e-ISSN: 2278-0661, p-ISSN: 2278-8727, Volume 21, Issue 4, Ser. 1 (July. – August. 2025), PP 24-39

www.iosrjournals.org

On Fuzzy Neutrosophic Pre Σ -Baire Spaces.

E. Poongothai, E. Kalaivani

Department Of Mathematics, Shanmuga Industries Arts And Science College (Co-Ed.,), Tiruvannamalai-606603, Tamil Nadu, India

Abstract

In this paper, the concepts of fuzzy neutrosophic pre σ -nowhere dense set, fuzzy neutrosophic pre σ -first category set and fuzzy neutrosophic pre σ -second category set in fuzzy neutrosophic topological spaces are introduced and studied. By means of fuzzy neutrosophic pre σ -nowhere dense sets, the concept of fuzzy neutrosophic pre σ -Baire space is defined and several characterizations of fuzzy neutrosophic pre σ -Baire spaces are studied. Several examples are given to illustrate the concepts introduced in this paper.

Keywords: Fuzzy neutrosophic pre-open(closed) set, fuzzy neutrosophic pre $F\sigma$ -set, fuzzy neutrosophic pre $G\delta$ -set, fuzzy neutrosophic pre dense, fuzzy neutrosophic pre residual, fuzzy neutrosophic nowhere dense set, fuzzy neutrosophic pre σ -first and second category sets, fuzzy neutrosophic pre σ -Baire space.

Date of Submission: 13-07-2025 Date of Acceptance: 23-07-2025

I. Introduction

The fuzzy idea was invaded all branches of science as far back as the presentation of fuzzy sets by L. A. Zadeh [21]. The important concept of fuzzy topological space was offered by C.L. Chang [3]. The idea of fuzzy σ - Baire Spaces was introduced by G. Thangaraj and E. Poongothai [13]. The concept of neutrosophic sets was defined with membership, non-membership and indeterminacy degrees. In 2017, Veereswari [20] introduced fuzzy neutrosophic topological spaces. The idea of fuzzy neutrosophic Baire spaces was introduced by E. Poongothai and E. Padmavathi [10]. In this paper, the concepts of fuzzy neutrosophic pre σ -nowhere dense set, fuzzy neutrosophic pre σ -first category set and fuzzy neutrosophic pre σ -second category set in fuzzy neutrosophic topological spaces are introduced and studied. By means of fuzzy neutrosophic pre σ -nowhere dense sets, the concept of fuzzy neutrosophic pre σ -Baire space is defined and several characterizations of fuzzy neutrosophic pre σ -Baire spaces are studied. Several examples are given to illustrate the concepts introduced in this paper.

II. Preliminaries

Definition 2.1 [2] A fuzzy neutrosophic set A on the universe of discourse X is defined as $A = (x, T_A(x), I_A(x), F_A(x)), x P X$ where T, I, $F : X \rightarrow [0, 1]$ and 0 " $T_A(x)$ " $I_A(x)$ " $F_A(x)$ " 3.

Definition 2.2 [2] A fuzzy neutrosophic set A is a subset of a fuzzy neutrosophic set B(i.e.,) $A \ \tilde{D} \ B$ for all x if $T_A(x)$ " $T_B(x)$, $I_A(x)$ " $I_B(x)$, $F_A(x)$ ě $F_B(x)$.

Definition 2.3 [2] Let X be a non-empty set, and $A = (x, T_A(x), I_A(x), F_A(x))$, $B = (x, T_B(x), I_B(x), F_B(x))$ be two fuzzy neutrosophic sets. Then

```
A Y B = (x, max(T_A(x), T_B(x)), max(I_A(x), I_B(x)), min(F_A(x), F_B(x)))
A X B = (x, min(T_A(x), T_B(x)), min(I_A(x), I_B(x)), max(F_A(x), F_B(x)))
```

Definition 2.4 [2] The difference between two fuzzy neutrosophic sets A and B is defined as $A \setminus B(x) = (x, min(T_A(x), F_B(x)), min(I_A(x), 1) - I_B(x)), max(F_A(x), T_B(x))$.

Definition 2.5 [2] A fuzzy neutrosophic set A over the universe X is said to be null or empty fuzzy neutrosophic set if $T_A(x) = 0$, $I_A(x) = 0$, $F_A(x) = 1$ for all $x \ P \ X$. It is denoted by O_N .

Definition 2.6 [2] A fuzzy neutrosophic set A over the universe X is said to be absolute (universe) fuzzy neutrosophic set if $T_A(x) = 1$, $I_A(x) = 1$, $F_A(x) = 0$ for all $x \ P \ X$. It is denoted by 1_N .

Definition 2.7 [2] The complement of a fuzzy neutrosophic set A is denoted by A^C and is defined as $A^C = (x, T_{AC}(x), I_{AC}(x), F_{AC}(x))$ where $T_{AC}(x) = F_A(x)$, $I_{AC}(x) = 1 - I_A(x)$, $F_{AC}(x) = T_A(x)$. The complement of fuzzy neutrosophic set A can also be defined as $A^C = 1_N - A$.

Definition 2.8 [1] A fuzzy neutrosophic topology on a non-empty set X is a τ of fuzzy neutrosophic sets in X satisfying the following axioms.

- (i) 0N, 1N Pτ
- (ii) A₁ X A₂ Pτ for any A₁, A₂ Pτ
- (iii) YA: P τ for any arbitrary family {A:: iPJ} P τ

In this case the pair (X, τ) is called fuzzy neutrosophic topological space and any fuzzy neutrosophic set in τ is known as fuzzy neutrosophic open set in X.

Definition 2.9 [1] The complement A^{c} of a fuzzy neutrosophic set A in a fuzzy neutrosophic topological space (X, τ) is called fuzzy neutrosophic closed set in X.

Definition 2.10 [1] Let (X, τ) be a fuzzy neutrosophic topological space and $A = (x, T_A(x), I_A(x), F_A(x))$ be a fuzzy neutrosophic set in X. Then the closure and interior of A are defined by

- $int(A) = Y\{G : G \text{ is a fuzzy neutrosophic open set in X} \text{ and } G \check{D} A\}$
- cl(A) = X{G: G is a fuzzy neutrosophic closed set inX and A Ď G}

Definition 2.11 [1] Let (X, τ) be a fuzzy neutrosophic topological space over X. Then the following properties hold, (i) $cl(A^c) = (int A)^c$, (ii) $int(A^c) = (cl A)^c$.

Definition 2.12 [10] A fy. neutrosophic set A_N in a fy. neutrosophic top. space (P, τ_N) is called a fy. neutrosophic F_{σ} -set if $A_N = \frac{Z_S}{\epsilon^n 1} A_N \frac{1}{\epsilon}$ where $\overline{A_N} P \tau_N$ for i P I

Definition 2.13 [10] A fy. neutrosophic set A_N in a fy. neutrosophic top. space (P, τ_N) is called a fy. neutrosophic G_{δ} -set in (P, τ_N) if $A_N = \frac{Z_{\delta}}{\epsilon^n 1} A_N \frac{Z_$

Definition 2.14 [10] A fy. neutrosophic set A_N in a fy. neutrosophic top. space (P, τ_N) is called a fy. neutrosophic dense if there exist no fnCS B_N in (P, τ_N) s.t A_N \check{A} B_N \check{A} 1x. That is $fn(A_N)' = 1_N$

Definition 2.15 [10] A fy. neutrosophic set A_N in a fy. neutrosophic top. space (P, τ_N) is called a fy. neutrosophic nowh. dense set if there exist no non zero fnOS B_N in (P, τ_N) s.t B_N \check{A} $fn(A_N)'$. That is, $fn(((A_N)')') = 0_N$

Definition 2.16 [10] Let (P, τ_N) be a fy. neutrosophic top. space. A fy. neutrosophic set A_N in (P, τ_N) is called fy. neutrosophic one category set if $A_N = \frac{-8}{100} A_N$, where A_N 's are fy. neutrosophic nowh. dense sets in (P, τ_N) .

Any other fy. neutrosophic set in (P, τ_N) is said to be of fy. neutrosophic two category.

Definition 2.17 [10] A fy. neutrosophic top. space (P, τ_N) is called fy. neutrosophic one category space if the fy. neutrosophic set 1x is a fy. neutrosophic one category set in (P, τ_N) . That is $1x = \frac{-8}{\tau_1} \frac{AN}{t}$, where AN's are fy. neutrosophic nowh. dense sets in (P, τ_N) . Otherwise (P, τ_N) will be called a fy. neutrosophic two category space.

Definition 2.18 [10] Let A_N be a fy. neutrosophic one category set in (P, τ_N) . Then A_N^{-} is called fy. neutrosophic re. set in (P, τ_N) .

Definition 2.19 [10] A fy. neutrosophic top. space (P, τ_N) is called fy. neutrosophic Baire space if $fn(\frac{-8}{3^n}(A_N))^n = 0_N$, where (A_N) 's are fy. neutrosophic nowh. dense sets in (P, τ_N) .

Theorem 2.1 [10] Let (P, τ_N) be a fy. neutrosophic top. space. Then the following are equivalent

- (1) (P, TN) is a fy. neutrosophic Baire space.
- (2) fn(AN) = 0N, for every fy. neutrosophic one category set AN in (P, τN).
- (3) fn(BN) = 1N, for every fy. neutrosophic re. set BN in (P, TN).

Definition 2.20 [5] Let (X_N, T_N) be a fuzzy neutrosophic topological space. A fuzzy neutrosophic Set λ_N in (X_N, T_N) is called a fuzzy neutrosophic σ -nowhere dense set if λ_N is a fuzzy neutrosophic F_σ -set in (X_N, T_N) such that $int(\lambda_N) = 0_N$.

Definition 2.21 [5] Let (X_N, T_N) be a fuzzy neutrosophic topological space. A fuzzy neutrosophic set λ_N in (X_N, T_N) is called fuzzy neutrosophic σ - first category set if $\lambda_N = \frac{-8}{\epsilon^n 1} (\lambda_N)$, where (λ_N) 's are fuzzy neutrosophic σ -nowhere dense sets in (X_N, T_N) . Any other fuzzy neutrosophic set in (X_N, T_N) is said to be fuzzy neutrosophic σ - second category sets in (X_N, T_N) .

Definition 2.22 [5] Let λ_N be a fuzzy neutrosophic σ -first category set in (X_N, T_N) . Then $1_N - \lambda_N$ is called a fuzzy neutrosophic σ -residual set in (X_N, T_N) .

Definition 2.23 [5] A fuzzy neutrosophic topological space (X_N, T_N) is called fuzzy neutrosophic σ -first category space if the fuzzy neutrosophic set $1x_N$ is a fuzzy neutrosophic σ -first category set in (X_N, T_N) . That is $1x_N = \sum_{i=1}^{8} (\lambda_{N_i})$, where (λ_{N_i}) 's are fuzzy neutrosophic σ - nowhere dense sets in (X_N, T_N) . Otherwise (X_N, T_N) will be called a fuzzy neutrosophic σ - second category space.

Definition 2.24 [5] Let (X_N, T_N) be a fuzzy neutrosophic topological space. Then (X_N, T_N) is called a fuzzy neutrosophic σ -Baire space if $int(\frac{Z_B}{int}(\lambda_N)) = 0_N$, where (λ_N) 's are fuzzy neutrosophic σ - nowhere dense sets in (X_N, T_N) .

Theorem 2.2 [5] Let (X_N, T_N) be a fuzzy neutrosophic topological space. Then the following are equivalent

- (1) (XN, TN) is a fuzzy neutrosophic σ-Baire space.
- (2) $int(\lambda_N) = 0_N$, for every fuzzy neutrosophic σ first category set λ_N in (X_N, T_N) .
- (3) cl(μN) = 1N, for every fuzzy neutrosophic σ-residual set μN in (XN, TN).

Definition 2.25 [12] A fuzzy neutrosophic topological space (X, τ_N) is called a fuzzy neutrosophic submaximal space if for each fuzzy neutrosophic set A_N in (X, τ_N) such that $(A_N)' = 1$ then $A_N P \tau_N$ in (X, τ_N) . That is (X, τ_N) is a fuzzy neutrosophic submaximal space if each fuzzy neutrosophic dense set in (X, τ_N) is a fuzzy neutrosophic open set in (X, τ_N) .

Definition 2.26 [12] A fuzzy neutrosophic topological space (X, τ_N) is called a fuzzy neutrosophic resolvable space if there exist a fuzzy neutrosophic dense set A_N in (X, τ_N) such that $(1 - A_N)' = 1$. Otherwise, (X, τ_N) is called a fuzzy neutrosophic irresolvable space.

Definition 2.27 [12] A fuzzy neutrosophic topological space (X, τ_N) is called a fuzzy neutrosophic hyperconnected space if every non-null fuzzy neutrosophic open subset of (X, τ_N) is fuzzy neutrosophic dense in (X, τ_N) .

Definition 2.28 [12] A fuzzy neutrosophic topological space (X, τ_N) is called a fuzzy neutrosophic P-space if each fuzzy neutrosophic G_{δ} -set in (X, τ_N) is fuzzy neutrosophic open set in (X, τ_N) .

Definition 2.29 [12] A fuzzy neutrosophic topological space $(X, \tau N)$ is called a fuzzy neutrosophic almost resolvable space if V^* (AN) = 1, where (AN)'s in $(X, \tau N)$ are such that (AN)' = 0, otherwise, $(X, \tau N)$ is called a fuzzy neutrosophic almost

irresolvable space.

Definition 2.30 [4] FNS λ_N in FNTS (X, τ) is called Fuzzy neutrosophic regular - open set (Briefly, FNR-open) if $\lambda_N = FNInt(FNcl(\lambda_N))$.

Definition 2.31 [4] FNS λ_N in FNTS (X, τ) is called Fuzzy neutrosophic regular - closed set (Briefly, FNR-closed) if $\lambda_N = FNcl(FNInt(\lambda_N))$.

Definition 2.32 [4] Fuzzy neutrosophic pre-open set(Briefly, FNP-open) if $\lambda_N \check{D}$ FNInt(FNCI(λ_N).

Definition 2.33 [4] Fuzzy neutrosophic pre-closed set(Briefly, FNP-closed) if $FNCI(FNInt(\lambda_N))$ \check{D} (λ_N).

3 Fuzzy Neutrosophic Pre σ—Nowhere Dense sets

Definition 3.1 A fuzzy neutrosophic set λ_N in a fuzzy neutrosophic topological space (X_N, T_N) is called a fuzzy neutrosophic pre F_{σ} -set in (X_N, T_N) if $\lambda_N = \frac{Z_{\sigma}}{2} (\lambda_N)$, where (λ_N) 's are fuzzy neutrosophic pre-closed sets in (X_N, T_N) .

Definition 3.2 A fuzzy neutrosophic set λ_N in a fuzzy neutrosophic topological space (X_N, T_N) is called a fuzzy neutrosophic pre G_δ -set in (X_N, T_N) if $\lambda_N = \frac{Z_0}{\delta_N} (\lambda_N)$, where (λ_N) 's are fuzzy neutrosophic pre-open sets in (X_N, T_N) .

Definition 3.3 A fuzzy neutrosophic set λ_N in a fuzzy neutrosophic topological space (X_N, T_N) is called a fuzzy neutrosophic pre-dense if there exist no fuzzy neutrosophic pre-closed set where μ_N in (X_N, T_N) such that $\lambda_N \, \tilde{\mathbf{a}} \, \mu_N \, \tilde{\mathbf{a}} \, \mathbf{1}_N$. That is, $\operatorname{pcl}(\lambda_N) = \mathbf{1}_N$ in (X_N, T_N) .

Definition 3.4 A fuzzy neutrosophic set λ_N in a fuzzy neutrosophic topological space (X_N, T_N) is called a fuzzy neutrosophic pre σ -nowhere dense set if λ_N is a non-zero fuzzy neutrosophic pre F_{σ} -set in (X_N, T_N) such that $pint(\lambda_N) = 0_N$.

Example 3.1 Let $X_N = \{a, b, c\}$. The fuzzy neutrosophic sets λ_N , μ_N and γ_N are defined on X_N as follows:

```
\lambda_N : X_N \to [0N, 1N] is defined as, \lambda_N = \{(a, (0.7, 0.6, 0.7)), (b, (0.5, 0.6, 0.5)), (c, (0.7, 0.7, 0.6))\}
\mu_N : X_N \to [0N, 1N] is defined as, \mu_N = \{(a, (0.5, 0.4, 0.8)), (b, (0.7, 0.6, 0.5)), (c, (0.8, 0.6, 0.6))\}
y_N : X_N \to [0N, 1N] is defined as, y_N = \{(a, (0.6, 0.7, 0.5)), (b, (0.5, 0.6, 0.6)), (c, (0.7, 0.6, 0.6))\}
Then, T_N = \{0N, \lambda_N, \mu_N, y_N, \lambda_N \vee \mu_N, \mu_N \vee y_N, \lambda_N \vee y_N, \lambda_N \times \mu_N, \mu_N \times y_N, \lambda_N \times y_N \times y_N, \lambda_N \times y_N \times y_N, \lambda_N \times y_N \times y_N
```

Example 3.2 Let $X_N = \{a, b\}$. The fuzzy neutrosophic sets α_N and θ_N are defined on X_N as follows:

 $\alpha_{\rm N}: {\it X}_{\rm N} \, \rightarrow \, [0_{\rm N}, \, 1_{\rm N}] \, \, is \, \, defined \, \, as \, \, \alpha_{\rm N} = \{(a, (0.4, \, 0.3, \, 0.4)), \, (b, (0.5, \, 0.4, \, 0.3))\}$

 $6_N: X_N \rightarrow [0_N, 1_N]$ is defined as $6_N = \{(a, (0.5, 0.3, 0.3)), (b, (0.4, 0.3, 0.5))\}$

Then, $T_N = \{0_N, \alpha_N, \delta_N, \alpha_N \vee \delta_N, \alpha_N \times \delta_N, 1_N\}$ is a fuzzy neutrosophic topology on

XN. Now, consider

 $\eta_N = [(1_N - (\alpha_N \vee \delta_N)) \vee (1_N - (\alpha_N \times \delta_N))]$

 $\eta_N = 1_N - (\alpha_N \times \delta_N)$

Therefore η_N is a fuzzy neutrosopic pre F_e-set in (X_N, T_N). pint(η_N) ‰ 0_N.

Therefore η_N is not a fuzzy neutrosophic pre σ -nowhere dense set in (X_N, T_N) .

Remark 3.1 If λ_N and μ_N are fuzzy neutrosophic pre σ -nowhere dense sets in a fuzzy neutrosophic topological space (X_N, T_N) , then $\lambda_N V \mu_N$ be a fuzzy neutrosophic pre σ -nowhere dense set in (X_N, T_N) . For, consider the following example:

Example 3.3 Let $X_N = \{a, b, c\}$. The fuzzy neutrosophic sets A_N , B_N and C_N are defined X_N as follows:

 $A_N: X_N \rightarrow [0_N, 1_N]$ is defined as,

 $A_N = \{(a, (0.7, 0.6, 0.6)), (b, (0.7, 0.5, 0.6)), (c, (0.5, 0.7, 0.6))\}$

 $B_N: X_N \rightarrow [0_N, 1_N]$ is defined as,

 $B_N = \{(a, (0.5, 0.4, 0.5)), (b, (0.4, 0.7, 0.6)), (c, (0.8, 0.5, 0.6))\}$

 $C_N: X_N \rightarrow [0_N, 1_N]$ is defined as,

 $C_N = \{(a, (0.7, 0.6, 0.6)), (b, (0.6, 0.5, 0.5)), (c, (0.5, 0.4, 0.5))\}$

Then, $T_N = \{0_N, A_N, B_N, C_N, A_N \vee B_N, B_N \vee C_N, A_N \vee C_N, A_N \times B_N, B_N \times C_N, A_N \times B_N \vee C_N, A_N \times B_N \times C_N \times B_N$

Now, consider, $\alpha_N = [(1_N - A_N) \vee (1_N - B_N) \vee (1_N - C_N)] = [1_N - (A_N \times B_N)]$ Therefore α_N is a fuzzy neutrosophic pre F_e -set in (X_N, T_N) .

 $\theta_N = [(1_N - (\theta_N \, VC_N))V(1_N - (A_N \, VC_N))V(1_N - (A_N \, XB_N))] = [1_N - (A_N \, XB_N)]$ $pint(\alpha_N) = 0_N$, which implies that α_N is a fuzzy neutrosophic pre σ -nowhere dense set in (X_N, T_N)

 $(1_N - C_N) \vee (1_N - (A_N \vee B_N \vee C_N)) = \gamma_N$ is a fuzzy neutrosophic pre F_{σ} -set in (X_N, T_N) .

 $pint(y_N) = 0_N$ is a fuzzy neutrosophic pre-a-nowhere dense set in (X_N, T_N) . $pint(\alpha_N \vee y_N) = 0_N$ is a fuzzy neutrosophic pre-a-nowhere dense set in (X_N, T_N) .

Proposition 3.1 A fuzzy neutrosophic set λ_N is a fuzzy neutrosophic pre σ -nowehre dense set in a fuzzy neutrosophic toplogical space (X_N, T_N) if and only if $(1_N - \lambda_N)$ is a fuzzy neutrosophic pre dense and fuzzy neutrosophic pre G_{δ} -set in (X_N, T_N) .

Proof. Let λ_N be a fuzzy neutrosophic pre σ -nowhre dense set (X_N, T_N) . Then $\lambda_N = \frac{Z_B}{\epsilon^n 1} (\lambda_N)$, where (λ_N) 's are fuzzy neutrosophic pre-closed sets in (X_N, T_N)

and $pint(\lambda N) = 0$ N. Then $1N - pint(\lambda N) = 1N - 0$ N = 1N and hence $pcl(1N - \lambda N) = 1$ N. Also $(1N - \lambda N) = 1$ N $- \frac{2}{i}$ $(\lambda N) = \frac{2}{i}$ $(1N - \lambda N)$, where $(1N - \lambda N)$'s

are fuzzy neutrosophic pre-open sets in (XN, TN), implies that $1N - \lambda N$ is a fuzzy neutrosophic pre G_{δ} -set in (XN, TN). Hence $(1N - \lambda N)$ is a fuzzy neutrosophic pre dense and fuzzy neutrosophic pre G_{δ} -set in (XN, TN). Conversely,

Let λ_N be a fuzzy neutrosophic pre dense and fuzzy neutrosophic pre G_δ -set in (X_N,T_N) . Then $\lambda_N=\frac{Z_\delta}{(\lambda_N)}$, where (λ_N) 's are fuzzy pre-open sets in (X_N,T_N) . Now, $1_N-\lambda_N=1_N-\frac{Z_\delta}{(N_N)}$ ($\lambda_N=1_N-\lambda_N=1_N-\frac{Z_\delta}{(N_N)}$), where $(1_N-\lambda_N)$'s are fuzzy neutrosophic pre-closed sets in (X_N,T_N) . Hence $(1_N-\lambda_N)$ is a fuzzy neutrosophic pre F_δ -set in (X_N,T_N) and $pint(1_N-\lambda_N)=1_N-pcl(\lambda_N)=1_N-1_N=0_N$. [Since λ_N is a fuzzy neutrosophic pre dense in (X_N,T_N)]. Therefore $(1_N-\lambda_N)$ is a fuzzy neutrosophic pre σ -nowhere dense set in (X_N,T_N) .

Proposition 3.2 If λ_N is a fuzzy neutrosophic pre dense set in a fuzzy neutrosophic topological space (X_N, T_N) such that μ_N " $(1_N - \lambda_N)$, where μ_N is a fuzzy neutrosophic pre F_{σ} -set in (X_N, T_N) , then μ_N is a fuzzy neutrosophic pre σ -nowhere dense set in (X_N, T_N) .

Proof. Let λ_N be a fuzzy neutrosophic pre dense set in (X_N, T_N) such that μ_N " $(1_N - \lambda_N)$. Now, μ_N " $(1_N - \lambda_N)$, implies that $pint(\mu_N)$ " $pint(1_N - \lambda_N)$. Then $pint(\mu_N)$ " $1_N - pcl(\lambda_N) = 1_N - 1_N = 0_N$ and hence $pint(\mu_N) = 0_N$. Therefore, μ_N is a fuzzy neutrosophic pre F_σ -set in (X_N, T_N) such that $pint(\mu_N) = 0_N$ and hence μ_N is a fuzzy neutrosophic pre σ -nowhere dense set in (X_N, T_N) .

Definition 3.5 Let (XN, TN) be a fuzzy neutrosophic topological space. A fuzzy

neutrosophic set λ_N in (X_N, T_N) is called fuzzy neutrosophic pre σ -first category set if $\lambda_N = \frac{Z_R}{\epsilon^N 1}$, where $(\lambda_N)'s$ are fuzzy neutrosophic pre σ -nowhere dense sets in (X_N, T_N) . Any other fuzzy neutrosophic set in (X_N, T_N) is said to be of fuzzy neutrosophic pre σ -second category set in (X_N, T_N) .

Definition 3.6 Let λ_N be a fuzzy neutrosophic pre σ -first category set in (X_N, T_N) . Then $(1_N - \lambda_N)$ is called a fuzzy neutrosophic pre σ -residual set in (X_N, T_N) .

Definition 3.7 A fuzzy neutrosophic topological space (X_N, T_N) is called fuzzy neutrosophic pre σ -first category space is the fuzzy neutrosophic set $1x_N$ if a fuzzy neutrosophic pre σ -first category set in (X_N, T_N) . That is, $1x_N = \sum_{i=1}^N (\lambda_N_i)$, where (λ_N_i) 's are fuzzy neutrosophic pre σ -nowhere dense sets in (X_N, T_N) . Otherwise, (X_N, T_N) will be called a fuzzy neutrosophic pre σ -second category space.

Proposition 3.3 If λ_N is a fuzzy neutrosophic pre σ -first category set in a fuzzy neutrosophic topological space (X_N, T_N) , then there is a fuzzy neutrosophic pre F_{σ} -set δ_N in (X_N, T_N) such that λ_N " δ_N .

Proof. Let λ_N be a fuzzy neutrosophic pre σ -first category set in (X_N, T_N) . Then $\lambda_N = \frac{Z_B}{i^n 1}$, where $(\lambda_N)'$'s are fuzzy neutrosophic pre σ -nowhere dense sets in (X_N, T_N) . Now, $[1_N - pcl(\lambda_N)]'$'s $(i = 1 \text{ to } \infty)$ are fuzzy neutrosophic pre-open sets in (X_N, T_N) . Then $\mu_N = \frac{Z_B}{i^n 1} \frac{(1_N - pcl(\lambda_N))}{i}$ is a fuzzy neutrosophic pre G_δ -set in (X_N, T_N) and $1_N - \mu_N = 1_N - [\frac{Z_B}{i^n 1} (1_N - pcl(\lambda_N))] = [\frac{Z_B}{i^n 1} pcl(\lambda_N)]$. Now, $(\lambda_N)''' pcl(\lambda_N)$, implies that $\frac{Z_B}{i^n 1} = [\frac{Z_B}{i^n 1} pcl(\lambda_N)]$. Hence $\lambda_N = \frac{Z_B}{i^n 1} (\lambda_N)'''$ $[\frac{Z_B}{i^n 1} pcl(\lambda_N)] = [1_N - \mu_N]$. That is, $\lambda_N ''' [1_N - \mu_N]$ and $[1_N - \mu_N]$ is a fuzzy neutrosophic pre F_σ -set in (X_N, T_N) . Let $\delta_N = [1_N - \mu_N]$. Hence, if λ_N is a fuzzy neutrosophic pre σ -first category set in (X_N, T_N) , then there is a fuzzy neutrosophic pre F_σ -set δ_N in (X_N, T_N) such that $\lambda_N ''' \delta_N$.

Proposition 3.4 If λ_N is a fuzzy neutrosophic pre a-first category set in a fuzzy neutrosophic topological space (X_N, T_N) , then there is a fuzzy neutrosophic pre F_{σ} -set δ_N in (X_N, T_N) such that λ_N " δ_N " $cl(\lambda_N)$, where δ_N is a fuzzy neutrosophic pre F_{σ} -set in (X_N, T_N) .

Proof. Let λ_N be a fuzzy neutrosophic pre σ -first category set in (X_N, T_N) . Then $\lambda_N = \frac{Z_B}{i^n 1} \begin{pmatrix} \lambda_N \end{pmatrix}$, where (λ_N) 's are fuzzy neutrosophic pre σ -nowhere dense sets in (X_N, T_N) . Now, $[1_N \longrightarrow pcl(\lambda_N)]$'s $(i = 1 \mod \infty)$ are fuzzy neutrosophic preopen sets in (X_N, T_N) . Then, $\mu_N = \frac{Z_B}{i^n 1} \begin{pmatrix} 1_N \longrightarrow pcl(\lambda_N) \end{pmatrix}$ is a fuzzy neutrosophic pre G_B -set in (X_N, T_N) and $1_N \longrightarrow \mu_N = 1_N \longrightarrow \begin{bmatrix} Z_B & (1_N \longrightarrow pcl(\lambda_N)) \end{bmatrix} = \begin{bmatrix} Z_B & pcl(\lambda_N) \\ i^n 1 & i \end{bmatrix}$. Now, $\lambda_N = \frac{Z_B}{i^n 1} \begin{pmatrix} \lambda_N \\ i \end{pmatrix} = \begin{bmatrix} Z_B & pcl(\lambda_N) \\ i^n 1 & i \end{bmatrix} = \begin{bmatrix} Z_B & pcl(\lambda_N) \\ i^n 1 & i \end{bmatrix}$. That is, λ_N " $[1_N \longrightarrow \mu_N]$ " $cl(\lambda_N)$ " and $[1_N \longrightarrow \mu_N]$ is a fuzzy neutrosophic pre F_B -set in (X_N, T_N) . Let $\delta_N = [1_N \longrightarrow \mu_N]$.

Hence, if λ_N is a fuzzy neutrosophic pre σ -first category set in (X_N, T_N) such that then there is a fuzzy neutrosophic pre F_{σ} -set δ_N in (X_N, T_N) λ_N " δ_N " $cl(\lambda_N)$, where δ_N is a fuzzy neutrosophic pre F_{σ} -set in (X_N, T_N) .

Proposition 3.5 If λ_N is a fuzzy neutrosophic pre-closed set in a fuzzy neutrosophic topological space (X_N, T_N) and if $pint(\lambda_N) = 0_N$, then λ_N is a fuzzy neutrosophic pre a-nowhere dense set in (X_N, T_N) .

Proof. Let λ_N be a fuzzy neutrosophic pre-closed set in (X_N, T_N) . Then we have $pcl(\lambda_N) = \lambda_N$. Now, $pint[pcl(\lambda_N)] = pint(\lambda_N)$ and $pint(\lambda_N) = 0_N$, implies that λ_N is a fuzzy neutrosophic pre σ -nowhere dense set in (X_N, T_N) .

Proposition 3.6 If λ_N is a fuzzy neutrosophic closed and fuzzy neutrosophic σ -nowhere dense set in a fuzzy neutrosophic topological space (X_N, T_N) , then $pint(\lambda_N) = 0_N$ in (X_N, T_N) .

Proof. Let λ_N be a fuzzy neutrosophic σ -nowhere dense set in (X_N, T_N) . Then λ_N is a fuzzy neutrosophic F_σ -set such that $int(\lambda_N) = 0_N$. We have, $pint(\lambda_N)$ " $\lambda_N \times intcl(\lambda_N)$. Then, $pint(\lambda_N)$ " $\lambda_N \times int(\lambda_N)$. [Since λ_N is a fuzzy neutrosophic closed set, $\lambda_N = cl(\lambda_N)$] and hence $pint(\lambda_N)$ " $\lambda_N \times 0_N$. That is, $pint(\lambda_N) = 0_N$ in (X_N, T_N) .

Proposition 3.7 If each fuzzy neutrosophic σ -nowhere dense set λ_N is a fuzzy neutrosophic closed set in a fuzzy neutrosophic topological space (X_N, T_N) , then λ_N is a fuzzy neutrosophic pre σ -nowhere dense set in (X_N, T_N) .

Proof. Let λ_N be a fuzzy neutrosophic σ -nowehre dense set in (X_N, T_N) . Then λ_N is a fuzzy neutrosophic F_{σ} -set in (X_N, T_N) such that $int(\lambda_N) = 0_N$. We have, $pint(\lambda_N)$ " $\lambda_N \times intcl(\lambda_N)$. Since λ_N is a fuzzy neutrosophic closed set in (X_N, T_N) , $cl(\lambda_N) = \lambda_N$. Then $pint(\lambda_N)$ " $\lambda_N \times int(\lambda_N)$. That is, $pint(\lambda_N)$ " $\lambda_N \times 0_N = 0_N$. Hence, $pint(\lambda_N) = 0_N$ and therefore λ_N is a fuzzy neutrosophic pre σ -nowhere dense set in (X_N, T_N) .

4 Fuzzy Neutrosophic Pre σ -Baire Spaces

Definition 4.1 Let (X_N, T_N) be a fuzzy neutrosophic topological space. Then (X_N, T_N) is called a fuzzy neutrosophic pre σ -Baire Space if $\operatorname{pint}(\overset{\mathsf{Z}}{\mathfrak{g}}_{\mathfrak{g}_{-1}}(\lambda_{N_i}) = 0_N$, where (λ_{N_i}) 's are fuzzy neutrosophic pre σ -nowhere dense sets in (X_N, T_N) .

Example 4.1 Let $X_N = \{a, b, c\}$. The fuzzy neutrosophic sets A_N, B_N and C_N are defined on X_N as follows:

 $A_N : X_N \rightarrow [0_N, 1_N]$ is defined as, $A_N = \{(a, (0.7, 0.6, 0.5)), (b, (0.5, 0.6, 0.8)), (c, (0.7, 0.5, 0.6))\}$ $B_N : X_N \rightarrow [0_N, 1_N]$ is defined as, $B_N = \{(a, (0.6, 0.5, 0.7)), (b, (0.6, 0.6, 0.7)), (c, (0.5, 0.7, 0.5))\}$

 $C_N: X_N \rightarrow [0_N, 1_N]$ is defined as,

 $C_N = \{(a, (0.5, 0.5, 0.7)), (b, (0.7, 0.5, 0.5)), (c, (0.6, 0.5, 0.7))\}$

Then, $T_N = \{0_N, A_N, B_N, C_N, A_N \vee B_N, A_N \vee C_N, B_N \vee C_N, A_N \times B_N, A_N \times C_N, B_N \times C_N, A_N \times B_N \times C_N, 1_N\}$ is a fuzzy neutrosophic topology on X_N . Now, $\alpha_N = [(1_N - B_N) \vee (1_N - C_N) \vee (1_N - (A_N \vee B_N))] = [1_N - (B_N \times C_N)]$ is a fuzzy neutrosophic pre F_{σ} -set in (X_N, T_N) .

 $pint(\alpha_N) = 0_N$, α_N is a fuzzy neutrosophic pre σ -nowhere dense set in (X_N, T_N) . $\theta_N = [(1_N - (A_N \times B_N))V(1_N - A_N \times C_N)V(1_N - (B_N \times C_N))]$ is a fuzzy neutrosophic pre F_{σ} -set in (X_N, T_N) .

pint(6N) = 0N, 6N is a fuzzy neutrosopic pre a-nowhere dense set. $pint(\alpha_N V 6N) = 0N$, then (XN, TN) is a fuzzy neutrosophic pre a-Baire space.

Proposition 4.1 Let (X_N, T_N) be a fuzzy neutrosophic topological space. Then the following are equivalent:

- (1) (XN, TN) is a fuzzy neutrosophic pre σ-Baire Space.
- pint(λN) = 0N, for each fuzzy neutrosophic pre a-first category set in (XN, TN).
- (3) $pcl(\mu_N) = 1_N$, for each fuzzy neutrosophic pre σ -residual set μ_N in (X_N, T_N) .

Proof. (1) = -(2)

Let λ_N be a fuzzy neutrosophic σ -first catergory set in (X_N, T_N) . Then $\lambda_N = \begin{pmatrix} Z_8 & (\lambda_N) \end{pmatrix}$, where $(\lambda_N)'$ s are fuzzy neutrosophic pre σ -nowhere dense sets in (X_N, T_N) . Then, $pint(\lambda_N) = pint(\frac{Z_8}{r^n}(\lambda_N))$. Since (X_N, T_N) is a fuzzy neutrosophic σ -Baire space, $pint(\frac{Z_8}{r^n}(\lambda_N)) = 0_N$. Hence, $pint(\lambda_N) = 0_N$ for a fuzzy neutrosophic pre σ -first category set λ_N in (X_N, T_N) .

(2) = -(3)

Let μ_N be a fuzzy neutrosophic pre σ -residual set μ_N in (X_N, T_N) . Then $(1_N - \mu_N)$ is a fuzzy neutrosophic pre σ -first category set in (X_N, T_N) . By hypothesis, $pint(1_N - \lambda_N) = 0_N$. Then, $1_N - pcl(\mu_N) = 0_N$. Hence, $pcl(\mu_N) = 1_N$, for a fuzzy neutrosophic pre σ -residual set μ_N in (X_N, T_N) .

$$(3) = -(1)$$

Let λ_N be a fuzzy neutrosophic σ -first category set in (X_N, T_N) . Then $\lambda_N = \binom{L_B}{s} (\lambda_N)$, where (λ_N) 's are fuzzy neutrosophic pre σ -nowhere dense sets in (X_N, T_N) . Now, λ_N is a fuzzy neutrosophic pre σ -first category set in (X_N, T_N) , implies that $(1_N - \lambda_N)$ is a fuzzy neutrosophic pre σ -residual set in (X_N, T_N) . By hypothesis, $pcl(1_N - \lambda_N) = 1_N$. Then, $1_N - pint(\lambda_N) = 1_N$. Hence $pint(\lambda_N) = 0_N$. That is, $pint(\frac{L_B}{s^2} (\lambda_N)) = 0_N$, where (λ_N) 's are fuzzy neutrosophic pre σ -nowhere dense sets in (X_N, T_N) . Hence (X_N, T_N) is a fuzzy neutrosophic pre σ -Baire space.

Proposition 4.2 If the fuzzy neutrosophic topological space (X_N, T_N) is a fuzzy neutrosophic pre σ -Baire space, then (X_N, T_N) is a fuzzy neutrosophic pre σ -second category space.

Proof. Let (X_N, T_N) be a fuzzy neutrosophic pre σ -Baire space. Then, $pint(^{Z_8}(\lambda_N)) = 0_N$, where $(\lambda_N)'s$ are fuzzy neutrosophic pre σ -nowhere dense sets in (X_N, T_N) . Then $^{Z_8}(\lambda_N) : \% 1_X$ [Otherwise, $^{Z_8}(\lambda_N) = 1_X$, implies that $pint(\lambda_{\frac{N}{n-1}}^8(\lambda_N)) = pint(1_X) = 1_X$, which in turn implies that $0_N = 1_N$, a contradiction]. Hence (X_N, T_N) is a fuzzy neutrosophic pre σ -second category space.

Proposition 4.3 Let (X_N, T_N) be a fuzzy neutrosophic topological space. If $L_{\text{B}}(\lambda_N)$ % 0_N , where (λ_N) 's are fuzzy neutrosophic pre dense and fuzzy neutrosophic pre C_{B} -sets in (X_N, T_N) , then (X_N, T_N) is a fuzzy neutrosophic pre a-second category space.

Proof. Given that $\sum_{i=1}^{N} (\lambda_N) \% 0_N$, implies that $1_N - \sum_{i=1}^{N} \% 1_N - 0_N = 1_M$. Then $\lambda_N = \sum_{i=1}^{N} (1_N - \lambda_N) \% 1_N$. Since $\lambda_N = \sum_{i=1}^{N} (1_N - \lambda_N) \% 1_N$. Since $\lambda_N = \sum_{i=1}^{N} (1_N - \lambda_N) \% 1_N$, by proposition 3.1., $\lambda_N = \sum_{i=1}^{N} (1_N - \lambda_N) \% 1_N$, neutrosophic pre $\lambda_N = \sum_{i=1}^{N} (1_N - \lambda_N) \% 1_N$, where $\lambda_N = \sum_{i=1}^{N} (1_N - \lambda_N) \% 1_N$, where $\lambda_N = \sum_{i=1}^{N} (1_N - \lambda_N) \% 1_N$, where $\lambda_N = \sum_{i=1}^{N} (1_N - \lambda_N) \% 1_N$. Hence $\lambda_N = \sum_{i=1}^{N} (1_N - \lambda_N) \% 1_N$. Hence $\lambda_N = \sum_{i=1}^{N} (1_N - \lambda_N) \% 1_N$. Hence $\lambda_N = \sum_{i=1}^{N} (1_N - \lambda_N) \% 1_N$. Hence $\lambda_N = \sum_{i=1}^{N} (1_N - \lambda_N) \% 1_N$.

Proposition 4.4 If a fuzzy neutrosophic topological space (X_N, T_N) is a fuzzy neutrosophic pre σ -Baire space, then no non-zero fuzzy neutrosophic pre-open set is a fuzzy neutrosophic σ -first category set in (X_N, T_N) .

Proof. Let λ_N be a non-zero fuzzy neutrosophic pre-open set in a fuzzy pre σ -Baire space (X_N, T_N) . Suppose that $\lambda_N = \overset{\overset{\smile}{Z}}{\underset{z^{-1}}{\otimes}} (\lambda_N)_{\underline{i}}$, where the fuzzy neutrosophic sets (λ_N, T_N) are fuzzy neutrosophic pre σ -nowhere dense sets in (X_N, T_N) . Then $pint(\lambda_N) = pint(\overset{\overset{\smile}{Z}}{\underset{z^{-1}}{\otimes}} (\lambda_N)_{\underline{i}})$. Since (X_N, T_N) is a fuzzy neutrosophic pre σ -Baire space, $pint(\overset{\smile}{Z}_{\underline{i}}^{B} (\lambda_N)_{\underline{i}}) = 0_N$. This implies that, $pint(\lambda_N) = 0_N$. Then we will have $\lambda_N = pint(\lambda_N) = 0_N$, a contradiction. Since λ_N is a non-zero fuzzy neutrosophic set in (X_N, T_N) . Hence no non-zero fuzzy neutrosophic pre-open set is a fuzzy neutrosophic pre σ -first category set in (X_N, T_N) .

III. Conclusion

In this study, we have introduced and analyzed the concept of fuzzy neutrosophic pre σ -Baire Spaces, extending classical and fuzzy Baire space theories into the neutrosophic framework. The work lays a foundation for further exploration of fuzzy neutrosophic spaces in advanced topology, particularly in applications involving decision-making, artificial intelligence and Information systems, where vagueness and indeterminacy play a critical role.

References

- [1] Arockiarani I.; J. Martina Jency. More On Fuzzy Neutrosophic Sets And Fuzzy Neutrosophic Topological Spaces., International Journal Of Innovative Research & Studies, Volume 3(5), 2014, 643-652.
- [2] Arockiarani I.; I. R. Sumathi.; J.Martina Jency. Fuzzy Neutrosophic Soft Topological Spaces. International Journal Of Mathematical Archive, Volume 4(10), 2013., 225-238.
- [3] Chang C.L., Fuzzy Topological Spaces, Journal Of Mathematical Analysis And Applications. Volume 24(1), 1968., 182-190.
- [4] Fatimah M. Mohammed I X And Anas A. Hijab 1 And Shaymaa F. Matar I. Fuzzy Neutrosophic Weakly-Generalized Closed Sets In Fuzzy Neutrosophic Topological Spaces, J. University Of Anbar For Pure Science: Vol. 12(2), 2018, 63-73.
- [5] Poongothai,E.; Kalaivani, E. Neutrosophic Σ-Baire Spaces On Fuzzy Setting. Journal Of Xedian University, 2024, Volume 18(1,) Pp. 253-264.
- [6] Poongothai, E.; Kalaivani, E. A Characterzation Of Neutrosophic Σ-Baire Space On Fuzzy Setting. Neutrosophic Sets And Systems, 2025, Volume 83, Pp. 87-95.
- [7] Poongothai,E.; Kalaivani, E. Some Remarks On Fuzzy Neutrosophic Σ-Baire Spaces And Other Fuzzy Neutrosophic Spaces, Communicated To The Journal Of Neutrosophic Sets And Systems.
- [8] Poongothai,E.; Kalaivani, E. Fuzzy Neutrosophic Regular Σ-Baire Space. Communicated To The Journal Of Neutrosophic Sets And Systems.
- [9] Ganesan Thangaraj.; Eswaran Poongothai. A Note On Fuzzy Σ-Baire Spaces, Annals Of Fuzzy Mathematics And Informatics, 2015, Volume 9(2), Pp. 197-203.
- [10] Poongothai, E.; Padmavathi, E. Baire Spaces On Fuzzy Neutrosophic Topological Spaces. Neutrosophic Sets And Systems, 2022, Volume 51(1), Pp. 708-723.
- [11] Poongothai, E.; Padmavathi, E. On Fuzzy Neutrosophic Directed Baire Spaces And Characterizations Of Other Fuzzy Neutrosophic Spaces, Mukt Shabd Journal, 2023, Volume 12(12), Pp. 570-586.
- [12] Poongothai, E.; Padmavathi, E. C-Almost P-Spaces And Other Spaces On Fuzzy Neutrosophic Topological Spaces. International Journal Of Advanced Research In Science, Engineering And Technology, Nov. 2023, Volume 10(11).
- [13] Thangaraj, G.; Poongothai, E. On Fuzzy Σ-Baire Spaces, International Journal Of Fuzzy Math. And Sys., 2013, Volume 3(4), Pp.

- 275-283.
- [14] Thangaraj, G.; Poongothai, E., On Fuzzy Regular Σ-Baire Spaces, Advances In Fuzzy Mathematics, 2014, Volume 9(1), Pp. 95-104.
- [15] Thangaraj, G.; Poongothai, E., On Fuzzy Pre-Σ-Baire Spaces, Advances In Fuzzy Mathematics, 2016, Volume 11(1), Pp. 39-49.
- [16] Turksen I., Interval-Valued Fuzzy Sets Based On Normal Form, Fuzzy Sets And Systems, Vol 20, 1986., 191-210.
- [17] Salama A.A., And S.A.Alblowi, Neutrosophic Sets And Neutrosophic Topological Spaces, IOSR Journal Of Mathematics, Volume 3(4), 2012.
- [18] Salama A.A., Generalized, Neutrosophic Set And Generalized Neutrosophic Topological Spaces, Computer Science And Engineering, Volume 2(7),Ll 2012., 129-132.
- [19] Smarandache Fuzzy, Neutrosophic Set, A Generalization Of The Intuitionistic Fuzzy Sets, Inter.J.Pure Appl.Math., Volume 24, 2005., 287-297.
- [20] Veereswari V., An Introduction To Fuzzy Neutrosophic Topological Spaces, IJMA, Volume 8(3), 2017., 144-149.
- [21] Zadeh L.A., Fuzzy Sets, Information And Control, Volume 8, 1965, 338-353.