐→0+

lim
𝑇→∞

1

2𝑇
∫ 𝑑𝑡 ∫ 𝑑𝜇(𝜎)|𝜙(𝜎 + 𝑐)𝑓(𝜎 + 𝑐)|2

∞

0

𝑇

−𝑇

≤ ‖𝜙‖Ω0

2 ‖𝑓‖2 

So  if  ‖𝜙‖Ω0
  is finite, then  𝑀𝜙  is bounded  on the dense subspace of  ℋ𝜔 , 

consisting  of  finite  sums,  so  extends  by  continuity to  be a  multiplier  of  the 

whole space. 

We must show that  ‖𝑀𝜙‖  equals  ‖𝜙‖Ω0
. So let us assume tha t ‖𝑀𝜙‖ = 1 and ‖𝜙‖Ω0

 > 1,   and  derive a  

contradiction. ( We are  not assuming  that    ‖𝜙‖Ω0
  is necessarily finite).   For each 𝜎 > 0, let 

𝑁𝜎 = 𝑠𝑢𝑝𝑡|𝜙(𝜎 + 𝑖𝑡)| 
By the Phragmen-Lindel�̈�f Theorem, 𝑁𝜎 is a strictly decreasing function of 𝜎. Indeed,  for   𝜎  very  large,  𝑁𝜎  

tends  to  |𝑏1|  which  is less  than  or  equal  to 

‖𝑀𝜙‖ < ‖𝜙‖Ω0
,  so the  conclusion  follows  by applying  the  Phragmen- Lindel�̈�f Theorem to the function  

𝑒𝜀𝑠𝜙(𝑠)  for an appropriate choice of 𝜀 on a vertical strip. 

Moreover, in each  half-plane  Ω𝑐  for  c > 0, the Dirichlet  series  of  𝜙   converges 

uniformly to  𝜙  by Bohr’s Theorem, so by Theorem(3.2.9),  𝜙 is uniformly almost periodic in  Ω𝑐. Therefore  

there exists  𝜀1, 𝜀2, 𝜀3, 𝜀4 > 0 so that, for large enough 𝑇, 

|{𝑡: |𝜙(𝜎 + 𝑖𝑡)| > 1 + 𝜀1, −𝑇 ≤ 𝑡 ≤ 𝑇}| ≥ 𝜀2(2𝑇)   ∀𝜀3 ≤ 𝜎 ≤ 𝜀3 + 𝜀4         (28) 

 

Since multiplication by  𝜙 is a contraction, so is multiplication by 𝜙𝑗 for any positive  integer j. Therefore 

‖𝜙𝑗(𝑠)𝑛0
−𝑠‖

2
≤ 𝜔𝑛0

      ∀𝑗 ∈ ℕ 

 

So by Theorem(3.2.10), we conclude that 

 

𝜔𝑛0
≥ lim

𝑇→∞

1

2𝑇
∫ 𝑑𝑡 ∫ 𝑑𝜇(𝜎)|𝜙𝑗(𝜎 + 𝜀3)|

2

𝜀4

0

𝑇

−𝑇

𝑛0
−2(𝜎+𝜀3) 

≥ 𝜀2(1 + 𝜀1)2𝑗𝑛0
−4𝜀3𝜇([0, 𝜀4])                                             (29) 

 

As the right-hand side of (29) tends to infinity with j, we get a contradiction. 

Proof of (B):        Let 𝑝𝑗 denote the 𝑗𝑡ℎ prime, and let ℕ𝑁 denote the set of positive integers all of whose prime 

factors are in the set {𝑝1, . . . , 𝑝𝑁}: 

ℕ𝑁 = {𝑝1
𝜐1 … 𝑝𝑁

𝜐𝑁 : 𝜐1, … , 𝜐𝑁 ∈ ℕ} 

For every positive integer  𝑁, let  𝑄𝑁 denote orthogonal projection from  ℋ𝜔 onto the closed linear span of the 

functions 
{𝑛−𝑠: 𝑛 ∈ ℕ𝑁, 𝑛 ≥ 𝑛0} 

Suppose 𝜙 is a multiplier of ℋ𝜔. Then we have 

𝑄𝑁𝑀𝜙𝑄𝑁 = 𝑀𝑄𝑁(𝜙)𝑄𝑁 = 𝑄𝑁𝑀𝜙                                                                   (30) 

Moreover, by a truncated version of  the  Euler product  formula, we have that  𝑓(𝑠) = ∑ 𝑎𝑛 𝑛−𝑠 is any function 

in ℋ𝜔, then 

 

|𝑄𝑁(𝑓)(𝑠)| = |∑ 𝑎𝑛𝑛−𝑠
𝑛∈ℕ𝑁

| ≤ (𝑠𝑢𝑝|𝑎𝑛|) ∏ (1 − 𝑝𝑗
−𝜎)

−1𝑁
𝑗=1 . 
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So if the coefficients of 𝑓 are bounded, then  𝑄𝑁 (𝑓) is a bounded function in Ω𝑐 for every c > 0.As (𝑄𝑁  𝑓)(s + 

𝜀) = 𝑄𝑁 (𝑓 (s + 𝜀)), if the coefficients of 𝑓 are  O(𝑛𝜀) for every 𝜀 > 0, we have that  𝜎𝑏(𝑄𝑁  𝑓) ≤ 𝜀  for every  𝜀 > 

0, i.e. 𝜎𝑏(𝑄𝑁 𝑓) ≤0 . By (22), as  the weights decay more  slowly than any negative  power of  𝑛, it  follows that 

for every 𝑓 in ℋ𝜔 ,  the coefficients of 𝑓 are indeed O(𝑛𝜀)  for every  𝜀 > 0, and a  fortiori this hypothesis holds 

for every  𝜙 in the multiplier algebra of  ℋ𝜔 (since 𝜙(𝑠) 𝑛0
−𝑠 is in ℋ𝜔). 

Therefore we can conclude that 

𝜎𝑏(𝑄𝑁𝜙) ≤0,            ∀𝑁 > 1. 

Moreover, by (30), multiplication by 𝑄𝑁𝜙 on 𝑄𝑁ℋ𝜔 is a compression of 𝑀𝜙, so 

‖𝑀𝑄𝑁𝜙‖
𝑄𝑁ℋ𝜔

≤ ‖𝑀𝜙‖
ℋ𝜔

< ∞ 

 

By repeating the argument in Part (A) and estimating 

‖(𝑄𝑁𝜙)𝑗2−𝜈𝑠‖ 

For   2𝜈 ≥ 𝑛0, we therefore conclude that 

‖𝑄𝑁𝜙‖Ω0
≤ ‖𝑀𝜙‖

ℋ𝜔
           ∀𝑁. 

By a normal families argument, some subsequence of 𝑄𝑁𝜙 converges uniformly on  compact subsets of  Ω0 to 

some  𝐻∞(Ω0) function,  𝜓  say. On compact subsets of Ω1where the Dirichlet series for 𝜙 converges absolutely 

𝑄𝑁𝜙 converges unifor-mly to 𝜙. Therefore 𝜙 = 𝜓,and so φ must be bounded and analytic in all of Ω0. 

It is a  theorem of Khintchine and  Kolmogorov that if the series  ∑|𝑐𝑛|2  is finite, then almost every series  
∑ ± 𝑐𝑛  converges (see [10]). It follows that if   ∑ 𝑎𝑛𝑛−𝑠  is in  ℋ𝜔, then  for almost  every choice  of signs, 
∑ ±𝑎𝑛𝑛−𝑠  will converge in  Ω0 (and in 𝑐𝑙(Ω0) for  ℋ𝛼  with  𝛼 ≥ 0). This may help explain why the multipliers 

of ℋ𝜔 extend analytically to Ω0. 

To know about  Dirichlet-like Spaces , let 𝜇 be a measure satisfying conditions (19) and (20) as above,  and let   

𝜔𝑛  be defined by (21) for  𝑛 ≥ 2.  Define another weight sequence 𝜔𝒷 by 

𝜔𝑛
𝒷 = (𝑙𝑜𝑔𝑛)2𝜔𝑛 . 

The space  ℋ𝜔𝒷  is exactly the set of functions whose derivatives are in ℋ𝜔, and is analogous to the Dirichlet  

space. We shall prove  that  the multipliers of   ℋ𝜔𝒷  are contained in the multipliers of   ℋ𝜔.One can prove a 

similar result for higher order derivatives, but for simplicity we stick to the case of a single derivative. 

 

Theorem(3.2.13)               With  notation  as  above, the multipliers of   ℋ𝜔𝒷  are contractively contained in the 

multipliers of  ℋ𝜔. 

Proof:   We shall boot-strap from the following claim. 

Claim(3.2.14)  There  is a constant  𝐾 < ∞  such that, if  𝜙 is a multiplier  of  ℋ𝜔𝒷  of norm one, and both 𝜙 and  

𝜙′ have  𝜎𝑏 ≤0, then  𝜙 is a  multiplier of  ℋ𝜔 of  norm  at most 𝐾. 

Suppose the claim were proved. Let 𝜓 be any multiplier of  ℋ𝜔𝒷  of  norm one. Then for every  𝑁, 𝑄𝑁𝜓  

satisfies the  hypotheses of  the claim, so is a multiplier of  ℋ𝜔 of norm at most 𝐾. By taking the weak-star limit 

of a subsequence of 𝑄𝑁𝜓, we can conclude that  𝜓 is a multiplier of  ℋ𝜔 of norm at most 𝐾. 

To show  𝐾 must be 1, assume it were greater. Then there would be a multiplier  𝜙 of  ℋ𝜔𝒷   of norm one, which  

has norm  greater than  √𝐾  as a multiplier of ℋ𝜔. By Theorem(3.2.12), 

‖𝑀𝜙2‖
ℋ𝜔

= ‖𝑀𝜙‖
ℋ𝜔

2
 

Then 𝜙2 would be a multiplier of norm one of ℋ𝜔𝒷  , and have norm greater than 𝐾 as a multiplier of ℋ𝜔, a 

contradiction. 

We  shall prove the claim with  𝐾 = √2 . Suppose the claim is false. Then there is some finite Dirichlet series 

𝑓(𝑠) = ∑ 𝑎𝑛

𝑁

𝑛=𝑛0

𝑛𝑠 

in ℋ𝜔 of norm 1 such that ‖𝜙𝑓‖ > 𝐾. Let 

𝑔(𝑠) = ∑ 𝑎𝑛

𝑁

𝑛=𝑛0

1

𝑙𝑜𝑔𝑛
𝑛𝑠 

be the primitive of 𝑓, which is of norm one in ℋ𝜔𝒷  . Let 

𝐵 = {𝑠 ∈ Ω0: |𝜙(𝑠)| > 1} 

By Theorem(3.2.10), there exists 𝑐 > 0 such that 

 

lim
𝑇→∞

1

2𝑇
∫ 𝑑𝑡 ∫ 𝑑𝜇(𝜎)|𝜙(𝑠 + 𝑐)𝑓(𝑠 + 𝑐)|2∞

0

𝑇

−𝑇
𝜒𝐵(𝑠 + 𝑐) > 𝐾2 − 1,           (31) 

As 𝜙𝑗 is a multiplier of ℋ𝜔𝒷  of norm at most one for every positive integer j, we have 
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1 ≥ ‖𝜙𝑗𝑔‖
ℋ

𝜔𝒷
= ‖𝜙𝑗𝑓 + 𝑗𝜙𝑗−1𝜙′𝑔‖

ℋ𝜔
 

Therefore 

 

1 ≥ lim
𝑇→∞

1

2𝑇
∫ 𝑑𝑡 ∫ 𝑑𝜇(𝜎)|𝜙(𝑠 + 𝑐)|2(𝑗−1)

∞

0

𝑇

−𝑇

|𝜙(𝑠 + 𝑐)𝑓(𝑠 + 𝑐) + 𝑗𝜙𝑗(𝑠 + 𝑐)𝑔(𝑠 + 𝑐)|
2

𝜒𝐵(𝑠 + 𝑐) 

 

≥ lim
𝑇→∞

1

2𝑇
∫ 𝑑𝑡 ∫ 𝑑𝜇(𝜎)|𝜙(𝑠 + 𝑐)𝑓(𝑠 + 𝑐) + 𝑗𝜙𝑗(𝑠 + 𝑐)𝑔(𝑠 + 𝑐)|

2∞

0

𝑇

−𝑇
𝜒𝐵(𝑠 + 𝑐)                                                                                                       

(32) 

By subtracting 𝜙𝑓 + 𝜙′𝑔 from 𝜙𝑓 +j 𝜙′𝑔 and using Minkowski’s inequality on (32), we get 

4 ≥ (𝑗 − 1)2 lim
𝑇→∞

1

2𝑇
∫ 𝑑𝑡

𝑇

−𝑇

∫ 𝑑𝜇(𝜎)|𝜙′(𝑠 + 𝑐)𝑔(𝑠 + 𝑐)|2

∞

0

𝜒𝐵(𝑠 + 𝑐) 

for all j, and so the limit is zero.Therefore by Cauchy-Schwarz,(32) becomes 

 

1 ≥ lim
𝑇→∞

1

2𝑇
∫ 𝑑𝑡 ∫ 𝑑𝜇(𝜎)|𝜙(𝑠 + 𝑐)𝑓(𝑠 + 𝑐)|2

∞

0

𝑇

−𝑇

𝜒𝐵(𝑠 + 𝑐) 

This contradicts (31) if 𝐾 ≥ √2. 

 

Let us say a Radon measure 𝜈 supported in 𝑐𝑙(Ω0) is an 𝛼-Carleson measure if there exists some constant 𝐶 such 

that 

lim
𝑇→∞

1

2𝑇
∫|ℑ𝑠|≤𝑇

|𝑓(𝑠)|2𝑑𝜈(𝑠) ≤ 𝐶‖𝑓‖ℋ𝛼

2  

for every finite Dirichlet series  𝑓(s) =∑ 𝑎𝑛
𝑁
𝑛=2 𝑛−𝑠 . Then we have 

 

Corollary(3.2.15) For 0 < 𝛼 < 2, the function 𝜙 is a multiplier of  ℋ𝛼   if and only if 

(i) 𝜙 is in  𝒟∩𝐻∞(Ω0),            and 

(ii) The measure |𝜙′(s)|2 𝑑𝜇𝛼−2(𝜎)𝑑𝑡 is 𝛼-Carleson. 

 

Proof:The necessity of Condition (i) follows from Theorem (3.2.13). For condition (ii), observe that by 

Cauchy’s theorem, if 𝜙 is in  𝒟∩𝐻∞(Ω0), then 𝜎𝑏(𝜙′) ≤0. The function 𝜙 is a multiplier if and only if 

‖𝜙𝑓′ + 𝜙′𝑓‖ℋ𝛼−2
≤ 𝐶‖𝑓‖ℋ𝛼

 

for every finite Dirichlet series 𝑓. If 𝜙 satisfies Condition (i), then 

‖𝜙𝑓′‖ℋ𝛼−2
≤ ‖𝜙 ‖Ω0

‖𝑓‖ℋ𝛼
 

 

So such a 𝜙 is a multiplier if and only if 

 

‖𝜙′𝑓‖ℋ𝛼−2

2 = lim
𝑇→∞

1

2𝑇
∫ ∫ |𝜙(𝑠)|2

∞

0

𝑇

−𝑇

|𝑓(𝑠)|2𝑑𝜇𝛼−2(𝜎)𝑑𝑡 

is controlled by ‖𝑓‖ℋ𝛼

2  . if and only if Condition (ii) holds. 

What is a  Space of Dirichlet series with the Pick property? Let ℋ be a Hilbert function space on a set 𝑋 with 

reproducing kernel 𝑘.We say ℋ has the Pick  prope-rty  if,  given  any distinct  points    𝜆1, . . . , 𝜆𝑁   in  𝑋  and  

any  complex  numbers 𝑧1,..., 𝑧𝑛, then a necessary and sufficient  condition for the  existence of  a  function  𝜙 

in the closed unit ball of the multiplier algebra of  ℋ that has the value 𝑧𝑖 at each 𝜆𝑖 is that the matrix 

[𝑘(𝜆𝑖 , 𝜆𝑗)(1 − 𝑧𝑖𝑧�̅�)]
𝑖.𝑗=1

𝑁
 

be  positive  semi-definite. We say  ℋ  has the  complete Pick  property if, for any  positive  integer  𝑠, any  

distinct  points  𝜆1,...,𝜆𝑁  in  𝑋  and any 𝑠 -by- 𝑠  matrices 𝑍1,...,𝑍𝑛,then anecessary and sufficient condition for 

the existence  of a function 𝜙 in the closed unit ball of the multiplier algebra of   ℋ⨂ℂ𝑠 that has the value  𝑍𝑖 at 

each 𝜆𝑖 is that the 𝑁𝑠 -by- 𝑁𝑠 matrix 

 

                      [𝑘(𝜆𝑖 , 𝜆𝑗)(1 − 𝑍𝑖𝑍𝑗
∗)]

𝑖.𝑗=1

𝑁
 



Square Summable Coefficients And Integral Means With Boundary Limits Of Dirichlet Series 

DOI: 10.9790/5728-2104014461                           www.iosrjournals.org                                                  56 | Page 

Be  positive  semi-definite. See [42] for a treatment of complete  Pick  kernels. For every integer  ≥ 2, let  𝐹(𝑛) 

be the number of ways 𝑛 can be factored, where  the order matters. Let   𝐹 (1) = 1. Then the  following  identity  

holds [5,8,12] 

∑
𝐹(𝑛)

𝑛𝑠
∞
𝑛=1 =

1

2−𝜁(𝑠)
                                                                                            (33) 

For the rest of this section, we shall fix 

𝜔𝑛 =
1

𝐹(𝑛)
                                                                      (34) 

and consider the space ℋ𝜔 (with 𝑛0 = 1). The kernel function for ℋ𝜔 is then 

𝑘(𝑠, 𝑢) =
1

2−𝜁(𝑠+𝑢)
                                                                                     (35) 

As the reciprocal of 𝑘 has only one positive square,it follows from the McCullough   - Quiggin  theorem ( see  

[13], [14] ), that  𝑘 is a  complete  Pick kernel. 

 

Section(3.3):     INTEGRAL AND BOUNDARY OF DIRICHLET SERIES: 

A classical theorem of F.Carlson [9]says that if an ordinary Dirichlet series 

𝑓(𝑠) = ∑ 𝑎𝑛𝑛−𝑠∞
𝑛=1                                                                                     (36) 

 

converges in the  right  half-plane  ℜ𝑠 > 0 and is bounded  in  every  half-plane  ℜ𝑠 ≥ 𝛿 >0, then for each 𝜎> 0, 

lim
𝑇→∞

1

𝑇
∫ |𝑓(𝜎 + 𝑖𝑡)|2𝑑𝑡

𝑇

0
= ∑ |𝑎𝑛|2∞

𝑛=1 𝑛−2𝜎                                                   (37) 

From a modern viewpoint, Carlson's theorem is a special case of the general ergodic theorem, as will be 

explained below. 

A natural question, first raised  by H. Hedenmalm [15], is whether the identity (37) remains valid  when  𝜎 = 0, 

provided  𝑓(𝑠) is a  bounded  function in   ℜ𝑠 > 0. The problem  makes  sense  because we  may  replace  𝑓(𝜎 

+ 𝑖𝑡)  by  the  non-tangential  limit   𝑓(𝑖𝑡), which in  this case  exists for almost every  𝑡. We note that the general 

ergodic theorem is of no help for this problem. 

We denote by ℋ∞ the class of functions 𝑓(𝑠) that are bounded in ℜ𝑠 >0 with  𝑓 represented by an ordinary  

Dirichlet  series (36)  in some  half-plane.  We will use the notation 

 

‖𝑓‖∞ = 𝑠𝑢𝑝𝜎>0|𝑓(𝜎 + 𝑖𝑡)|              and              ‖𝑓‖2
2 = ∑ |𝑎𝑛|2∞

𝑛=1 . 
 

The result is that there is no “boundary version" of Carlson's Theorem: 

To see how to obtain Carlson's theorem as a special case of the general  ergodic theorem,we resort to a 

fundamental observation of Bohr [6]. We put 

𝑧1 = 2−𝑠, 𝑧2 = 3−𝑠, … , 𝑧𝑗 = 𝑝𝑗
−𝑠, …, 

Where   𝑝𝑗 denotes  the  j-th  prime, then, in  view of  the fundamental  theorem  of arithmetic, the Dirichlet 

series(36) can be considered as a power series in infinitely many  variables. For a given Dirichlet series  𝑓 we  

denote by  𝐹 the corresponding extension to the infinite polydisc 𝔻∞, then if  𝐹 happens to  be a function of 

only 𝑛 variables, it is immediate from  Kronecker's  theorem and  the maximum  principle that 

‖𝑓‖∞ = ‖𝐹‖∞                                                                          (38) 

where the norm on the right-hand side is the  𝐻∞(𝔻∞) norm. The result is the same  in the  infinite-dimensional 

case, but some care has to be taken  when  defining  the norm in the polydisc. (See[1]) We can now  think of any 

vertical line   t ⟼ 𝜎 + it  as an ergodic   flow on the infinite-dimensional torus  𝕋∞: 

(𝒯1, 𝒯2, … ) ⟼ (𝑝1
−𝑖𝑡𝒯1, 𝑝2

−𝑖𝑡𝒯2, … )  𝑓𝑜𝑟  (𝒯1, 𝒯2, … ) ∈  𝕋∞ 

If   𝐹(𝑝1
−𝜎𝑧1, 𝑝2

−𝜎𝑧2, … ) is continuous on  𝕋∞, then the general ergodic theorem yields (37).  A similar  problem 

concerning  integral  means of nontangential limits can be stated for the  closely related  space   ℋ2  which 

consists of  those  Dirichlet  series of  the form (36 ) for which  ‖𝑓‖2< ∞. In  this  case,   𝑓(𝑠)/𝑠  belongs to the 

Hardy space 𝐻2 of the half-plane 𝜎 > 1/2, (see [1, 3]): 

∫ |𝑓 (
1

2
+ 𝑖𝑡)|

2

𝑑𝑡 ≤ 𝐶‖𝑓‖2
2𝜃+1

𝜃
                                                                           (39) 

 

with 𝐶 an  absolute  constant  independent of 𝜃. It follows immediately that we have 

lim
𝑇→∞

1

𝑇
∫ |𝑓(

1

2
+ 𝑖𝑡)|

2

𝑑𝑡
𝑇

0
= ∑ |𝑎𝑛|2∞

𝑛=1 𝑛−1                                              (40) 

for  every function  𝑓 in  ℋ2, since the  space  of  Dirichlet polynomials is dense in ℋ2 and the identity holds 

trivially when 𝑓 is a Dirichlet polynomial. 
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Now,  we make some simple observations in  order to  clarify what the  problem is  really about.  We  note  that 

another way of  phrasing  Hedenmalm's  question is to ask whether we have: 

lim
𝑇→∞

1

𝑇
∫|𝑓(𝑖𝑡)|2𝑑𝑡

𝑇

0

= lim
𝜎→0+

lim
𝑇→∞

1

𝑇
∫|𝑓(𝜎 + 𝑖𝑡)|2𝑑𝑡

𝑇

0

 

 

for every  𝑓 in  ℋ∞.  We observe that for a finite interval, say for  𝑡1< 𝑡2, we have indeed 

∫ |𝑓(𝑖𝑡)|2𝑑𝑡

𝑡2

𝑡1

= lim
𝜎→0+

∫ |𝑓(𝜎 + 𝑖𝑡)|2𝑑𝑡

𝑡2

𝑡1

, 

As  follows by Lebesgue's  dominated  convergence  theorem. Similarly , by applying Cauchy's integral theorem 

and again Lebesgue's dominated  convergence theorem, we get 

 

𝑎𝑛 = lim
𝑇→∞

1

𝑇
∫|𝑓(𝑖𝑡)|2

𝑇

0

𝑛𝑖𝑡𝑑𝑡, 

for every positive integer 𝑛. Let us also note that the upper estimate 

 

liminf
𝑇→∞

1

𝑇
∫|𝑓(𝑖𝑡)|2

𝑇

0

𝑑𝑡 ≥ lim
𝜎→0+

lim
𝑇→∞

1

𝑇
∫|𝑓(𝜎 + 𝑖𝑡)|2

𝑇

0

𝑑𝑡 = ‖𝑓‖2
2 

may be obtained from the Poisson integral representation of [𝑓(𝜎 + 𝑖𝑡)]2, i.e., 

[𝑓(𝜎 + 𝑖𝑡)]2 =
1

𝜋
∫[𝑓(𝑖𝒯)]2

∞

−∞

𝜎

(𝑡 − 𝒯)2 + 𝜎2
𝑑𝑡 

We conclude from these observations that the counterexamples of the Theorem should be functions whose  

nontangential limits  have increasing  oscillations when the argument 𝑡 tends to ∞. 

We begin by recalling some terminology and briefly reviewing Rudin's method for  constructing real  parts  of  

analytic functions  in  the polydisc   𝔻𝑛  with given boundary values almost everywhere on the distinguished 

boundary 𝕋𝑛.Rudin treats  𝔻𝑛 with arbitrary 𝑛 ≥1,but we shall need only the case  𝑛 = 2. We refer to [16]. 

We employ the complex notation for points on the distinguished boundary 𝕋2 of the  bidisc  𝔻2. The  

normalized  Lebesgue  measure on  𝕋2 is denoted by  𝑚2. The distance between  𝒯 = (𝒯1, 𝒯2)  and   𝒯′ =
(𝒯1

′, 𝒯2
′) is 

𝑑(𝒯, 𝒯′) = 𝑚𝑎𝑥(|𝒯1 − 𝒯1
′|, |𝒯2 − 𝒯2

′|), 
and B(𝒯, 𝑟) stands for the ball with center 𝒯 and radius 𝑟. We set 

 

𝑃𝑟(𝒯) =
(1 − 𝑟2)2

|1 − 𝑟𝒯1|2|1 − 𝑟𝒯2|2
 , 𝑜 < 𝑟 < 1, 

Where  𝒯 = (𝒯1, 𝒯2)  is a point in  𝕋2.In particular,the Poisson integral of a measure  𝜇 on  𝕋2 can then be 

expressed in the form: 

𝑃𝜇(𝑟𝒯) = ∫
𝕋2𝑃𝑟(𝒯�̅�)𝜇(𝑑𝜔), 

Where 𝒯�̅�= (𝒯1�̅�1, 𝒯2�̅�2) for every finite Borel measure 𝜇 and every 𝒯 ∈ 𝕋2, the Poisson maximal operator is 

defined by setting :                                             𝑃∗|𝜇|(𝒯) = 𝑠𝑢𝑝𝑟∈(0,1)𝑃𝑟|𝜇|(𝒯). 

The following estimate is immediate. 

 

Lemma(3.3.16)             We have 𝑃𝑟(𝒯) ≤ 16 (𝑑(𝒯, (1,1)))
−2

 for  𝑟 ∈ (0,1). In particular, if  𝑠 =

𝑑(𝒯, 𝑠𝑢𝑝𝑝(𝜇)) > 0,  then  𝑃∗𝜇(𝒯) ≤ 16𝑠−2‖𝜇‖. 
Let   𝑔: 𝕋2 → ℝ   be a  strictly positive, integrable, and lower   semicontinuous function,  we may express it as 

𝑔 = ∑ 𝑝𝑗

∞

𝑗=1

 

where the  𝑝𝑗 are non-negative trigonometric  polynomials on   𝕋2. For each j  ≥ 1, Rudin  shows  that one  may  

choose a positive  singular measure  𝜇𝑗  with  𝜇𝑗(𝕋2) =∫
𝕋2𝑝𝑗𝑑𝑚2   and so that  𝑃(𝑝𝑗 − 𝜇𝑗)  is the real part of an 

analytic function on 𝔻2. More specifically,   𝜇𝑗  is chosen to be of the form  𝑝𝑗𝜆𝑘𝑗, where   kj ≥deg(𝑝𝑗)  and  for 

any positive integer k  the measure  𝜆𝑘 has the Fourier series expansion 

𝜆𝑘 = ∑ 𝑒𝑥𝑝(𝑖𝑘𝑗(𝜃1, 𝜃2))∞
𝑗=−∞                                                         (41) 
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On  𝕋2, where (𝜃1, 𝜃2) corresponds  to the point (𝑒𝑖𝜃1 , 𝑒𝑖𝜃2) on 𝕋2. This  measure is positive, has mass one,  and  

with  respect to the  standard  Euclidean identification 𝕋2= [0,2𝜋)2 of the  2-torus, it is just the normalized 1-

measure sup-ported on  2k = 1 line  segments  of   𝕋2 = [0,2𝜋)2  parallel to the direction (1,-1). On the  torus, its 

support consists of k equally spaced closed “rings”. 

For s in the right half-plane  ℂ+ = {𝑧 ∈ ℂ: ℜ𝑧 > 0}, we set 𝜙(𝑠) = (2−𝑠, 3−𝑠). 

The induced boundary map takes the form : 𝜙(𝑖𝑡) = (𝑒𝑥𝑝(−𝑖𝑙𝑜𝑔(2)𝑡), exp (−𝑖𝑙𝑜𝑔(3)𝑡)). 

We denote  the  image of  the  boundary by  𝐿. Thought of as  a  subset of [0,2𝜋)2,  𝐿 consists of a dense set of  

segments that have common direction vector 𝑣0= (𝑙𝑜𝑔(2), 𝑙𝑜𝑔(3)). 

 

Lemma(3.3.17)                         Let a summable sequence of nonnegative numbers  𝑎𝑘(𝑘 = 1,2, … ) be given. If 

the measure 𝜇 satisfies 

 

0 ≤ 𝜇 ≤ ∑ 𝑎𝑘

∞

𝑘=1

𝜆𝑘 

 

Then  lim
𝑟→1−

𝑃𝜇(𝒯) = 0  for almost every  𝒯 ∈ 𝐿. 

Proof.         It is enough to prove the claim for  𝜇 = ∑ 𝑎𝑘
∞
𝑘=1 𝜆𝑘 . By [16], we know that lim

𝑟→1−
𝑃𝜇(𝒯) = 0for 𝑚2-

a.e. 𝒯 ∈ 𝕋2. Pick any segment 𝐽 ∈ 𝐿 of length 1/2, say. By Fubini's Theorem we see that for almost every  𝑠 ∈ 

[0, 1/2] the claim holds for almost every  𝐽 ∈ 𝐿 + 𝑠(1, −1). However,  since  the measure 𝜇 is invariant with 

respect to the translation 𝒯 → 𝒯 + 𝑠(1, −1),we see that the statem-ent  is true for  every  𝑠 ∈ [0, 1/2]. In  

particular, we have :    lim
𝑟→1−

𝑃𝜇(𝒯) = 0  for almost every  𝒯 ∈ 𝐽, by expressing  𝐿 as a countable union of such 

segments, we obtain the conclusion of the lemma. 

Lemma(3.3.18)  Given 𝜀 > 0, there is an open set 𝑈 ⊂ 𝕋2 with 𝑚2(𝑈) < 𝜀/2  and a probability measure 𝜇 on 

𝕋2 such that the function 

ℎ = 𝑃(𝜒𝑈 + (1/2)𝜒𝑈𝑐) − 𝑃𝜇 

is the real part of a function in the unit ball of 𝐻∞(𝔻2) Moreover,   lim
𝑟→1−

ℎ(𝑟𝒯) = 1 

for almost every  𝒯 ∈ 𝐿 with respect to the Hausdorff 1-measure on 𝐿. 
Proof.    We begin by covering 𝐿 with a thin open strip 𝑈 that becomes thinner and thinner so that  𝑚2(𝑈) <
𝜀/2  . For example, we may take 

𝑈 =∪𝑡∈ℝ 𝐵 (𝜙(𝑖𝑡),
𝜀

100(1 + |𝑡|)2
). 

The next step is to run Rudin's  construction  with respect to the positive and lower semicontinuous   function    

𝜒𝑈 + (1/2)𝜒𝑈𝑐  .  Thus   we   choose  strictly   positive  trigonometric  polynomials   𝑝1, 𝑝2, …   on   𝕋2  in  such 

a  way  that 
∑ 𝑝𝑗 =∞

𝑗=1 𝜒𝑈 + (𝜀/2)𝜒𝑈𝑐    at  every  point  of   𝕋2.  Moreover, by  a  compactness argument,  we observe  that  

we may perform  the selection  in such a way that 

0 < 𝑝𝑗(𝒯) ≤ 𝑗−2   if       𝑑(𝒯, 𝜕𝑈) ≥  𝑗−1                                                       (42) 

We may also require that ∫
𝕋2𝑝𝑗𝑑𝑚2 ≤ 𝑗−2    We set 𝜇𝑗 = 𝑝𝑗𝜆𝑘(𝑗) and observe  that                ‖𝜇𝑗‖ =

∫
𝕋2𝑝𝑗𝑑𝑚2 ≤ 𝑗−2                                                               (43) 

Write                   𝜆0 = ∑ 𝑗−2∞
𝑗=1 𝜆𝑘(𝑗) 

Then, according to Lemma(3.3.17), we have 

lim
𝑟→1−

𝑃𝜆0(𝑟𝒯) = 0      𝑓𝑜𝑟      𝒯 ∈ 𝐿\𝐸                                                           (44) 

where 𝐸 has linear measure zero. A fortiori, we have in particular that 

lim
𝑟→1−

𝑃𝜇𝑗(𝑟𝒯) = 0      𝑓𝑜𝑟      𝒯 ∈ 𝐿\𝐸                                                          (45) 

We now set   𝜇 = ∑ 𝜇𝑗
∞
𝑗=1 .            The fact that  

ℎ = 𝑃(𝜒𝑈 + (𝜀/2)𝜒𝑈𝑐) − 𝑃𝜇 

is the real part of  an analytic function in the unit  ball of   𝐻∞(𝔻2)  is immediate from  Rudin's theorem [16]. 

Since 𝑈 is open and the mass of the two-dimensional Poisson kernel concentrates on any neighborhood of the 

origin as 𝑟 → 1 −, we  see that   lim
𝑟→1− 

𝑃 (𝜒𝑈 + (
𝜀

2
) 𝜒𝑈𝑐) (𝑟𝜔) = 1  for  every  𝜔 ∈ 𝑈.  Hence it remains to 

verify that  lim
𝑟→1− 

𝑃𝜇(𝑟𝒯) → 0  for almost every   𝒯 ∈ 𝐿 with respect to Hausdorff 1-measure on 𝐿. In fact, we 

will show that 

 

lim
𝑟→1− 

𝑃𝜇(𝑟𝒯) = 0   𝑖𝑓      𝒯 ∈ 𝐿\𝐸                                                             (46) 
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which is clearly sufficient. 

Fix an arbitrary 𝒯 ∈ 𝐿\𝐸.  Write  𝑠 =  𝑑(𝒯, 𝜕𝑈) > 0, 𝐵 = 𝐵 (𝒯,
𝑠

2
), and set 

𝜇𝑘
𝑎 = 𝜒𝐵𝜇𝑘  and    𝜇𝑘

𝑏 = 𝜇𝑘 − 𝜇𝑘
𝑎. 

Pick  𝑘0 ≥ (𝑠/2)−1.   We clearly have 

∑ 𝜇𝑘
𝑎∞

𝑘=𝑘0
≤ 𝜆0                                                                (47) 

so that (44) implies that 

lim
𝑟→1− 

𝑃(∑ 𝜇𝑘
𝑎∞

𝑘=𝑘0
)(𝑟𝒯) = 0                                                       (48) 

On the other hand, we have 𝑑 (𝒯, 𝑠𝑢𝑝𝑝(𝜇𝑘
𝑏)) ≥ 𝑠/2 and ‖𝜇𝑘

𝑏‖ ≤ ‖𝜇𝑘‖ ≤ 𝑘−2 

Hence Lemma(3.3.17) yields 

𝑃∗(∑ 𝜇𝑘
𝑏∞

𝑘=𝑘0
)(𝑟𝒯) ≤ 64𝑠−2 ∑ 𝑘−2∞

𝑘=𝑘0
≤ 𝐶(𝒯)𝑘0

−1                                         (49) 

By (45), we have    lim
𝑟→1− 

𝑃(∑ 𝜇𝑘
𝑘0−1
𝑘=1 )(𝑟𝒯) = 0                                                (50) 

As 𝑘0 can be chosen arbitrarily large, we obtain the desired conclusion by combining this fact with (48) and 

(49). 

Theorem(3.3.19)    The following two statements hold: 

(i) There exists a function 𝑓 in ℋ∞ such that 

 

lim
𝑇→∞

1

𝑇
∫|𝑓(𝑖𝑡)|2𝑑𝑡

𝑇

0

 

does not exist. 

(ii) Given 𝜀 > 0, there exists a singular inner function g in ℋ∞ such that ‖𝑔‖2 ≤  𝜀. 

Proof.  We begin by proving part (ii) of the theorem. Let ℎ be the  function given in  Lemma(3.3.18),  and  

assume  that it is  the real part of  the analytic function 𝐻 on  𝔻2.When 𝑘 is large enough,the function  𝑅 = 

exp(𝑘(𝐻 −1))   satisfies    ‖𝑅‖𝐻∞(𝔻2)= 1 and   ‖𝑅‖𝐻2(𝔻2) ≤ 𝜀.    Moreover,  its  modulus has radial boundary 

values1 at almost every point of the set  𝐿 with respect to linear measure.  It is almost immediate from this that 

the function 

𝑔(𝑠) = 𝑅(𝜙(𝑠)) = 𝑅(2−𝑠, 3−𝑠) 

is,  by  construction, a singular  inner function  in  ℂ+  with  ‖𝑔‖ℋ2 < 𝜀.  The  only matter that  requires a little 

attention, is how we conclude that  |𝑔| has  unimodular  boundary  values   almost   everywhere.  The  point  is  

that  horizontal   boundary approach  in  ℂ+ does  not  transfer exactly via  𝜙  to radial approach, but instead to 

what we will call quasi-radial approach. 

This means that (𝑟1𝜔1, 𝑟2𝜔2) → (𝜔1, 𝜔2)where 𝑟1 → 1− and 𝑟2 → 1−in such a way that the ratio  (1 −𝑟1)=(1 

−𝑟2) stays uniformly bounded from above and below.   However,  apart  from a  change  of  non-essential  

constants, the  proof of  Lemma (3.3.18)  remains valid for quasi-radial approach.This is easily  verified for 

Lemma (3.3.16), and it remains true for the  basic  theorem [16], on radial limits of singular measures 

[21].These remarks  conclude the proof of part (ii)  of Theorem(3.3.19). 

We now turn to the proof of part (i)  of  Theorem (3.3.19). The basic construction is  similar to  the one  in the  

proof  of  part (ii),  so we  only  indicate  the  required changes. To simplify the notation, we identify the 

imaginary axis with 𝐿. Lebesgue measure on the imaginary axis is denoted by 𝜈. This time we cover only part of 

the image of  the imaginary axis  𝐿 by an open set  𝑈.    To this end,  given   𝜀 > 0,  we  first construct by  

induction  a  sequence of  open subsets   𝑈1, 𝑈2, … ⊂ 𝑇2  with the following properties for each 𝑛 ≥ 1: 

(i) There is 𝑡𝑛 ≥ 𝑛 so that  𝜈(𝑈𝑛⋂[0, 𝑖𝑡𝑛]) > (1 −
𝜀

2
) 𝑡𝑛. 

(ii)      The closures  𝑈1
̅̅ ̅, 𝑈2

̅̅ ̅,…, 𝑈𝑛
̅̅̅̅   are disjoint. 

(iii)     The set 𝑈𝑛 is a finite union of open dyadic squares and 

 

∑ 𝑚2

𝑛

𝑗=1

(𝑈𝑗) <
𝜀

2
 

In the first step, we set 𝑡1 = 1 and, apart from a finite number of points, we cover  [0, 𝑖𝑡1]  by a  finite  union of  

dyadic  open  cubes  𝑈1 with     𝑚2(𝑈1) = 𝑚2(𝑈1
̅̅ ̅) <

𝜀

2
.  Assume then that sets  𝑈1, … , 𝑈𝑛 with the right 

properties have been found.    Since we are dealing with finite unions of open squares,it holds that 

𝑚2(⋃𝑗=1
𝑛 𝑈𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅) ≤ ∑ 𝑚2
𝑛
𝑗=1 (𝑈𝑗) <

𝜀

2
, and hence we may apply the continuous version of    Weyl's   equi-

distribution   theorem  for  Kronecker  flows  in  order  to  select  𝑡𝑛+1 ≥ 𝑛 + 1 with 

𝜈 ((⋃𝑗=1
𝑛 𝑈𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅)⋂[0, 𝑖𝑡𝑛+1]) <
𝜀

2
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Then   𝑈𝑛+1  is  obtained  by covering a  sufficiently  large  portion of  the  set  [0, 𝑖𝑡𝑛+1]\⋃𝑗=1
𝑛 𝑈𝑗     by a union 

of open dyadic squares that  has a positive distance to ⋃𝑗=1
𝑛 𝑈𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅ and satisfies 𝑚2(𝑈𝑛+1) < 𝜀 − ∑ 𝑚2
𝑛
𝑗=1 (𝑈𝑗). This 

completes the induction. 

Set  𝑈 = ⋃𝑘=1
∞ 𝑈2𝑘−1  and  𝑉 = ⋃𝑘=1

∞ 𝑈2𝑘 .  We run the Rudin construction exactly as  in the  proof of  part (ii)  

corresponding to the lower semicontinuous   boundary  function  𝜒𝑈 + (
𝜀

2
) 𝜒𝑈𝑐 .  Hence,  we  obtain a  

polyharmonic function ℎ on 𝔻2 with (quasi-)radial boundary values 1 at almost every point of  𝑈⋂𝐿  

(respectively  
𝜀

2
  at almost  every point of 𝑉 ), and such that h is the real  part  of  the  analytic function  𝐻  on  

𝔻2.  By   property  (i) of  the  sets  𝑈1, 𝑈2 , …,   it  is  then  evident  that  with   sufficiently  large   k   the  

function 

𝑓(𝑠) = 𝑒𝑥𝑝(𝑘(1 + (2−𝑠, 3−𝑠) − 1))  satisfies 𝑓 ∈ ℋ∞ and 

 

liminf
𝑇→∞

1

𝑇
∫|𝑓(𝑖𝑡)|2

𝑇

0

𝑑𝑡 ≤ 𝜀 

as well as 

 

 

liminf
𝑇→∞

1

𝑇
∫|𝑓(𝑖𝑡)|2

𝑇

0

𝑑𝑡 = 1 

Now, to know and prove Fatou theorems for ℋ𝑝,we will now in some sense return to what appeared  as a 

difficulty in the proof  of  Theorem(3.3.19),  namely that the imaginary axis has measure zero when viewed as a 

subset of    𝕋2. Thus, a priori, it makes no  sense to speak about the restriction to  the  imaginary axis of a  

function in   𝐿𝑝(𝕋∞).  We  will  now  show that,  for functions  in   𝐻𝑝(𝔻∞),  we  can  find a  meaningful  

connection  to  the  boundary limits  of  the   corresponding   Dirichlet series. 

We consider a special type of boundary approach by setting for each  𝒯 = (𝒯1, 𝒯2, … ) ∈ 𝕋∞ and 𝜃 ≥ 0 

𝑏𝜃(𝒯) = (𝑝1
−𝜃𝒯1, 𝑝2

−𝜃𝒯2, … ) 

We also recall that the Kronecker flow on �̅�∞ is defined by setting 

𝑇𝑡(𝑧1, 𝑧2, … ) = (𝑝1
−𝑖𝑡𝑧1, 𝑝2

−𝑖𝑡𝑧2, … ). 

For an arbitrary 𝑧 ∈ �̅�∞, we denote by 𝑇(𝑧) the image of 𝑧 under this flow, i.e., 𝑇(𝑧)  is  the  one-dimensional  

complex variety   𝑇(𝑧)= { 𝑇𝑡(𝑧): 𝑡 ∈ ℝ }  . We equip 𝑇(𝑧)  with the natural  linear measure, which is just  

Lebesgue  measure on the real t-line.  Moreover, for   𝜎> 0,  we set    𝕋𝜎
∞ = 𝑏𝜃(𝕋∞).  The  natural  Haar  

measure 𝑚∞,𝜎   on   𝕋𝜎
∞  is obtained as  the pushforward of  𝑚∞  under the map  𝑏𝜃.  The set 𝕋1/2

∞   is of special 

interest,since in a sense it serves as a natural boundary for the set  𝔻∞ ∩ ℓ2,  where  point   evaluations  are  

bounded  for  the  space    𝐻𝑝(𝔻∞)  with 𝑝 ∈(0, ∞). 

The version of  Fatou's theorem for  𝐻∞ reads as follows. 

 

Theorem(3.3.20)    Let  𝐹  be a  function  in   𝐻∞(𝔻∞). Then we may  pick a representative �̃� for the boundary 

function of 𝐹 on the distinguished boundary  𝕋∞ such  that  �̃�(𝒯) = lim
𝜃→0+

𝐹(𝑏𝜃(𝒯))  for almost every  𝒯 ∈ 𝕋∞. 

In fact, for every 𝒯 ∈ 𝕋∞, we have �̃�(𝒯′) = lim
𝜃→0+

𝐹(𝑏𝜃(𝒯′)) for almost every 𝒯′ ∈ 𝑇(𝒯). 

Proof.   Recall that by [69]the values of 𝐻∞(𝔻∞)-functions are well-defined in 𝔻∞ at  points 𝑧 with  

coordinates tending to zero, i.e. for  𝑧 ∈ 𝑐0. We simply define  the desired   representative   �̃�  for  the  boundary  

values  by  setting �̃�(𝒯) = lim
𝜃→0+

𝐹(𝜃𝜊𝒯)  whenever this limit exists and otherwise   �̃�(𝒯) = 0. The Borel  

measurability of  �̃� is clear. The second  statement  follows  immediately  by considering for each   𝒯 ∈ 𝕋∞ the 

analytic function  𝑓𝒯: 𝑓𝒯(𝜃 + 𝑖𝑡) = 𝐹(𝑇𝑡𝑏𝜃(𝒯)) and observing that for each   𝒯 ∈ 𝕋∞ we have  𝑓𝒯 ∈ ℋ∞. Now 

the  classical  Fatou  theorem  applies to  𝑓𝒯. The fact that the set {𝒯 ∈ 𝕋∞ ∶ = lim
𝜃→0+

𝐹(𝑏𝜃(𝒯)) exists}   has  full  

measure  is  an  immediate consequence  of  the ergodicity of  the Kronecker  flow   {𝑇𝑡}𝑡≥0   and  the  second 

statement.    Finally, we observe that it is easy to check the formula 

�̂�(𝛽) = 𝑝1
𝛽1𝜎 … 𝑝𝑘

𝛽𝑘𝜎∫
𝕋∞𝐹(𝑏𝜃(𝒯))�̅�𝛽𝑚∞(𝑑𝒯) 

For  the Fourier coefficients of an  𝐻∞(𝔻∞)-function. Lebesgue's dominated convergence  theorem  now  yields   

�̂̃� = �̂�, whence �̂� = 𝐹 almost  surely,  and this finishes the proof of the first statement. 

To  arrive at a similar result for  ℋ𝑝,we need  to make sense of the restriction  𝐹 ⟼ 𝐹|𝕋1/2
∞   as a map from 

𝐻𝑝(𝔻∞) to 𝐿𝑝(𝕋1/2
∞ , 𝑚∞,1/2).When 𝐹 is a polynomial, we must have 
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𝐹|𝕋1
2

∞(𝒯) =  𝐹 (𝑏1/2(𝒯)) 

Since this formula can be written as a Poisson integral and the polynomials are dense in  𝐻𝑝(𝔻∞), this leads to a 

definition of  𝐹|𝕋1
2

∞  for general 𝐹.Indeed, by using  elementary properties of  Poisson  kernels for finite 

polydiscs, we get that 𝐹 ⟼ 𝐹|𝕋1/2
∞   is a contraction from 𝐻𝑝(𝔻∞) to 𝐿𝑝(𝕋1/2

∞ , 𝑚∞,1/2). 

 

Theorem(3.3.21)  Let 𝐹 be a function 𝐻𝑝(𝔻∞)  fo r 𝑝 ≥ 2.Then we may pick a representative  �̃�1/2  for the 

restriction 𝐹|𝕋1/2
∞  on the distinguished boundary  𝕋∞ such that  �̃�(𝒯) = lim

𝜃→
1

2
+

𝐹(𝑏𝜃(𝒯))  for almost every  

𝒯 ∈ 𝕋∞. In fact, for every 𝒯 ∈ 𝕋∞, we have �̃�1/2(𝒯′) = lim
𝜃→

1

2
+

𝐹(𝑏𝜃(𝒯′)) 0) for almost every  𝒯′ ∈ 𝑇(𝒯). 

Proof.         The existence of the boundary values is obtained just as in the proof  of Theorem (3.3.20). This  

time one applies the known embedding  for  𝑝 = 2  to define �̃�1/2. 

We may now observe that if 𝐹 is in 𝐻𝑝(𝔻∞)( 𝑝 ≥2), then we have for every 𝒯 ∈ 𝕋1/2
∞  

 

lim
𝑇→∞

1

𝑇
∫ |�̃�(𝑇𝑡𝒯)|

𝑝𝑇

0
𝑑𝑡 = ‖�̃�1/2‖

𝐿𝑝(𝕋∞)

𝑝
                                                         (51) 

Indeed, (51) holds for polynomials. Hence, the fact that polynomials are dense in 𝐻𝑝(𝔻∞), we obtain (51).  It is 

rather puzzling that (51), which may be understood as a strengthened variant of the Birkhoff-Khinchin ergodic 

theorem for functions in   𝐻𝑝(𝔻∞), is known to hold only when 𝑝 = 2,4,6, …. 

 

References 
[1] H. Hedenmalm, P. Lindqvist And K. Seip, A Hilbert Space Of Dirichlet Series And Systems Of Dilated Functions In L2(0,1), Duke 

Math. J. 86, 1-37 (1997). 
[2] J. E. Littlewood, On  Inequalities In The Theory Of Functions Proc. London Math. Soc. 23 (1925), 481–519. 

[3] H. L. Montgomery, Ten Lectures On The Interface Between Analytic Number Theory And Harmonic Analysis, Volume 84 Of 

Cbms Regional Conference Series In Mathematics, Ams, 1994. 
[4] B. V. Gnedenko, The Theory Of Probability, 4th Ed., Chelsea, New York, 1967. 

[5] E.C. Titchmarsh. The Theory Of Functions. Oxford University Press, London, 1932. 

[6] H. Bohr, Äuber Die Bedeutung Der Potenzreihen Unendlich Vieler Variabeln In Der Theorie Der Dirichletschen Reihen ∑ AN/NS, 

Nachr. Akad. Wiss. Gäottingen Math.-Phys. Kl. (1913), 441-488. 
[7] A.S. Besicovitch. Almost Periodic Functions. Cambridge University Press, London, 1932 

[8] Jim Agler, John E. Mccarthy, Pick Interpolation And Hilbert Function Spaces, Grad. Stud. Math., Vol. 44, American Mathematical 

Society, Providence, Ri, 2002. 
[9] F. Carlson, Contributions µa La Thffeorie Des S¶Eries De Dirichlet, Note I, Ark.Mat.16,No.18(1922),1-19. 

[10] P. L´Evy. Sur Les S´Eries Dont Les Termes Sont Des Variables ´Eventuelles Ind´Ependentes. Studia Math., 3:119–155, 1931. 

[11] W. Cohn, Interpolation And Multipliers On Besov And Sobolev Spaces, Complex Variables Theory Appl. 22, 35_45 (1993). 
[12] E.C. Titchmarsh. The Theory Of The Riemann  Zeta-Function, Second Edition. Oxford University Press, Oxford, 1986. 

[13] S.A. Mccullough. Carath´Eodory Interpolation  Kernels. Integral  Equations And Operator Theory, 15(1):43–71, 1992. 

[14] P. Quiggin. For Which Reproducing Kernel Hilbert Spaces Is Pick’s Theorem True? Integral Equations And Operator Theory, 
16(2):244–266, 1993. 

[15] H. Hedenmalm, Dirichlet Series And Functional Analysis, In: The Legacy Of Niels Henrikabel, Springer (2004), Pp. 673-684. 

[16] W.Rudin, Function Theory In Polydiscs, W.A.Benjamin Inc.,New York,1969. 

[17] J. E. Mccarthy, Hilbert Spaces Of Dirichlet Series And Their Multipliers,Trans.Amer. Math. Soc. 356(3), 881_893 (2004). 

[18] H. Hedenmalm And E. Saksman, Carleson's Convergence Theorem For Dirichlet Series,Pacific J. Math., 208 (2003), 85-109. 

[19] F. Bayart, S. V. Konyagin And H. Queffelec, Convergence Almost Everywhere And Divergence Everywhere Of Taylor And 
Dirichlet Series, Real Anal. Exchange, 29 (2003/04), 557-586. 

[20] F. Bayart, Hardy  Spaces Of  Dirichlet  Series  And  Their  Composition Operators, Monatsh.Math., 136 (2002), 203-236. 

[21] K. Seip, Beurling Type Density Theorems In The Unit Disk, Invent. Math.113, 21_39 (1993). 
[22] Brian J. Cole, T.W. Gamelin, Representing Measures And Hardy Spaces For The Infinite Polydisk Algebra, Proc. Lond.Math. Soc. 

53 (3) (1986) 112–142. 

[23] L. Carleson,An Interpolation Problem For Bounded Analytic Functions, Amer. J.Math 80, 921_930 (1958). 


