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Abstract 
This paper explores the various factors that can cause service interruptions in queueing models and their 

consequences on system performance.We consider a single server queueing model with interruptions. 

These interruptions arise from a finite number of environmental factors.For a subset of these factors, the 

interruptionismild, allowingservicetocontinueatareducedrate.Thereisapossibilityfor self-correction of 

these mild interruptions, after which the server resumes service at the normal rate.The duration of 

uninterrupted service with a mild interruption is measured by an interruption clock.When this clock 

triggers, the server is taken out for repair, and the interrupted customer’s service resumes after the re- 

pair is complete.Interruptions caused by the remaining environmental factors are severe, 

immediatelyrequiringtheservertobetakenoutforrepair.Inthesesevere cases, considering the interruption’s 

severity, protected service is provided to the interrupted customer for the remaining phases of service.We 

analyze the stability of the system, calculate the steady-state probability vector using the matrix analytic 

method, and numerically substantiate important performance measures. keywords: Interruption, 

Environmental factor, Self-correction, Protected service, Interruption clock,Ignored interruption 
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I. Introduction 
Interruptions are a common Interruptions are an inherent part of various real-world systems, often 

influencing their operational efficiency.In queueing systems, service disruptions can have a profound 

impact on performance, altering queue dynamics and overall system effectiveness.These interruptions, 

characterized as temporary halts in the service process, have been widely studied in queueing theory to 

better understand theirimplications.FoundationalworkbyWhiteandChristie(1958)[16]establishedthe basis 

for research in this area, leading to extensive studies on queueing models incorporating service 

interruptions. For a comprehensive overview of such models, we refer readers to the work of A. 

Krishnamoorthy, Pramod P.K., and S.R. Chakravarthy (2012) 

[10].Incertainscenarios,tomitigatecustomerdissatisfaction,systemsmayattempttomaintain service continuity 

during interruptions whenever feasible.In practice, servers often continue operating during disruptions, 

albeit at reduced efficiency. 

Prior research typically assumed servers ceased service entirely during lengthy, un- predictable 

breakdowns.The concept of postponing interruptions until the service finishes is discussed by Gaver Jr D.P 

(1962) [5] and by Hans(J.P.C.)Blanc(2012) [7].Postponement of interruption refers to delaying the 

interruption until the current service 

finishes.KalidassandKasturi(2012)[8],andDeepa,KalidassandVijayalakshmi(2021)[1] considered a 

breakdown policy called working break down where customers receive service at a reduced rate when the 

system experiences partial failure.In [15] the authors examined M/M/1 queues with working breakdowns and 

delayed repair, in which thesystem is repaired immediately (with probability p) or continues to provide service 

for customers at a lower rate (with probability 1-p) when a breakdown occurs.For more related researches on 

queueing models with working breakdowns, interested readers are referred to Liu and Song(2014)[13], Liou 

(2015)[3], Chen, Yen, and Wang (2016)[2], and 

YangandCho(2019)[17].Intheseworksrelatedtoqueuewithinterruption,moreor 

lesstheinterruptedserviceisresumedorrestartedaftercompletionofinterruption. 

External shocks, often unpredictable and ranging from mild to destructive, can disrupt service 

processes.Identifying and promptly addressing the root causes of these shocks is crucial for maintaining 
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service process stability.The paper by A. Krishnamoorthy, Jaya and Lakshmi(2015) [11] presents a unique 

case of an M/M/1 queue where interruptions arise from a finite number of environmental factors and 

remain unidentified for a short duration.In [12] the interruption causing environmental fac- 

torsanddurationofinterruptionarethedecidingfactorsofwhethertorepeat, resume the service after 

interruption, or replace the server.In these cases, there is an equal probability of either server damage or 

self-correction of the interruption.Automatic systems increasingly incorporate self-correction, as 

exemplified by the recent work by 

HafaiedhandSlimane(2022)[6]ondesigningautonomoussystemsthatcanidentifyand fix problems 

themselves. These autonomic computing systems, inspired by the human body’s self-regulating nervous 

system, strive for a high degree of self-management.In [14], Jaya(2019) explores the concept of partially 

ignored interruptions with the possibilityofself-

correction.Additionally,protectedservice,discussedin[4]and[9]provides 

amechanismwhereservicecontinuesafterthefixationofinterruption,albeitwithsome modifications.Protected 

services offer a safety net that minimizes the impact of interruptions on your operations and customer 

satisfaction. 

Consider the example of a router transmitting a data packet.The transmission can be interrupted 

due to various environmental factors 

like,Lowsignalstrength:Servicecontinuesatareducedrate(retransmissionwitherror 

correction),Channelcongestion:Servicecontinuesatareducedrate(waitingforalesscongested slot),Hardware 

failure:The router is immediately taken offline for repair.The interruptedpacket transmission might be 

restarted with priority (protected service) after repair. 

Softwarecrash:Similartohardwarefailure,immediaterepairwithpotentialservice 

resumptionafterfixingthesoftwareissue.herearesomespecificadvantagestoconsideringaqueueingmodelwhere

aserverexperiencingapartialbreakdowncanstill provide service at a reduced capacity: 

• Reduced Customer Wait Times:Compared to a complete server breakdown, customers might experience 

some service even during the partial breakdown.This 

canhelpkeepthequeuemovingandpotentiallyreduceoverallwaitingtimes. 

• Maintaining System Functionality: Even with degraded performance, the server can continue to handle 

some requests.This is crucial for systems where even limited service is better than complete downtime, 

such as emergency hotlines or critical infrastructure.During a partial breakdown, even with slower 

service, the queue keeps moving compared to a complete shutdown. 

• improved System Efficiency:Self-correction minimizes downtime caused by interruptions.This allows 

the server to resume full or near-full capacity service quicker, leading to a faster reduction in queue 

length and waiting times. 

• Reduced Customer Dissatisfaction:Shorter wait times due to faster recovery 

frominterruptionstranslatetoabettercustomerexperience.Thisiscrucial for maintaining customer 

satisfaction, especially in situations where even minor delays can be frustrating. 

Every queuing model aims to achieve a balance between hassle-free service, minimal cost, and 

high customer satisfaction. In this model, we consider a single-server queueing system with Poisson 

arrivals and Erlang-distributed service times.Interruptionscan occur during service, and we will explore 

how the system handles them.Each interruption duration follows an exponential distribution.There are 

nenvironmental factors that can trigger these interruptions.However, if the interruption originates 

fromoneofthefirstmfactors,it’sconsideredmild.Insuchcases,servicecontinues at a reduced rate, and the 

interruption is essentially ignored. We introduce an ”interruption clock” that starts ticking upon any 

interruption.This clock’s duration is also exponentially distributed.During this time, there’s a chance for 

the interruption toself-correct,allowingservicetoresumeatthenormalratefromthehaltedphase.Ifself- 

correction occurs, the service rate returns to normal, the interruption clock stops and service continues for 

the customer.When the interruption clock reaches its limit, the 

serverundergoesrepair.Theinterruptedcustomer’sserviceresumesaftertherepairis complete.If a customer’s 

service is interrupted but finishes before the clock triggers repair, the next customer in line begins service 

on the (potentially still operational) 

interruptedserver.Interruptionscausedbytheremainingn−mfactorsareconsideredsevere.The server 

immediately goes for repair, bypassing the clock.Protected ser- vice—an uninterrupted service—is 

provided for the remaining duration of the affected customer’s service due to the critical nature of these 

interruptions. 

The rest of the paper is organized as follows.Section 2 provides a detailed description of the 

queueing model.The mathematical formulation of the queueing model is presented in Section 3. Section 4 

analyzes the behavior of the service process within the model. Key performance measures for the model 

are discussed in Section 5. Section 6 presents numerical examples to illustrate the model’s behavior. 
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Fig1:Modeldescription 

 

II. ModelDescription 
We consider a single-server infinite waiting space queueing system.Customers arrive according to 

a Poisson process with arrival rate λ. The customers are served in FIFO service order.Service times 

follow an Erlang distribution with shape parameter K and scale parameter µ.During service, interruptions 

can occur due to nenvironmental factors.These factors are ranked from 1 to n based on the severity of the 

interruption theycause.InterruptionstreamfollowaPoissonprocesswithparameterβ.Factor 

i,(1≤i≤n)triggersaninterruptionwithprobability pi.If the interruptions originate from one of the first m 

factors (m <n), it is considered mild.Then the actual service phasedoesnot change and the service 

continues at a reduced rate µi(i=1,2,...,m). 

Aninterruptionclockstarttickingattheonsetofinterruption.Thisclockisexponentiallydistributedwithparamete

r δi,(i= 1,2,...,m).During this interrupted service period, there is a chance for self-correction, which is 

exponentially distributed with parameterγi,i=1,2,...,m.Ifself-correctionoccurs, the service rate returns 

to µ.If thecustomerfinishestheirservicebeforeapre-definedrepairwindowopens(triggered 

byarandomclock),thesystemmovesontothenextcustomer(assumingitisstill 

operational).Oncetherepairwindowopens,theserverisautomaticallyflaggedfor repair.Interruptions caused 

by the remaining n −m factors are considered severe.The server immediately undergoes repair.The repair time 

depends on the specific environ- 

mentalfactorthatcausedtheinterruption.Eachfactorhasitsownassociatedrepair 

timedistribution,denotedbytheparameterηi,i=1,2,...,n.Oncetherepairiscomplete,theinterruptedserviceisr

esumedfromthehaltedphase.Serviceprotection, ensuring no further interruptions to the remaining service, is 

provided to the customer whoseservicewasdisruptedbythei
th

factor,wherei=m+1,...,n,starting from the 

moment service resumes following repair. 

 

3 Mathematical description 
 The behavior of the queueing system described above can be analyzed using a Markov chain. Let 𝑋 =  {𝑋(𝑡), 𝑡 ≥  0}  =
 {(𝑁(𝑡), 𝑆(𝑡), 𝐼1(𝑡), 𝐼2(𝑡)), 𝑡 ≥  0} where 𝑁(𝑡) is the number of customers in the system, S(t) is the status of the 
server, 𝐼1(𝑡) is the environmental factor causing interruption and  𝐼2(𝑡) is the phase of service:  

𝑆 𝑡 =

 
 
 

 
 

0 𝐼𝑓 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖𝑠 𝑖𝑑𝑙𝑒,
1, 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑤𝑖𝑡𝑕𝑜𝑢𝑡 𝑎𝑛𝑦 𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛,
2 𝑖𝑓 𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑒𝑑 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑔𝑜𝑖𝑛𝑔 𝑜𝑛,

3, 𝑖𝑓 𝑠𝑒𝑟𝑣𝑒𝑟 𝑢𝑛𝑑𝑒𝑟 𝑟𝑒𝑝𝑎𝑖𝑟,
4, 𝑖𝑓 𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑖𝑠 𝑔𝑜𝑖𝑛𝑔 𝑜𝑛,

.

  

The state space of the process is {(0, 0)  ∪ (𝑟, 1, 𝑖)  ∪ (𝑟, 2, 𝑗, 𝑖)  ∪  (𝑟, 3, 𝑙, 𝑖)  ∪  (𝑟, 4, 𝑖);  𝑟 =  1, . . . , ∞; 𝑖 =  1, . . . , 𝐾;  𝑗 =
 1, . . . ,𝑚;  𝑙 =  1, . . . , 𝑛}. 
The transitions in the Markov Chain and the corresponding rates are described below:  

 0, 0 
𝜆
  1, 1, 1 ,     

 0, 0 
−𝜆
   0, 0 , 

(1, 1, 𝐾)  
𝜇
   (0, 0), 

 (1, 2, 𝑗, 𝐾)
𝜇 𝑗
   (0, 2), 𝑗 =  1, . . . , 𝑚, 

 (1, 4, 𝐾)
𝜇
  (0, 0)  

The below given transitions are for 𝑟 =  2, . . . , ∞;  

(𝑟, 1, 𝑖) 
𝜇
  (𝑟, 1, 𝑖 +  1), 𝑓𝑜𝑟 𝑖 =  1, . . . , 𝐾 –  1 

(𝑟, 1, 𝐾) 
𝜇
  (𝑟 −  1, 1, 1), 

 (𝑟, 1, 𝑖)  
β𝑝𝑗
   (𝑟, 2, 𝑗, 𝑖) 𝑓𝑜𝑟 𝑖 =  1, . . . , 𝐾, =  1, . . . , 𝑚 
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 (𝑟, 1, 𝑖) 
β𝑝𝑗
  ( (𝑟, 3, 𝑗, 𝑖) 𝑓𝑜𝑟 𝑖 =  1, . . . , 𝐾, 𝑗 =  𝑚 +  1, . . . , 𝑛  

(𝑟, 2, 𝑗, 𝑖)
𝜇 𝑗
   (𝑟, 2, 𝑗, 𝑖 +  1) 𝑓𝑜𝑟 𝑖 =  1, . . . , 𝐾 −  1, 𝑗 =  1, . . . , 𝑚 

 (𝑟, 2, 𝑗, 𝐾)  
𝜇 𝑗
  (𝑟 −  1, 2, 𝑗, 1) 𝑓𝑜𝑟 𝑗 =  1, . . . , 𝑚  

(𝑟, 2, 𝑗, 𝑖)  
𝛿𝑗
  (𝑟, 1, 𝑖) 𝑓𝑜𝑟 𝑖 =  1, . . . , 𝜇𝐾, 𝑗 =  1, . . . , 𝑚 , 

 (𝑟, 2, 𝑗, 𝑖)
𝛾𝑗
   (𝑟, 3, 𝑗, 𝑖) 𝑓𝑜𝑟 𝑖 =  1, . . . , 𝐾, 𝑗 =  1, . . . , 𝑚 

(𝑟, 3, 𝑗, 𝑖)   
𝜂 𝑗
 (𝑟, 1, 𝑖) 𝑓𝑜𝑟 𝑖 =  1, . . . , 𝐾, 𝑗 =  1, . . . , 𝑚 

(𝑟, 3, 𝑗, 𝑖)  
𝜂 𝑗
  (𝑟, 4, 𝑖) 𝑓𝑜𝑟 𝑖 =  1, . . . , 𝐾, 𝑗 =  𝑚 +  1, . . . , 𝑛 

(𝑟, 4, 𝑖) 
𝜇
  (𝑟, 4, 𝑖 +  1) 𝑓𝑜𝑟 𝑖 =  1, . . . , 𝐾 −  1  

(𝑟, 4, 𝐾) 
𝜇
  (𝑟 −  1, 1, 1)  

(𝑟, 𝑙, 𝑖)   
𝜆
 (𝑟 +  1, 𝑙, 𝑖) 𝑓𝑜𝑟 𝑙 =  1 , 4. , 𝑖 =  1, . . . , 𝐾,  

(𝑟, 𝑙, 𝑗, 𝑖) 
𝜆
 (𝑟 +  1, 𝑙, 𝑗, 𝑖) 𝑓𝑜𝑟 𝑙 =  2, 3. , 𝑖 =  1, . . . , 𝐾, 𝑗 =  1, . . . , 𝑚  

(𝑟, 1, 𝑖)  
−𝜆−𝜇−𝛽
        (𝑟, 1, 𝑖), 𝑓𝑜𝑟 𝑖 =  1, . . . , 𝐾 

 (𝑟, 2, 𝑗, 𝑖)
−𝜆−𝜇 𝑗−𝛾𝑗−𝛿𝑗
             (𝑟, 2, 𝑗, 𝑖) 𝑓𝑜𝑟 𝑖 =  1, . . . , 𝐾, 𝑗 =  1, . . . ,𝑚 

 (𝑟, 3, 𝑗, 𝑖)
−𝜆−𝜂 𝑗
      (𝑟, 3, 𝑗, 𝑖) 𝑓𝑜𝑟 𝑖 =  1, . . . , 𝐾, 𝑗 =  1, . . . , 𝑛 

 (𝑟, 4, 𝑖)  
−𝜆−𝜇
     (𝑟, 4, 𝑖), 𝑓𝑜𝑟 𝑖 =  1, . . . , 𝐾 

The infinitesimal generator matrix of the process is given by                                                             

   𝑄 =

 
 
 
 
 
 
 
 
𝐵0 𝐵1 0
𝐵2 𝐴1 𝐴0

0 𝐴2 𝐴1 𝐴0

0 𝐴2

⋮
⋮ ⋮

𝐴1 𝐴0

𝐴2 𝐴1 𝐴0

𝐴2 𝐴1

⋯ ⋮

⋮ ⋱ ⋮
… ⋯ ⋱ 

 
 
 
 
 
 
 

 

Where 𝐵0 =  −𝜆 ,𝐵1 =  −𝜆    0 ,𝐵2is a column matrix of order (2 +  𝑚 +  𝑛)𝐾𝑋1𝐴0𝐴1 𝑎𝑛𝑑 𝐴2      are square matrices of 
order (2 +  𝑚 +  𝑛)𝐾. 

4 Analysis of service process 
 The service time follows PH distribution with representation (𝛼, 𝑆) where 𝛼 =  (1, 0, . . . , 0)1×(𝑚+𝑛+2)𝐾and 

𝑆=

 
 
 
 
𝐶0
′ 𝐶1

𝐶3 𝐶4
′

𝐶2 0
𝐶5 0

𝐶6 0
0 0

𝐶7
′ 𝐶8

0 𝐶9
′  
 
 
 

 

𝐶0
′  =  𝐶0 +  𝜆𝐼, 𝐶4

′  =  𝐶4  +  𝜆𝐼, 𝐶7
′  = 𝐶7  +  𝜆𝐼 𝑎𝑛𝑑  𝐶9

′ = 𝐶9  +  𝜆𝐼, 𝑤𝑕𝑒𝑟𝑒 𝐶0  𝑖𝑠 𝑎 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝐾. 

   𝐶0 𝑖, 𝑗 =  
−𝜆 − 𝜇 − 𝛽, 𝑓𝑜𝑟 𝑖 =  𝑗;

𝜇, for j =  i +  1; i =  1, . . . , K −  1
0, otherwise.

  

𝐶1 =  (𝛽𝑝′ ⊗  𝐼𝐾)𝐾×𝐾𝑚 , 𝐶2  =   0   𝛽𝑝′′ ⊗ 𝐼𝐾 𝐾×𝐾𝑚  where 𝑝 =  (𝑝 ′ , 𝑝′′) with 𝑝 ′ =  (𝑝1 , . . . ,  𝑝𝑚 ) and 𝑝 ′′ =
 (𝑝𝑚+1 , . . . ,  𝑝𝑛). 

Let 𝛾 =   

 
 
 
 
 
𝛾1

𝛾2

⋮
⋮
𝛾𝑚  
 
 
 
 

 then 𝐶3  =  𝛾 ⊗ 𝐼𝐾  and 𝐶4is a matrix of order 𝑚𝐾, 

   𝐶4(𝑖, 𝑗)  =  
𝜃𝑟 , 𝑓𝑜𝑟 𝑖 =  𝑗; 𝑖 =  (𝑟 −  1)𝐾 +  𝑙;  𝑟 =  1, . . . , 𝑚;  𝑙 =  1, . . . , 𝐾

  𝜇𝑟 , for i +  1 =  j, i =  (r −  1)K +  l;  r =  1, . . . , m;  l =  1, . . . , K −  1;  
0, otherwise.

  

𝑤𝑕𝑒𝑟𝑒 𝜃𝑟  =  −𝜆 −  µ𝑟  −  𝛾𝑟 − 𝛿𝑟 . 
𝐶5 is a matrix of order 𝑚𝐾 ×  𝑛𝐾, 

   𝐶5(𝑖, 𝑗)  =  
𝛿𝑡  𝑓𝑜𝑟 𝑖 =  𝑗; 𝑖 =  (𝑡 −  1)𝐾 +  𝑙, 𝑡 =  1, . . . , 𝑚;  𝑙 =  1, . . . , 𝐾

0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  

𝐿𝑒𝑡 𝜂 =  
 𝜂 ′

 𝜂 ′′
  with 𝜂 ′ =  (𝜂1 , 𝜂2 , . . . , 𝜂𝑚 ) 𝑇 and 𝜂 ′′ =  (𝜂𝑚+1, 𝜂𝑚+2, . . . , 𝑛) 𝑇then 

𝐶 6 =  
𝜂 ′ ⊗ 𝐼𝐾

0
 

(𝑛𝐾×𝐾)
. 𝐶7 is a matrix of order 𝑛𝐾, 

𝐶7(𝑖, 𝑗) =  
−𝜇𝑟 − 𝜆  𝑓𝑜𝑟 𝑖 =  𝑗; 𝑖 =  (𝑟 −  1)𝐾 +  𝑙, 𝑟 =  1, . . . , 𝑛;  𝑙 =  1, . . . , 𝐾

0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  

𝐶8 =  
0

𝜂 " ⊗ 𝐼𝐾
 

(𝑛𝐾×𝐾)

. . 𝐶9 is a matrix of order 𝐾, 
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   𝐶9(𝑖, 𝑗)  =  
−𝜆 − 𝜇 𝑓𝑜𝑟 𝑖 =  𝑗; 𝑖 =  (𝑟 −  1)𝐾 +  𝑙, 𝑙 =  1, . . . , 𝐾;

     µ, 𝑓𝑜𝑟 𝑗 =  𝑖 +  1; 𝑖 =  (𝑟 −  1)𝐾 +  𝑙, 𝑙 =  1, . . . , 𝐾 −  1;
0, otherwise.

  

The absorbing state is represented by𝑆0   =  𝐵2 which is a column matrix.  
• The response time of the service process, 𝐸(𝑆)  =  −𝛼𝑆 −1𝑒. 
• Hence the expected service rate µ𝑠  =  1/ 𝐸(𝑆) . 

 • Theorem:The queueing system is stable when 𝜆 < µ𝑠 . 
 
5 Stationary Distribution 
The stationary distribution, under the condition of stability, 𝜆 < µ𝑠of the model, has Matrix Geometric solution. Let 
𝜒 = (𝑥0 , 𝑥1 , 𝑥2 , . . . ) be the steady state probability vector of the Markov chain {𝑍(𝑡), 𝑡 ≥  0}. Each 𝑥𝑖  , 𝑖 >  0 are vectors 

with (2 +  𝑚 +  𝑛)𝐾 elements. We assume that 𝑥2=𝑥1𝑅, and 𝑥𝑖=𝑥1𝑅
𝑖−1 , 𝑖 ≥  2, where 𝑅 is the minimal non- negative 

solution to the matrix quadratic equation 𝑅2𝐴2 + 𝑅𝐴1 + 𝐴0 = 0. From 𝜒𝑄 = 0 we get𝑥0𝐵0 + 𝑥1𝐵2= 0. 
𝑥0𝐵1 + 𝑥1(𝐴1  +  𝑅𝐴2) = 0. Solving the above two equations we get 𝑥0 and 𝑥1 subject to the normalizing condition 
𝑥0𝑒 + 𝑥1(𝐼 −  𝑅)−1𝑒 = 1.  
5.1 Expected number of interruptions during the service of any customer 
Let 𝑁′ (𝑡) be the number of interruptions due to first m environmental factors during the service of a particular customer 

at time 𝑡. 𝑆(𝑡) be the status of the server at time 𝑡. 𝑆(𝑡)  =  

1,𝑤𝑕𝑒𝑛 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑖𝑠 𝑔𝑜𝑖𝑛𝑔 𝑜𝑛
          2, 𝑖𝑓 𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑒𝑑 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑖𝑠 𝑔𝑜𝑖𝑛𝑔 𝑜𝑛

3, 𝑆𝑒𝑟𝑣𝑒𝑟 𝑢𝑛𝑑𝑒𝑟 𝑟𝑒𝑝𝑎𝑖𝑟

  

𝐼1 𝑡  is the environmental factor causing interruption and 𝐼2 𝑡   is the phase of service. Then  𝑁′ 𝑡 , 𝑆 𝑡 𝐼1 𝑡 , 𝐼2 𝑡  , 𝑡 ≥

0is a Markov chain with state space  𝑟, 1, 𝑖 ∪  𝑟, 2, 𝑗, 𝑖 ∪  𝑟, 3, 𝑗, 𝑖 ; 𝑟 = 1,2, . . . ; 𝑖 = 1, . . . , 𝐾; 𝑗 = 1, . . . , 𝑚 ∪▽ where 
▽represents the absorbing state. The infinitesimal generator matrix of the process is 

𝑄 =

 
 
 
 
 
 
 
 

0 0 0
𝑈′2 𝑈′1 𝑈′0
𝑈2 0 𝑈1

. . .

. . .
𝑈0 . .

𝑈2     0   0
⋮ . .
⋮ ⋮ .

𝑈1 𝑈0 .
. . .
. . .

⋯ ⋮

⋮ ⋱ ⋮
… ⋯ ⋱ 

 
 
 
 
 
 
 

 

Where 𝑈 ′ 2 is a column matrix of order 𝐾 ×  1. 𝑈 ′ 2 =

 
 
 
 
 
0
0
0
⋮
µ 
 
 
 
 

 

𝑈′2 =

 
 
 

 
 −𝛽 𝑝𝑟  − 𝜇, 𝑓𝑜𝑟 𝑖 =  𝑗; 𝑖, 𝑗 =  1, . . . , 𝐾

𝑚

𝑟=1

𝜇, 𝑓𝑜𝑟 𝑗 =  𝑖 +  1; 𝑖 =  1, . . . , 𝐾 −  1
0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

  

𝑈 ′ 0 =  (𝛽𝑝′ ⊗  𝐼𝐾)𝐾×𝐾𝑚  
𝑈2 is a column matrix of order  1 + 2𝑚 𝐾 × 1 and 

   𝑈2(𝑖, 1)  =  

𝜇𝑗 , for i =  Kr;  r =  1, 2, . . . , m

𝜇, for i =  K(2m +  1); 
0, otherwise.

  

𝑈1 =  

𝐷0 𝐷1 𝐷2

0 𝐷3 𝐷4

0 0 𝐷5

 

 (1+2𝑚)𝐾×(1+2𝑚)𝐾

 

   𝐷0(𝑖, 𝑗)  =  
𝜈𝑟 , 𝑓𝑜𝑟 𝑖 =  𝑗; 𝑖 =  𝑟𝐾 +  𝑙;  𝑟 =  0, . . . , 𝑚 −  1;  𝑙 =  1, . . . , 𝐾;

  𝜇𝑟 , for i +  1 =  j, i =  rK +  l;  r =  0, . . . , m −  1;  l =  1, . . . , K −  1; 
0, otherwise.

  

where 𝜗𝑟  =  −µ𝑟  −  𝛾𝑟  −  𝛿𝑟 . 

   𝐷1(𝑖, 𝑗)  =  
𝛾𝑡  𝑓𝑜𝑟 𝑖 =  𝑗; 𝑖 =  (𝑡 −  1)𝐾 +  𝑙, 𝑡 =  1, . . . , 𝑚;  𝑙 =  1, . . . , 𝐾

0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  

𝐷2(𝑖, 𝑗)  =  𝛿 ⊗ 𝐼𝐾  and 

𝐷3(𝑖, 𝑗) =  
−𝜂𝑡   𝑓𝑜𝑟 𝑖 =  𝑗; 𝑖 =  (𝑟 −  1)𝐾 +  𝑙, 𝑟 =  1, . . . , 𝑚;  𝑙 =  1, . . . , 𝐾

0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  

𝐷4(𝑖, 𝑗) =  
𝜂𝑡   𝑓𝑜𝑟 𝑖 =  𝐾(1 +  𝑚 + (𝑟 −  1)) +  𝑗;  𝑟 =  1, . . . , 𝑚;  𝑗 =  1, . . . , 𝐾;

0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  

   𝐷5(𝑖, 𝑗)  =  
−𝛽 − 𝜇 𝑓𝑜𝑟 𝑖 =  𝑗;

     µ, 𝑓𝑜𝑟 𝑗 =  𝑖 +  1;
0, otherwise.
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𝐷0 =  
0 0 0
0 0 0
𝐷6 0 0

 

 (1+2𝑚)𝐾×(1+2𝑚)𝐾

 

𝐷6 =  (𝛽𝑝′ ⊗ 𝐼𝐾)𝐾 × 𝐾𝑚 
Let 𝑍𝐾  be the probability that there are exactly 𝐾 interruptions during the service of a customer due to first m 
environmental factors. 

𝑍𝑘 =  
𝛼(−𝑈1

′ )−1𝑈2
′ ,                                                                          𝑓𝑜𝑟 𝑘 =  0

𝛼[(−𝑈1
′ )−1𝑈0

′  (−𝑈1)−1𝑈0] 𝑘−1(−𝑈1)−1𝑈2,                      𝑓𝑜𝑟 𝑘 =  1, 2, 3, . . . .
  

• The expected number of interruptions due to first 𝑚 environmental factors during single service 𝐸(𝐼)  =  𝑘𝑍𝑘
∞
𝑘=0  

6 Performance measures  
The next step involves analyzing the steady-state probability vector to uncover crucial performance measures for the 
system. The important measures are as follows 

6.1 Expected waiting time  
We consider the customer who joined as the 𝑚𝑡𝑕 customer in the queue. During the time of arrival of 𝑚𝑡𝑕 customer one 
customer in the system may be in service or the server may be under repair and other customers are waiting in the queue. 
So the waiting time of the tagged customer is the time until absorption of the Markov 
chain 𝑊 =  {(𝑀(𝑡), 𝑆(𝑡), 𝐼1(𝑡), 𝐼2(𝑡)), 𝑡 ≥  0} where 𝑀(𝑡) is the rank of the tagged customer, 𝑆(𝑡), 𝐼1(𝑡) and 𝐼2(𝑡) are as 
defined in earlier sections. The waiting time of the tagged customer follows phase type distribution with 
representation (𝜔, 𝑇)where 

𝑇 =

 
 
 
 
 
 
 
 
𝑆 𝑆0𝛼 0
0 𝑆 𝑆0𝛼
0 0 𝑆

. . .
0 . .
𝑆0𝛼 0 .

0 . 0
⋮ . .
⋮ ⋮ .

𝑆 𝑆0𝛼 .
0 𝑆 𝑆0𝛼
. 0 𝑆

⋯ ⋮

⋮ ⋱ ⋮
… ⋯ ⋱ 

 
 
 
 
 
 
 

𝜔 is the initial probability vector. 

Depending on the state of the server at the time of joining, the expected waiting time of the tagged customer, 𝐸𝑊
𝑚  =

(−𝑆)−1 (𝐼 − (𝑆0𝛼𝑆−1 )𝑟−1 )(𝐼 − (𝑆0𝛼𝑆−1 )−1  )  𝑒. 
• The expected waiting time of any customer who waits in the queue,  

𝐸(𝑊)  =  𝑥𝑚

∞

𝑚=1

𝐸𝑊
𝑚  

6.2 Other important performance measures  
• Probability that the system is idle, 𝑃(𝐼)  =  𝑥0. 
• Probability that the system is working without interruption, 
 𝑃(𝑊 𝐼)  =  (𝑥𝑖1

∞
𝑖=1 𝑒 + 𝑥𝑖4𝑒) .  

• Probability that the system is under repair 𝑃(𝑅)  =  𝑥𝑖3
∞
𝑖=1 𝑒.  

• Probability that the system is under protection 𝑃(𝑝) =   𝑥𝑖4
∞
𝑖=1 𝑒 

• Expected number of customers in the system, 𝐸(𝐶)  =   𝑖𝑥𝑖
∞
𝑖=1 𝑒 

• Effective interruption rate,𝐸𝑖𝑛𝑡  =  𝛽  𝑖𝑥𝑖2
∞
𝑖=1 𝑒.  

 Effective rate of self correction,𝐸selfcorr   =  𝛿𝑗
𝑚
𝑗=1 𝑖𝑥𝑖2𝑗

∞
𝑖=1 𝑒 

• Effective rate of protection,𝐸protection  =  𝜂𝑗
𝑛
𝑗=𝑚+1 𝑖𝑥𝑖4𝑗

∞
𝑖=1 𝑒 

7 Numerical Illustrations 
 In this section assuming arbitrary values for the parameters, subject to stability, we obtained the numerical values for 
important performance measures. Let 𝑛 =  4,𝑚 =  2, µ =  7,  µ1  =  5, 𝜇2 =  4; 𝜂1 =  4, 𝜂2  =  3, 𝜂3  =  2, 𝜂4  =  1, 𝛽 =
 .5; 𝛾1 =  1,  𝛾2  =  2;  𝛿1  =  1,  𝛿2  =  .5;  𝑝1  =   𝑝2  =  𝑝3 =  𝑝4  =  0.25. The conclusion drawn are purely based on the 
values of input parameters. 

7.1 Effect of λ on various performance measures  
Table 1: Effect of 𝜆 on various performance measures  

𝝀 𝑬(𝑪) 𝑷(𝑰) 
   

1  0.9230 0.5012 

1.5  1.9157 0.3134 

2  3.5376 0.1910 

2.5  6.1867 0.1166 

3  10.5083 0.0716 

3.5  17.1259 0.0443 

4  24.7322 0.0276 

As the arrival rate 𝜆 increases the expected number of customers in the system 𝐸(𝐶) increases, but probability for idleness 
of the server 𝑃(𝐼) decreases which are on expected lines (refer Table 1). 
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7.2 Effect of µ on various performance measures 
 Assuming 𝜆 =  2 and varying µ we get the following values for different performance measures. 
Table 2: Effect of µ on various performance measures 

µ 𝑬(𝑺) 𝑬(𝑪) 𝑷(𝑰) 𝑷(𝑹) 𝑬𝒊𝒏𝒕 𝑬𝐬𝐞𝐥𝐟𝐜𝐨𝐫𝐫  
3  2.2897  29.2040  0.0175  0.1422  0.3322  0.0983 

4 1.7508 15.5352 0.0471 0.1437 0.3364 0.0978 

5 1.4180 8.0176 0.0891 0.1398 0.3281 0.0938 

6 1.1917  5.0105 0.1384 0.1338 0.3147 0.0885 

7 1.0279 3.5376 0.1910 0.1267 0.2986 0.0827 

8 0.9037 2.6963 0.2437 0.1192 0.2814 0.2814 

9 0.8063 2.16207 0.2946 0.1117 0.2641 0.0713 

As the initial service rate µ increases the expected service time 𝐸(𝑠), the expected number of customers in the system 
𝐸(𝐶), probability for repair 𝑃(𝑅), expected rate of interruption 𝐸𝑖𝑛𝑡 and expected rate of self correction 𝐸selfcorr  decrease 
but probability for idleness of the server 𝑃(𝐼) increase which are on expected lines. µ increases means number of service 
completion in unit time increases. So rate of self correction, rate of interruption and probability for repair in unit time 
reduces (see Table 2) 

7.3 Effect of β on various performance measures 
Table 3: Effect of β on various performance measures 

β 𝑬(𝑺) 𝑬(𝑪) 𝑷(𝑰) 𝑷(𝑹) 𝑬𝒊𝒏𝒕 𝑬𝐬𝐞𝐥𝐟𝐜𝐨𝐫𝐫  
0.5 1.4180 8.0176 0.0891 0.1398 0.3281 0.0938 

1 1.5863 11.0407 0.0688 0.2230 0.5230 0.1502 

2 1.8247 16.4010 0.0476 0.31577 0.7394 0.2140 

3 1.9818 20.3997 0.0373 0.3648 0.8539 0.2484 

4 1.9818 23.1333 0.0314 0.3946 0.9231 0.2695 

5 2.1691 24.9636 0.0277 0.4141 0.9685 0.2834 

From Table 3 we note that as the interruption rate 𝛽 increases effective service time 𝐸(𝑆), the expected number of 
customers in the system 𝐸(𝑆), probability for repair 𝑃(𝑅), expected rate of interruption 𝐸𝑖𝑛𝑡 and expected rate of self 
correction  
𝐸selfcorr   increases but probability for idleness of the server P(I) decrease which are on expected lines 

7.4 Effect of 𝜸 on various performance measures 
Table 4: Effect of 𝛾 on various performance measures 

𝜸 𝑬(𝑺) 𝑬(𝑪) 𝑷(𝑰) 𝑷(𝑹) 𝑬𝒊𝒏𝒕 𝑬𝐬𝐞𝐥𝐟𝐜𝐨𝐫𝐫  𝐄𝐩𝐫𝐨𝐭𝐞𝐜𝐭𝐢𝐨𝐧 

0.5 1.4069 7.7491 0.0915 0.1303  0.3254 0.1184 0.1627 

1 1.4136 7.9371 0.0898 0.1367 0.3283 0.1030 0.1642 

1.5 1.4192 8.0705 0.0887 0.1413 0.3302 0.0919 0.165 

2 1.4240 8.1718 0.0878 0.1448 0.3315 0.0832 0.1657 

2.5 1.4282 8.2523 0.0871 0.1475 0.3324 0.0763 0.1662 

3 1.4318 8.3184 0.0865 0.1498 0.3331 0.0705 0.1665 

3.5 1.4349 8.3739 0.0860 0.1517 0.33367 0.0656 0.1668 

Assuming 𝛾1 =  𝛾2 =  𝛾 and varying over its value we get the following table for different performance measures. As the 
interruption clock realization rate γ increases effective service time 𝐸(𝑆), the expected number of customers in the system 
𝐸(𝐶), probability for repair 𝑃(𝑅), expected rate of interruption 𝐸𝑖𝑛𝑡 increase but probability for idleness of the server 𝑃(𝐼) 
and expected rate of self correction 𝐸selfcorr  decrease which are on 
expected lines. Rate of protection decrease with increase in 𝛾. As the realization rate of interruption clock increase the 
server immediately goes for repair reducing the chance for self correction (see Table 4). 
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