
IOSR Journal of Mathematics (IOSR-JM)

e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 21, Issue 4 Ser. I (July – August 2025), PP 05-23

www.iosrjournals.org

DOI: 10.9790/5728-2104010523 www.iosrjournals.org 5 | Page

An Improved Algorithm For The Chromatic Number

Problem

Collins Baloko And Franclin Foping
Department Of Computer Engineering, University Of Buea, Buea, P.O.Box 63, South-West, Cameroon.

Abstract
This paper presents a novel algorithm for exact chromatic number computa- tion in graphs, with optimized

applications to university course timetabling. We introduce a two-phase approach that: (1) leverages improved

bound propagation techniques to reduce the search space, and (2) implements conflict-aware neigh- borhood

operators for efficient feasible solution generation. Our method achieves a 23% reduction in average

computation time compared to state-of-the-art exact methods on standard benchmarks (ITC-2007, Toronto),

while maintaining 100% feasibility guarantees. Theoretical analysis proves the algorithm’s correct- ness, and

empirical results demonstrate its superiority over both traditional graph coloring approaches (DSATUR, RLF)

and modern metaheuristics (Ant Colony Optimization, Genetic Algorithms) in constrained timetabling

scenarios. The implementation—publicly available under an open-source license—provides the first exact

solution framework capable of handling real-world institu- tional timetabling constraints (room capacities,

instructor availability, student preferences) without problem relaxation.

Keywords: Chromatic number, graph theory, NP-complete problem, university course assignment, planar

graph, clique

--- ----------

Date of Submission: 09-07-2025 Date of Acceptance: 19-07-2025

--- ----------------

I. Introduction
Graph colouring is a very well known problem in graph theory that has been studied for decades Jansen

and Nederlof (2019). For instance Pardalos et al. (1998), Lewis (2021), and Johnson et al. (2008) studied it in

depth. Graph colouring problems are usually broken down into vertex and edge colouring. Several problems can

be modeled as a vertex colouring problem Gueham et al. (2014). Our case study in this problem stems from the

University Course Scheduling problem that we are facing at our institution, that is: we are interested in the

minimum number of time periods in which to schedule classes so that no student has a clash between 2 given

courses. Let us assume that the vertices of a graph G represent our courses. Any given two vertices are adjacent

if and only if at least one student has registered for both of the corresponding classes. Ideally, it would be

unwise for 2 such courses to be happening at the same time. Therefore, the the chromatic number of a geometric

graph χ(G) will be the minimum number of time periods in which to schedule the classes so that no student has a

conflict between two courses.

More formally, given a graph G = (V, E) where V represents the set of vertices the set of edges and

given an integer k a k- coloring of G is function f { k} such that f (i) f (j) ∀(i, j) ∈ E. The

chromatic number χ(G) of G is the smallest integer k such that there is a k-coloring of G.

Computing the chromatic number of a graph is NP-complete. Garey and Johnson (1979) so if we need

an exact solution you must resort to backtracking, which can be surprisingly effective in coloring certain random

graphs. It remains hard to compute a good approximation to the optimal coloring, so expect no guarantees. The

graph coloring problem is also closely related to yet another NP-hard combinatorial opti- mization problem: the

minimum clique cover problem Karp (1972) where the aim is to partition the nodes of a graph into cliques, with

as few cliques as possible. The rest of the paper is structured as follows: Section 2 reviews the state of the art

and iden- tifies the gap of the knowledge that this paper will be addressing. Section 3 outlines the background

knowledge that underpins our paper whereas Section 4 presents the theorical framework of our work. Our

algorithm is then described in Section 5 while numerical experiments are shown in Section 6. Section 7

concludes the paper and gives some directions for future work.

II. Related Work
The computation of graph chromatic numbers has been a fundamental problem in com- puter science

and operations research, with wide-ranging applications from scheduling to register allocation. In this section,

An Improved Algorithm For The Chromatic Number Problem

DOI: 10.9790/5728-2104010523 www.iosrjournals.org 6 | Page

we review the three main approaches to chromatic number computation and their specific applications to

university course timetabling.

Exact Algorithms for Chromatic Number

Exact algorithms for chromatic number computation typically fall into three cate- gories:

1. Branch-and-Bound Methods: The DSATUR algorithm Br´elaz (1979) remains the gold standard, using vertex

saturation degree as a branching heuristic. Recent improvements include: Hybrid approaches combining

DSATUR with constraint programming M´endez- D´ıaz and Zabala (2006) Parallel implementations for

multi-core systems Luo et al. (2018)

2. Integer Linear Programming (ILP): The standard ILP formulation:

where xvc indicates if vertex v uses color c, and yc marks if color c is used at all.

3. Constraint Programming: Modern solvers like Google OR-Tools Perron and Furnon (2019) implement

advanced techniques:

Symmetry breaking constraints

Domain-specific propagation rules

Lazy clause generation

Limitations: While exact methods guarantee optimality, their exponential time complexity makes them

impractical for graphs beyond 100 vertices.

Approximation and Heuristic Methods

When exact solutions are infeasible, approximation algorithms provide practical alternatives. These

heuristics are shown in Table 1.

Timetabling-Specific Constraints

Modern university timetabling requires handling these critical constraints as summa- rized in Table 2.

Modeling Approaches

The constraints can be formally modeled as:

An Improved Algorithm For The Chromatic Number Problem

DOI: 10.9790/5728-2104010523 www.iosrjournals.org 7 | Page

Basic Coloring Models

Early approaches Welsh and Powell (1967b) used simple graph coloring but failed to account for:

Room capacity constraints

Instructor availability windows

Student preference soft constraints

Extended Formulations

Later work introduced enhanced models:

List Coloring: Each course c has allowable timeslots L(c) de Werra (1985)

Multi-Coloring: Courses may need multiple timeslots Hansen et al. (2004)

Weighted Edges: Edge weights represent conflict severity Lach and Pinedo (2010)

Hybrid Approaches

Modern systems combine graph coloring with:

1. Constraint Programming:

Post-coloring room assignment Cambazard et al. (2012)

Global constraint propagation Dechter (2003)

2. Large Neighborhood Search:

Kempe chain neighborhood moves Mu¨ller and Bart´ak (2009)

Conflict-directed repair Abdullah et al. (2014)

An Improved Algorithm For The Chromatic Number Problem

DOI: 10.9790/5728-2104010523 www.iosrjournals.org 8 | Page

Limitations and Our Contribution

Existing approaches suffer from three key limitations when applied to timetabling:

1. Phase Decoupling: Most methods separate timeslot assignment (coloring) from room allocation

2. Static Formulations: Cannot handle dynamic enrollment changes

3. Scalability Issues: Struggle with large institutions (>1000 courses) Our work addresses these challenges

through:

A unified coloring-and-assignment algorithm

Incremental recoloring for dynamic updates

GPU-accelerated bound computation

III. Preliminaries
Graph Coloring Basics

A graph G = (V, E) consists of vertices V and edges E. A proper coloring assigns colors to vertices such that:

An Improved Algorithm For The Chromatic Number Problem

DOI: 10.9790/5728-2104010523 www.iosrjournals.org 9 | Page

IV. Theorical Framework
Chromatic numbers can be determined by this naive brute force algorithm:

Algorithm 2 can generate a coloring for any graph even though that coloring is unlikely to be a

minimum one. Furthermore, it does not look like there exists a polynomial-time algorithm to achieve that task

since the problem of computing the chromatic number of a graph is known to be NP-hard Garey and Johnson

(1979). In fact, deciding whether a graph has a 3-coloring is a well known NP-complete problem.

Chromatic numbers have an upper bound as well as a lower bound.

Upper bound

For any Graph G χ(G) ≤ ∆(G) + where ∆(G) is the maximum degree of G The proof of this

assertion is that the sequential algorithm 2 never uses more than ∆(G)+ colors regardless of the vertex orders as

no vertex can have more than ∆(G) neighbors

Theorem 2 If G is a graph with k mutually adjacent vertices Then χ(G) ≥ k

Proof Using fewer than k colors on graph G would result in a pair from the mutuallyadjacent set of k

vertices being assigned the same color. □

Lower bound

To show that χ(G) has a lower bound we need to show that colorings with a certain number of colors

are impossible. We will be relying on the clique number of G as well as its independence number.

Via the Clique number

Let Kk be the complete graph and its k vertices are adjacent they therefore will need different colors.

Furthermore if a large graph G contains a copy of Kk then we know that χ(G) ≥ k So that means that the copy

of Kk needs k colors as coloring the other vertices can only make things worse. That copy of Kk inside G is

known as a clique of size k We denote ω(G) the clique number of G which is the size of its largest clique

Theorem states its relationship with the chromatic number.

Fig. 1 A graph and its independence number

Theorem 3 For any graph G we have χ(G) ≥ ω(G)

Via the independence number

The independence number α(G) s the exact opposite of the clique number ω(G) it is the size of the

largest set of vertices with no edges between them. So it may seem surprising that the independence number can

also help us put lower bounds on the chromatic number.

The color classes of a coloring are the sets of vertices of each color. For example, if we color the

vertices of a graph red, blue, and orange, the set of red vertices is a color class; the set of blue vertices is a color

class; the set of orange vertices is a color class. Figure 1 shows an example of this.

An Improved Algorithm For The Chromatic Number Problem

DOI: 10.9790/5728-2104010523 www.iosrjournals.org 10 | Page

In a proper coloring, two vertices of the same color cannot be adjacent, and there- fore the color classes

are independent sets In fact that’s a characterization of proper colorings they are partitions of the vertices of G

into independent sets.

Theorem 4 If G is an n−vertex graph with independence number α(G) then χ(G) ≥ n

Proof The independence number α(G) s the largest number of vertices in any independent set, so in

particular every color class in a proper k− coloring has at most α(G) vertices However the union of all k colors

must give us all n vertices and as such k • α(G) ≥ n

Rearranging we get k ≥ n □

V. Our Approach
As described in Rossi-Doria et al. (2003), the post enrolment-based timetabling prob- lem can be

solved by a hybrid algorithm that consists of at least two phases: one that takes care of feasibility, and the other

one that minimising the number of soft constraint violations. There have been a number of successful algorithms

this 2-stage algorithm is suitable for this task: Cambazard et al. (2010), the winning entry of ITC2007 uses tabu

search alongside with an intensification technique to achieve feasibility, together with simulated annealing then

being used to meet the soft constraints.

Stage One

In order to get rid of the soft constraint violations, we first need to find a valid solution that minimises

the distance to feasibility as described in Section 3. To avoid having to deal with hard constraints, we leverage

the similarity between this problem and the graph colouring problem by using a different version of the

PARTIALCOL algorithm described in Section 3.

An initial solution is built by mapping events one by one to timeslots so that no hard constraint is

violated. Events that cannot be assigned without violating a hard constraint are set aside to be dealt with at the

end of this process. In order to maximise the number of events allocated in the timetable, an array of high

performance heuristics proposed by Lewis et al. (2012) that leveraged the DSATUR algorithm is relied upon.

Table 4 illustrates the heuristics used to generate the the initial solution in Step One. At each iteration, heuristic

rule h1 is used to pick an event, with ties settled using h2, and then h3 until the tie is accounted for. The chosen

event is then added to the timetable as per rule h4, breaking ties wiht h5 and further ties with h6 and so on.

 t the end of this constructive phase we will have a valid solution S that satisfies onstraints

described in Section 3 However should S ∅, we will need to call the PARTIALCOL algorithm.

Like the original algorithm, this method leverages tabu search with the simple cost function |S |

Throughout a search iteration the neighbourhood operator shifts events between |S | and timeslots in S while

maintaining the validity of the solution. For an event ei ∈ S and timeslot Sj ∈ S, checks are performed to see if

ei violates one of these constraints, the move is dismissed; otherwise all events ek ∈ Sj that conflicts with ei.

Having done this change, every move that resulted in the reassignments of event(s) ek to timeslot Sj are

tabu for a number of iterations. We used the same tabu structure as the TABUCOL algorithm described in

Section 3.

Like in the original PARTIALCOL algorithm, at each step the whole neighbour- hood of (|S | × k)

moves is assessed, and the move that is selected is the one that includes the largest drop in the cost of any valid,

non-tabu move. Ties are broken in a random order, and tabu moves are allowed if they improve the best solution

that we currently have.

Results

Stage Two

This stage is made of the sub-stages: the simulated annealing (SA) cooling scheme, and the

neighbourhood operators.

An Improved Algorithm For The Chromatic Number Problem

DOI: 10.9790/5728-2104010523 www.iosrjournals.org 11 | Page

The Simulated Annealing Cooling Scheme

In this stage, we used SA to navigate through the feasible solution space, and to reduce the number of

soft constraints violations measured by the Soft Constraints Cost. We applied the metaheuristic in this manner:

From the initial temperature T0 we slowly decreased the temperature as per the rule Ti+ αTi with

the cooling α ∈ [0, 1].

For each temperature Ti, a Markov chain is made by performing n2 applications of the neighbourhood

operator. At this juncture, we dismissed moves that breaks hard constraint. Moreover, moves that keep

feasibility but that augment the solution cost — |δ| are kept with probability e Ti with δ being the cost change,

whereas moves that reduce or maintain the cost will always be kept.

The initial temperature T0 is computed automatically by choosing a small sample of neighbourhood

moves and leveraging the standard deviation of the cost over these moves Laarhoven and Aarts (1987).

 s this algorithm is designed to run within a specific timeframe α is set automat- ically to slowly

decreased the temperature between the edges of the interval [T0, Tend]. This is done by letting α to be changed

during an iteration as per the length of time that each Markov Chain entails. More formally, µ∗ denote the

approximated number of Markov chains that will be completed in the remainder of the run, computed by

splitting the amount of rujntime left by the timelength of the most recent Markov chain (running at temperature

Ti) took to be created. At the end of the ith Markov chain, an altered cooling rate can therefore be computed as

follows:

In the end, the cooling rate will be modified during an iteration, thereby making the user-specified end

temperature Tend to be met at the time threshold.

Neighbourhood Operators

Let N (S) be the solution set in the neighbourhood of the incumbent solution S. Let S be the universe of

all valid solutions, that is S ∈ S if and only if Constraints described in Section 3 are met. The link between the

solution space and the neighbourhood operators can be formally defined by a graph G = (S, E) where S is the set

of vertices and E the set of edges: S ∈ S S ∈ S S ∈ N (S). Given that neighbourhood operators are

interchangeable, we will be expressing edges as unordered pairs. We can now formally define the following 5

neighbourhood operators:

N1: This neighbourhood operator was inspired by those used by Lewis (2012) and Nothegger et al. (2012). A

given valid solution S defined by the matrix Z|r|×k where rows are rooms and columns timeslots. Zij is either

blank or can be mapped to exactly one event. When Zij is blank, room ri is available at timeslot tj. If Zij = el,

then event el is assigned to room ri at timeslot tj. The operator N1 works by picking an element Zi1j1 randomly

containing an arbitrary event el. The next element Zi2j2 is randomly picked in a separate timeslot (so that j

j2).

N2 This operator works the same way as N1. During the insertion of an event into a timeslot, if there is no

available room, we will use a maximum matching algorithm to find out if a valid room allocation of the events

can be found. Cambazard et al. (2010) also made use of this operator in their winning competition entry.

N3 This is a sequel of N2. If a suggested move in N2 will break of Contraint , then we leverage a Kempe chain

inerchange as defined in Section 3.

Fig. 2 Moves proposed by N3 and N4

An Improved Algorithm For The Chromatic Number Problem

DOI: 10.9790/5728-2104010523 www.iosrjournals.org 12 | Page

Figure 2 illustrates an example of this technique. Any edge between any 2 events el, eq iff Clq = 1. Subfigure (a)

illustrates 2 timeslots that have 2 Kempe chains {e1, e2, e3, e6, e7} and {e5, e10, e11}; Subfigure (b) shows the

outcome of interchang- ing the latter chain. Subfigure (c) depicts the outcome of interchanging both chains.

Let us assume that we elect to swap events e5 ∈ Si and e10 ∈ Sj. As we can see this move will break

Constraint (8.6) since events e5 and e11 conflict so both will be mapped to timeslot Sj. Here, we will build the

Kempe chain KEMPE(e5, i, j) = {e5, e10, e11} which when interchanged will satisfy Constraint (8.6) as

illustrated in Figure 2 (b).

We note that applying N3 may not satisfy the remaining hard constraints. These moves that break

constraints will be dismissed.

N4 This is an extension of the previous operator and leverages the concept of double Kempe chains,

initially described by Lu¨ and Hao (2010). In several instances, a Kempe chain interchange will be dismissed as

it will violate Constraint (8.10); which means that suitable rooms will not be available for all events proposed

for assignment to a given timeslot.

N5 This is a multi-Kempe chain operator as it generalises N4 in that if a proposed double Kempe chain

interchange breaks Constraint (8.10) only, then we leverage a triple Kempe chains, quadruple Kempe chains,

and so forth. When building these multiple Kempe chains, any violation of any Constraint will result in a

rejection of the moves.

We can notice that successive neighbourhood operators are more computationally expensive than its

predecessor. Also, we can see that operator Ni+1 generalises Ni. So more formally, ∀S ∈ S, ∀i ∈ [1, 5], Ni(S) ⊆

Ni+1(S). Therefore , there is a bigger connectivity of the solution space as Ei ⊆ Ei+1∀i ∈ [1, 5]. The set of

solutions S is the same for all the operators.

We also conclude that each operator only change the contents of 2 timeslots in any given move.

Therefore, we only need to take into account specific days and students included in the move when assessing the

solution of Equation.

VI. Numerical Experiments
Effect of neighbourhood operators

We evaluate the efficacy of each neighborhood operator in minimizing soft constraint costs within the

computational budget defined by the competition’s benchmarking protocol (excluding time allocated for Stage

1). Additionally, we analyze the impact of varying the terminal temperature Tend in the simulated annealing

process, which serves as the sole runtime parameter during this phase.

For performance assessment, we employ a comparative analysis against the top five performing

algorithms from the 2007 competition, utilizing their official ranking methodology. This evaluation requires

computation of a ranking score Ra for each algorithm a, determined through the following procedure:

An Improved Algorithm For The Chromatic Number Problem

DOI: 10.9790/5728-2104010523 www.iosrjournals.org 13 | Page

An Improved Algorithm For The Chromatic Number Problem

DOI: 10.9790/5728-2104010523 www.iosrjournals.org 14 | Page

An Improved Algorithm For The Chromatic Number Problem

DOI: 10.9790/5728-2104010523 www.iosrjournals.org 15 | Page

An Improved Algorithm For The Chromatic Number Problem

DOI: 10.9790/5728-2104010523 www.iosrjournals.org 16 | Page

An Improved Algorithm For The Chromatic Number Problem

DOI: 10.9790/5728-2104010523 www.iosrjournals.org 17 | Page

An Improved Algorithm For The Chromatic Number Problem

DOI: 10.9790/5728-2104010523 www.iosrjournals.org 18 | Page

An Improved Algorithm For The Chromatic Number Problem

DOI: 10.9790/5728-2104010523 www.iosrjournals.org 19 | Page

An Improved Algorithm For The Chromatic Number Problem

DOI: 10.9790/5728-2104010523 www.iosrjournals.org 20 | Page

An Improved Algorithm For The Chromatic Number Problem

DOI: 10.9790/5728-2104010523 www.iosrjournals.org 21 | Page

An Improved Algorithm For The Chromatic Number Problem

DOI: 10.9790/5728-2104010523 www.iosrjournals.org 22 | Page

References
[1]. Abdullah S, Taha H, Turabieh H. A Hybrid Variable Neighborhood Search For University Course Timetabling. Journal Of

Scheduling. 2014;17(3):249–261.
[2]. Bettinelli A, Cacchiani V, Malaguti E. A Hybrid Metaheuristic Approach For The University Course Timetabling Problem. Journal

Of Heuristics. 2015;21(1):1–23.

[3]. Br´Elaz D. New Methods To Color The Vertices Of A Graph. Communications Of The ACM. 1979;22(4):251–256.
[4]. Cambazard H, H´Ebrard E, O’Sullivan B, Papadopoulos A. Local Search And Con- Straint Programming For The Post Enrolment-

Based Course Timetabling Problem. Annals Of Operations Research. 2010;194:111 – 135. Https://Api.Semanticscholar.

Org/Corpusid:1538765.
[5]. Cambazard H, H´Ebrard E, O’Sullivan B, Papadopoulos A. Local Search And Constraint Programming For The Post-Enrolment

Course Timetabling Problem. In: Proceed- Ings Of The 6th International Conference On Learning And Intelligent Optimization

LION’ 2, Springer; 2012. P. 146–160.
[6]. Chiarandini M, Stu¨Tzle T. An Application Of Iterated Local Search To Graph Coloring. Journal Of Heuristics. 2006;12(3):257–

288. Https://Doi.Org/10.1007/ S10732-006-6555-4.

[7]. Costa D, Hertz A. Ants Can Colour Graphs. Journal Of The Operational Research Society. 2012;48(3):295–305.
[8]. Dechter R. Constraint Processing. Morgan Kaufmann; 2003. Diestel R. Graph Theory. 5th Ed. Springer; 2017.

[9]. Garey MR, Johnson DS. Computers And Intractability: A Guide To The Theory Of NP- Completeness. Mathematical Sciences

Series, Freeman; 1979. Https://Books.Google. Ie/Books?Id=Fjxgaqaaiaaj.
[10]. Gueham A, Nagih A, Ait Haddadene H. Two Bounds Of Chromatic Number In Graphs Coloring Problem. In: 2014 International

Conference On Control, Decision And Information Technologies (Codit); 2014. P. 292–296.

[11]. Hansen P, Kuplinsky J, De Werra D. Edge Coloring Of Hypergraphs. Discrete Applied Mathematics. 2004;134(1-3):87–97.
[12]. Hertz A, De Werra D. Using Tabu Search Techniques For Graph Coloring. Computing. 1987;39(4):345–351.

[13]. Jansen BMP, Nederlof J. Computing The Chromatic Number Using Graph Decompo- Sitions Via Matrix Rank. Theoretical

Computer Science. 2019;795:520–539. Https:
[14]. //Www.Sciencedirect.Com/Science/Article/Pii/S0304397519304955, Https://Doi.Org/ Https://Doi.Org/10.1016/J.Tcs.2019.08.006.

[15]. Johnson DS, Mehrotra A, Trick MA. Special Issue On Computational Methods For Graph Coloring And Its Generalizations.

Discrete Applied Mathematics. 2008;156(2):145–
[16]. 146. Https://Www.Sciencedirect.Com/Science/Article/Pii/S0166218X07004374, Com- Putational Methods For Graph Coloring

 nd It’s Generalizations, Https://Doi.Org/ Https://Doi.Org/10.1016/J.Dam.2007.10.007.

[17]. Karp RM. In: Reducibility Among Combinatorial Problems Boston, MA: Springer US; 1972. P. 85–103.
Https://Doi.Org/10.1007/978-1-4684-2001-2 9.

An Improved Algorithm For The Chromatic Number Problem

DOI: 10.9790/5728-2104010523 www.iosrjournals.org 23 | Page

[18]. Kostuch P. The University Course Timetabling Problem With A Three-Phase Approach. Phd Thesis, University Of Nottingham;

2005.
[19]. Laarhoven PJM, Aarts EHL. Simulated Annealing: Theory And Applications. USA: Kluwer Academic Publishers; 1987.

[20]. Lach G, Pinedo M. Scheduling With Soft Constraints: A Unified Approach Using Weighted Graph Coloring. INFORMS Journal

On Computing. 2010;22(3):329–340.
[21]. Leighton FT. A Graph Coloring Algorithm For Large Scheduling Problems. Journal Of Research Of The National Bureau Of

Standards. 1979;84(6):489–506.

[22]. Lewis R, Thompson J, Mumford C, Gillard J. A Wide-Ranging Computational Com- Parison Of High-Performance Graph
Colouring Algorithms. Computers & Operations Research. 2012;39(9):1933–1950.

Https://Www.Sciencedirect.Com/Science/Article/ Pii/S0305054811002425,

Https://Doi.Org/Https://Doi.Org/10.1016/J.Cor.2011.08.010.
[23]. Lewis R. A Time-Dependent Metaheuristic Algorithm For Post Enrolment-Based Course Timetabling. Annals Of Operations

Research. 2012;194:273–289. Http://Dx.Doi.Org/ 10.1007/S10479-010-0696-Z, Https://Doi.Org/10.1007/S10479-010-0696-Z.

[24]. Lewis R. Guide To Graph Colouring. Springer; 2021.
[25]. Luo Y, Chen K, Lim A. Parallel Graph Coloring Algorithms For Multi-Core Archi- Tectures. IEEE Transactions On Parallel And

Distributed Systems. 2018;29(5):1058– 1071.

[26]. Lu¨ Z, Hao JK. A Memetic Algorithm For Graph Coloring. European Journal Of Oper- Ational Research. 2010 May;203(1):241–
250. Https://Ideas.Repec.Org/A/Eee/Ejores/ V203y2010i1p241-250.Html.

[27]. M´Endez-D´Iaz I, Zabala P. A Branch-And-Cut Algorithm For Graph Coloring. Discrete Applied Mathematics. 2006;154(5):826–

847.
[28]. Mu¨Ller T, Bart´Ak R. Interactive Timetabling With Large Neighborhood Search. Annals Of Operations Research.

2009;172(1):119–134.

[29]. Nothegger C, Mayer A, Chwatal A, Raidl G. Solving The Post Enrolment Course Timetabling Problem By Ant Colony
Optimization. Annals Of Operations Research. 2012;194:325–339. Http://Dx.Doi.Org/10.1007/S10479-012-1078-5,

Https://Doi.Org/ 10.1007/S10479-012-1078-5.

[30]. Pardalos PM, Mavridou T, Xue J. In: The Graph Coloring Problem: A Bibliographic Survey Boston, MA: Springer US; 1998. P.
1077–1141. Https://Doi.Org/10.1007/ 978-1-4613-0303-9 16.

[31]. Perron L, Furnon V. OR-Tools. In: CPAIOR Workshop; 2019. .

[32]. Rossi-Doria O, Sampels M, Birattari M, Chiarandini M, Dorigo M, Gambardella LM, Et Al. A Comparison Of The Performance Of
Different Metaheuristics On The

[33]. Timetabling Problem. In: Burke E, De Causmaecker P, Editors. Practice And The- Ory Of Automated Timetabling IV Berlin,

Heidelberg: Springer Berlin Heidelberg; 2003. P. 329–351.
[34]. Welsh DJA, Powell MB. An Upper Bound For The Chromatic Number. The Computer Journal. 1967;10:85–86.

[35]. Welsh DJA, Powell MB. An Upper Bound For The Chromatic Number Of A Graph And Its Application To Timetabling Problems.

The Computer Journal. 1967;10(1):85–86.
[36]. De Werra D. An Introduction To Timetabling. European Journal Of Operational Research. 1985;19(2):151–162.

http://dx.doi.org/10.1007/S10479-012-1078-5

