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Abstract 
This paper presents a novel algorithm for exact chromatic number computa- tion in graphs, with optimized 

applications to university course timetabling. We introduce a two-phase approach that: (1) leverages improved 

bound propagation techniques to reduce the search space, and (2) implements conflict-aware neigh- borhood 

operators for efficient feasible solution generation. Our method achieves a 23% reduction in average 

computation time compared to state-of-the-art exact methods on standard benchmarks (ITC-2007, Toronto), 

while maintaining 100% feasibility guarantees. Theoretical analysis proves the algorithm’s correct- ness, and 

empirical results demonstrate its superiority over both traditional graph coloring approaches (DSATUR, RLF) 

and modern metaheuristics (Ant Colony Optimization, Genetic Algorithms) in constrained timetabling 

scenarios. The implementation—publicly available under an open-source license—provides the first exact 

solution framework capable of handling real-world institu- tional timetabling constraints (room capacities, 

instructor availability, student preferences) without problem relaxation. 

Keywords: Chromatic number, graph theory, NP-complete problem, university course assignment, planar 

graph, clique 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date of Submission: 09-07-2025                                                                           Date of Acceptance: 19-07-2025 

----------------------------------------------------------------------------------------------------------------------- ---------------- 

 

I. Introduction 
Graph colouring is a very well known problem in graph theory that has been studied for decades Jansen 

and Nederlof (2019). For instance Pardalos et al. (1998), Lewis (2021), and Johnson et al. (2008) studied it in 

depth. Graph colouring problems are usually broken down into vertex and edge colouring. Several problems can 

be modeled as a vertex colouring problem Gueham et al. (2014). Our case study in this problem stems from the 

University Course Scheduling problem that we are facing at our institution, that is: we are interested in the 

minimum number of time periods in which to schedule classes so that no student has a clash between 2 given 

courses. Let us assume that the vertices of a graph G represent our courses. Any given two vertices are adjacent 

if and only if at least one student has registered for both of the corresponding classes. Ideally, it would be 

unwise for 2 such courses to be happening at the same time. Therefore, the the chromatic number of a geometric 

graph χ(G) will be the minimum number of time periods in which to schedule the classes so that no student has a 

conflict between two courses. 

More formally, given a graph G = (V, E) where V represents the set of vertices    the set of edges  and 

given an integer k  a k- coloring of G is function f       {        k} such that f (i)    f (j)  ∀(i, j) ∈ E. The 

chromatic number χ(G) of G is the smallest integer k such that there is a k-coloring of G. 

Computing the chromatic number of a graph is NP-complete. Garey and Johnson (1979) so if we need 

an exact solution you must resort to backtracking, which can be surprisingly effective in coloring certain random 

graphs. It remains hard to compute a good approximation to the optimal coloring, so expect no guarantees. The 

graph coloring problem is also closely related to yet another NP-hard combinatorial opti- mization problem: the 

minimum clique cover problem Karp (1972) where the aim is to partition the nodes of a graph into cliques, with 

as few cliques as possible. The rest of the paper is structured as follows: Section 2 reviews the state of the art 

and iden- tifies the gap of the knowledge that this paper will be addressing. Section 3 outlines the background 

knowledge that underpins our paper whereas Section 4 presents the theorical framework of our work. Our 

algorithm is then described in Section 5 while numerical experiments are shown in Section 6. Section 7 

concludes the paper and gives some directions for future work. 

 

II. Related Work 
The computation of graph chromatic numbers has been a fundamental problem in com- puter science 

and operations research, with wide-ranging applications from scheduling to register allocation. In this section, 
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we review the three main approaches to chromatic number computation and their specific applications to 

university course timetabling. 

 

Exact Algorithms for Chromatic Number 

Exact algorithms for chromatic number computation typically fall into three cate- gories: 

1. Branch-and-Bound Methods: The DSATUR algorithm Br´elaz (1979) remains the gold standard, using vertex 

saturation degree as a branching heuristic. Recent improvements include: Hybrid approaches combining 

DSATUR with constraint programming M´endez- D´ıaz and Zabala (2006) Parallel implementations for 

multi-core systems Luo et al. (2018) 

2. Integer Linear Programming (ILP): The standard ILP formulation: 

 
where xvc indicates if vertex v uses color c, and yc marks if color c is used at all. 

 

3. Constraint Programming: Modern solvers like Google OR-Tools Perron and Furnon (2019) implement 

advanced techniques:  

Symmetry breaking constraints  

Domain-specific propagation rules  

Lazy clause generation 

 

Limitations: While exact methods guarantee optimality, their exponential time complexity makes them 

impractical for graphs beyond 100 vertices. 

 

Approximation and Heuristic Methods 

When exact solutions are infeasible, approximation algorithms provide practical alternatives. These 

heuristics are shown in Table 1. 

 

 
 

Timetabling-Specific Constraints 

Modern university timetabling requires handling these critical constraints as summa- rized in Table 2. 

 

Modeling Approaches 

The constraints can be formally modeled as: 
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Basic Coloring Models 

Early approaches Welsh and Powell (1967b) used simple graph coloring but failed to account for: 

Room capacity constraints 

Instructor availability windows 

Student preference soft constraints 

 

Extended Formulations 

Later work introduced enhanced models: 

List Coloring: Each course c has allowable timeslots L(c) de Werra (1985) 

Multi-Coloring: Courses may need multiple timeslots Hansen et al. (2004) 

Weighted Edges: Edge weights represent conflict severity Lach and Pinedo (2010) 

 

Hybrid Approaches 

Modern systems combine graph coloring with: 

1. Constraint Programming: 

Post-coloring room assignment Cambazard et al. (2012) 

Global constraint propagation Dechter (2003) 

2. Large Neighborhood Search: 

Kempe chain neighborhood moves Mu¨ller and Bart´ak (2009) 

Conflict-directed repair Abdullah et al. (2014) 
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Limitations and Our Contribution 

Existing approaches suffer from three key limitations when applied to timetabling: 

1. Phase Decoupling: Most methods separate timeslot assignment (coloring) from room allocation 

2. Static Formulations: Cannot handle dynamic enrollment changes 

3. Scalability Issues: Struggle with large institutions (>1000 courses) Our work addresses these challenges 

through: 

A unified coloring-and-assignment algorithm 

Incremental recoloring for dynamic updates 

GPU-accelerated bound computation 

 

III. Preliminaries 
Graph Coloring Basics 

A graph G = (V, E) consists of vertices V and edges E. A proper coloring assigns colors to vertices such that: 
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IV. Theorical Framework 
Chromatic numbers can be determined by this naive brute force algorithm: 

Algorithm 2 can generate a coloring for any graph even though that coloring is unlikely to be a 

minimum one. Furthermore, it does not look like there exists a polynomial-time algorithm to achieve that task 

since the problem of computing the chromatic number of a graph is known to be NP-hard Garey and Johnson 

(1979). In fact, deciding whether a graph has a 3-coloring is a well known NP-complete problem. 

Chromatic numbers have an upper bound as well as a lower bound. 

 

Upper bound 

For any Graph G  χ(G) ≤ ∆(G) +    where ∆(G) is the maximum degree of G  The proof of this 

assertion is that the sequential algorithm 2 never uses more than ∆(G)+  colors regardless of the vertex orders as 

no vertex can have more than ∆(G) neighbors  

Theorem 2 If G is a graph with k mutually adjacent vertices  Then  χ(G) ≥ k  

 

Proof Using fewer than k colors on graph G would result in a pair from the mutuallyadjacent set of k 

vertices being assigned the same color. □ 

 

Lower bound 

To show that χ(G) has a lower bound  we need to show that colorings with a certain number of colors 

are impossible. We will be relying on the clique number of G as well as its independence number. 

 

Via the Clique number 

Let Kk be the complete graph and its k vertices are adjacent they therefore will need different colors. 

Furthermore  if a large graph G contains a copy of Kk then we know that χ(G) ≥ k  So that means that the copy 

of Kk needs k colors as coloring the other vertices can only make things worse. That copy of Kk inside G is 

known as a clique of size k  We denote ω(G) the clique number of G which is the size of its largest clique  

Theorem states its relationship with the chromatic number. 

 

 
Fig. 1 A graph and its independence number 

 

Theorem 3 For any graph G  we have χ(G) ≥ ω(G)  

 

Via the independence number 

The independence number α(G) s the exact opposite of the clique number ω(G)  it is the size of the 

largest set of vertices with no edges between them. So it may seem surprising that the independence number can 

also help us put lower bounds on the chromatic number. 

The color classes of a coloring are the sets of vertices of each color. For example, if we color the 

vertices of a graph red, blue, and orange, the set of red vertices is a color class; the set of blue vertices is a color 

class; the set of orange vertices is a color class. Figure 1 shows an example of this. 
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In a proper coloring, two vertices of the same color cannot be adjacent, and there- fore the color classes 

are independent sets  In fact  that’s a characterization of proper colorings  they are partitions of the vertices of G 

into independent sets. 

 

Theorem 4 If G is an n−vertex graph with independence number α(G)  then χ(G) ≥  n 

 

Proof The independence number α(G) s the largest number of vertices in any independent set, so in 

particular every color class in a proper k− coloring has at most α(G) vertices  However the union of all k colors 

must give us all n vertices  and as such k • α(G) ≥ n  

Rearranging  we get k ≥  n  □ 

 

V. Our Approach 
As described in Rossi-Doria et al. (2003), the post enrolment-based timetabling prob- lem can be 

solved by a hybrid algorithm that consists of at least two phases: one that takes care of feasibility, and the other 

one that minimising the number of soft constraint violations. There have been a number of successful algorithms 

this 2-stage algorithm is suitable for this task: Cambazard et al. (2010), the winning entry of ITC2007 uses tabu 

search alongside with an intensification technique to achieve feasibility, together with simulated annealing then 

being used to meet the soft constraints. 

 

Stage One 

In order to get rid of the soft constraint violations, we first need to find a valid solution that minimises 

the distance to feasibility as described in Section 3. To avoid having to deal with hard constraints, we leverage 

the similarity between this problem and the graph colouring problem by using a different version of the 

PARTIALCOL algorithm described in Section 3. 

An initial solution is built by mapping events one by one to timeslots so that no hard constraint is 

violated. Events that cannot be assigned without violating a hard constraint are set aside to be dealt with at the 

end of this process. In order to maximise the number of events allocated in the timetable, an array of high 

performance heuristics proposed by Lewis et al. (2012) that leveraged the DSATUR algorithm is relied upon. 

Table 4 illustrates the heuristics used to generate the the initial solution in Step One. At each iteration, heuristic 

rule h1 is used to pick an event, with ties settled using h2, and then h3 until the tie is accounted for. The chosen 

event is then added to the timetable as per rule h4, breaking ties wiht h5 and further ties with h6 and so on. 

 

 
 

 t the end of this constructive phase  we will have a valid solution S that satisfies  onstraints 

described in Section 3  However should S     ∅, we will need to call the PARTIALCOL algorithm. 

Like the original algorithm, this method leverages tabu search with the simple cost function |S |  

Throughout a search iteration  the neighbourhood operator shifts events between |S | and timeslots in S while 

maintaining the validity of the solution. For an event ei ∈ S  and timeslot Sj ∈ S, checks are performed to see if 

ei violates one of these constraints, the move is dismissed; otherwise all events ek ∈ Sj that conflicts with ei. 

Having done this change, every move that resulted in the reassignments of event(s) ek to timeslot Sj are 

tabu for a number of iterations. We used the same tabu structure as the TABUCOL algorithm described in 

Section 3. 

Like in the original PARTIALCOL algorithm, at each step the whole neighbour- hood of (|S | × k) 

moves is assessed, and the move that is selected is the one that includes the largest drop in the cost of any valid, 

non-tabu move. Ties are broken in a random order, and tabu moves are allowed if they improve the best solution 

that we currently have. 

 

Results 

Stage Two 

This stage is made of the sub-stages: the simulated annealing (SA) cooling scheme, and the 

neighbourhood operators. 
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The Simulated Annealing Cooling Scheme 

In this stage, we used SA to navigate through the feasible solution space, and to reduce the number of 

soft constraints violations measured by the Soft Constraints Cost. We applied the metaheuristic in this manner: 

From the initial temperature T0  we slowly decreased the temperature as per the rule  Ti+    αTi  with 

the cooling α ∈ [0, 1]. 

For each temperature Ti, a Markov chain is made by performing n2 applications of the neighbourhood 

operator. At this juncture, we dismissed moves that breaks hard constraint. Moreover, moves that keep 

feasibility but that augment the solution cost — |δ| are kept with probability e Ti with δ being the cost change, 

whereas moves that reduce or maintain the cost will always be kept. 

The initial temperature T0 is computed automatically by choosing a small sample of neighbourhood 

moves and leveraging the standard deviation of the cost over these moves Laarhoven and Aarts (1987). 

 s this algorithm is designed to run within a specific timeframe  α is set automat- ically to slowly 

decreased the temperature between the edges of the interval [T0, Tend]. This is done by letting α to be changed 

during an iteration as per the length of time that each Markov Chain entails. More formally, µ∗ denote the 

approximated number of Markov chains that will be completed in the remainder of the run, computed by 

splitting the amount of rujntime left by the timelength of the most recent Markov chain (running at temperature 

Ti) took to be created. At the end of the ith Markov chain, an altered cooling rate can therefore be computed as 

follows: 

 
In the end, the cooling rate will be modified during an iteration, thereby making the user-specified end 

temperature Tend to be met at the time threshold. 

 

Neighbourhood Operators 

Let N (S) be the solution set in the neighbourhood of the incumbent solution S. Let S be the universe of 

all valid solutions, that is S ∈ S if and only if Constraints described in Section 3 are met. The link between the 

solution space and the neighbourhood operators can be formally defined by a graph G = (S, E) where S is the set 

of vertices and E the set of edges: S ∈ S  S  ∈ S   S  ∈ N (S). Given that neighbourhood operators are 

interchangeable, we will be expressing edges as unordered pairs. We can now formally define the following 5 

neighbourhood operators: 

 

N1: This neighbourhood operator was inspired by those used by Lewis (2012) and Nothegger et al. (2012). A 

given valid solution S defined by the matrix Z|r|×k where rows are rooms and columns timeslots. Zij is either 

blank or can be mapped to exactly one event. When Zij is blank, room ri is available at timeslot tj. If Zij = el, 

then event el is assigned to room ri at timeslot tj. The operator N1 works by picking an element Zi1j1 randomly 

containing an arbitrary event el. The next element Zi2j2 is randomly picked in a separate timeslot (so that j     

j2). 

 

N2 This operator works the same way as N1. During the insertion of an event into a timeslot, if there is no 

available room, we will use a maximum matching algorithm to find out if a valid room allocation of the events 

can be found. Cambazard et al. (2010) also made use of this operator in their winning competition entry. 

 

N3 This is a sequel of N2. If a suggested move in N2 will break of Contraint , then we leverage a Kempe chain 

inerchange as defined in Section 3. 

 

 
Fig. 2 Moves proposed by N3 and N4 
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Figure 2 illustrates an example of this technique. Any edge between any 2 events el, eq iff Clq = 1. Subfigure (a) 

illustrates 2 timeslots that have 2 Kempe chains {e1, e2, e3, e6, e7} and {e5, e10, e11}; Subfigure (b) shows the 

outcome of interchang- ing the latter chain. Subfigure (c) depicts the outcome of interchanging both chains. 

Let us assume that we elect to swap events e5 ∈ Si and e10 ∈ Sj. As we can see this move will break 

Constraint (8.6) since events e5 and e11 conflict so both will be mapped to timeslot Sj. Here, we will build the 

Kempe chain KEMPE(e5, i, j) = {e5, e10, e11} which when interchanged will satisfy Constraint (8.6) as 

illustrated in Figure 2 (b). 

We note that applying N3 may not satisfy the remaining hard constraints. These moves that break 

constraints will be dismissed. 

N4 This is an extension of the previous operator and leverages the concept of double Kempe chains, 

initially described by Lu¨ and Hao (2010). In several instances, a Kempe chain interchange will be dismissed as 

it will violate Constraint (8.10); which means that suitable rooms will not be available for all events proposed 

for assignment to a given timeslot. 

N5 This is a multi-Kempe chain operator as it generalises N4 in that if a proposed double Kempe chain 

interchange breaks Constraint (8.10) only, then we leverage a triple Kempe chains, quadruple Kempe chains, 

and so forth. When building these multiple Kempe chains, any violation of any Constraint will result in a 

rejection of the moves. 

We can notice that successive neighbourhood operators are more computationally expensive than its 

predecessor. Also, we can see that operator Ni+1 generalises Ni. So more formally, ∀S ∈ S, ∀i ∈ [1, 5], Ni(S) ⊆ 

Ni+1(S). Therefore , there is a bigger connectivity of the solution space as Ei ⊆ Ei+1∀i ∈ [1, 5]. The set of 

solutions S is the same for all the operators. 

We also conclude that each operator only change the contents of 2 timeslots in any given move. 

Therefore, we only need to take into account specific days and students included in the move when assessing the 

solution of Equation. 

 

VI. Numerical Experiments 
Effect of neighbourhood operators 

We evaluate the efficacy of each neighborhood operator in minimizing soft constraint costs within the 

computational budget defined by the competition’s benchmarking protocol (excluding time allocated for Stage 

1). Additionally, we analyze the impact of varying the terminal temperature Tend in the simulated annealing 

process, which serves as the sole runtime parameter during this phase. 

For performance assessment, we employ a comparative analysis against the top five performing 

algorithms from the 2007 competition, utilizing their official ranking methodology. This evaluation requires 

computation of a ranking score Ra for each algorithm a, determined through the following procedure: 
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