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Abstract

Solidification and fusion are important processes applied in several fields of science and technology. Recently,
FAR beyond the realms of materials science and metallurgy, many applications have risen in latent heat thermal
energy storage and melting and growth of ice plates. Due to the relative difficulty in obtaining numerical solutions
for moving boundary problems for a wide range of space and time scales. No studies in the literature consider a
comprehensive first and second-order treatment of Biot number for phase change. This work proposes four
closed-form solutions for the transient solidification of pure and eutectic materials for one- and three-dimensional
semi-infinite slabs considering convective boundary conditions and melting superheat. This approach can predict
wide space and time scales by adding a first-order term in the parabolic profile to address the transition from
second to first-order similarity variables.
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. Introduction

It is well established that solidification and fusion are important processes applied in several fields of
science and technology [1]. Recently, for example, far beyond the fields of materials science and metallurgy,
many applications have emerged with regard to latent heat thermal energy storage (LHTES) and other methods
related to the melting and growth of ice sheets. On the other hand, the properties of materials are strongly
dependent on their composition, manufacturing process and particularly their structure. Solidification, for
example, plays a fundamental role in obtaining homogeneous materials and in controlling their structure in some
industrial processes, such as casting, laser welding, surface remelting and continuous casting. Therefore, the study
of the complex relationship between solidification parameters and the resulting microstructure is of growing
importance in the field of metallurgy for the development of increasingly suitable methods for quality casting in
the shipping, automotive, electronics and aerospace industries since the physical, metallurgical, mechanical, and
electrochemical properties of most materials depend mainly on the level of control that can be achieved during
liquid-solid phase change. Nevertheless, in many cases, complete details of the physical mechanisms related to
the formation of various types of structures in the obtained materials are not yet known [2].

By analysing theoretically and experimentally the solidification process, certain variables that effectively
act on the liquid-solid transformation are investigated because, during phase change, various physical-chemical
effects occur, which, if not properly controlled, can compromise the performance and quality of the final casting
part. In the initial moments when the phenomenon occurs, heat transfer is one of the main factors that has a
significant effect on the thermal variables involved, especially the cooling rate (TR) [3,4]. Thus, a better
understanding of the effect of thermal parameters on the formation of structural aspects is essential for planning
some industrial manufacturing processes.

It is known that heat conduction with phase change due to melting-freezing occurs in the transient
regime. The mathematical treatment of solidification becomes more challenging because it results in differential
equations with nonlinear boundary conditions at the moving interface [5-7], almost always requiring the
establishment of physical or mathematical simplifying hypotheses from real conditions so that analytical solutions
may be made viable. Despite this, numerous mathematical approaches have been proposed to provide an adequate
theoretical background for modelling the mechanisms by which heat is transferred in both the solid and liquid
domains in transformation as well as in the cooling fluid.

Studies have proposed analytical methods and numerical solutions to describe solidification, the results
of which, in some cases, are very close to those observed in various cases of practical interest. Nonetheless, it is
imperative to emphasize that the precision and control of their respective outcomes are directly correlated with
the properties of interest of the material under investigation, the boundary conditions assumed, and the physical
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and/or mathematical simplifications accepted. In this sense, the analytical methods [8-19] are limited to the study
of solidification in slabs due to the greater simplicity of the mathematical treatment as a result of their geometric
characteristics, which is the only case for which an exact solution has been obtained thus far. Therefore, they
present considerable limitations from the point of view of their practical application. One of the main advantages
of numerical methods [20-34] is that they allow more realistic boundary conditions to be accepted, for which it
would not be possible to obtain analytical solutions. The accuracy of these methods is generally quite high, but
they require the use of computational resources as well as a certain amount of complexity. These methods
generally lead to greater agreement with the results observed in practice. On the other hand, a large number of
experimental studies have also been performed to fulfil the same objective [35-54]. Another interesting technique
that has been widely used to determine the unsteady thermal variables acting during solid-liquid phase change is
the inverse heat conduction problem (IHCP), which is based on a mathematical description of the physical
mechanisms of the process supplemented with experimentally obtained temperature measurements in metals
and/or molds. The inverse problem is solved by adjusting the parameters in the mathematical description to
minimize the difference between the model-computed values and the experimental measurements [55-57].

In this work, closed-form solutions for the transient solidification of both pure and eutectic materials are
derived for one- and three-dimensional semi-infinite slabs considering convective boundary conditions and
melting superheat.

I1.  Mathematical Formulation
Analytical solutions are derived for one-phase and two-phase transient solidification of pure and eutectic
materials in one- and three-dimensional problems considering anisotropic media. An anisotropic medium can be
characterised by a dependency on thermophysical properties and space coordinates, i.e., for density p =

p(x,y,2) =/ pZ + p2 + pZ , specific heat ¢, = cp(x,y,2) = f Chy + c}y +ch, , thermal conductivity k =
k(x,y,z) =/ k% + ki + kZ and thermal diffusivity, « = a(x,y,z) = |/ a + a§ + aZ . Itis true, as for a 3D
problem, solutions are independently obtained in each direction 8(x,y,z,t) = 6,(x,t) -0, (y,t) - 6,(z,t) and
coupled with the solution of the similarity variable ¢ considering the moving boundary interface, png =

(ksVTs) | x= -5 — (k VT, |y +,, and position s = \/sZ + s2 + s2.

One-dimensional One-Phase Moving Boundary Problem

For the freezing/solidification of a pure metal/compound at the fusion temperature or eutectic
temperature, as shown in Figure 1, the governing partial differential equation and the initial and boundary
conditions for a semi-infinite slab are given by

9°Ts _ 1 9Ts

o2 as ot 0<x<s(t) Q)

t=0, 0<x<+4oo, T=Tg 2
aT

t>0,x=0,-k— =h(T —Ty) 3)
9xly=0

t>0x=s(),Ts =Tk 4)

t>0,x >+, Tg =Tp ®)

ds _ %
PSLE = ks % lyeg (6)
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Figure 1 Schematic representation of one-phase transient solidification.
The base solution for the solid phase is a well-known 1D one for a semi-infinite slab whose boundary

condition at z = 0 is of the third kind [58] for nonreaction problems. The temperature profile dependence on time
and space can be expressed as

_ x _ hx | hlast x hjast
T(x,t) —To = As + Bg {erfc (_zJa_st) exp (ks + 2 )erfc (2 = + e )} (7

where Ag and Bg are constants determined from the solid interface at s(t) = 0 and s(t) = s.

Fors =0,
Ts(s = 0, t) = TOO = AS + BS (8)

which is a consequence of a convective boundary condition already applied in the solution for x = 0
when the base function T (x, t) is derived, so that T¢(s = 0, t) cannot be admitted by T (x, t). In this sense, Bg is
a constant value that can be found as a function of the temperature profile at x = 0.

Forx =s,
_ _ _ s _ hs | h*ast s h.Jast
Ts(x =s,t) =Tp = Ag + Bs {erfc <2Ja_st> exp (ks + 2 )erfc (2 = + ™ )} 9)
. . . S e - - - . . N
By taking the parabolic profile et and writing it as a similarity variable ¢(s,t) = N Eq. (9) becomes
_ hs , h%s? hs
Tr = Ag + Bs {erfc((p) —exp (E + 4(P2k52) erfc ((p t 3 ks)} (10)
and,
h h2s? h
Tr = Ag + Bs {erfc((p) — exp (k—; + 4(’)25](?) erfc ((p + ” is)} (12)
Subtracting Eq. (12) from Eqg. (11) leads to
h h2s? h
T, — T = Bg {1 — erfc(p) + exp (k—ss + $25k§) erfc ((p + o0 is)} (13)

which gives B as

DOI: 10.9790/0661-2103010848 www.iosrjournals.org 10 | Page



A Semi-Infinite Closed-Form Analytical Solution For Solidification Under Convective.......

_ Too—TF
BS - {1 erfc((p)+exp(ﬂ+4’;25k2)erfc((p+2;1ks)} (14)

Similarly, the constant A can be determined as follows:

_ _ (Too—TF) _ h_ h2s
4s=Ts {I_erfcwexp(:;;=4f;2§,j§)erfc(¢:2;;;5);{6” o) = exp (2 + 32 erfe (0 + 570} (15)

The temperature profile can now be expressed in terms of constant Ag and B,

Ts(.x, t) - TF
T — Tr
x hx  hagt x h\/ hs , h%s? hs
{erfc (—2 a5t> exp(k + kzs >erfc <2\/as Ts )—erfc(<p) + exp (k + ka?) erfc ((p + ok )}

hs  h%s? hs
{1 — erfc(g) + exp (k + g02;{5‘2) erfc ((p to0k )}
(16)

Aiming to express the temperature profile in a more suitable form, the following auxiliary functions
Y (s, ) and {(s, @) can be defined as

Y(s,t) = {1 — erfc(¢) + exp (E + hzist) erfc ((p + h—vast>} (17a)
ks kg ks
hs | h2s
Y(s,p) = {1 —erfc(gp) + exp (E 4(p2k2) erfc ((p + ” ks)} (17b)
and,
{(s,t) = —erfc(¢p) + exp (E + hzazst) erfc <(p + h—“““) (18a)
ks ks ks
hs h“s
{(s,p) = —erfc(p) + exp (k_s 4(p2k2) erfc ((p + ” ks) (18b)
Substituting Eq. (17) and Eq. (18) into Eq. (16) yields
hx h“agt hjast
O O i 7 i 7 s ) (192)
Two-Tp P(st)
Ts(os)-Tr _ {erfc(<p§)—exp(2;+4};22i§>erfc(ws z(pi >+((s <p)} (19b)
To-TF Y(s,0)

The thermal gradient Ts(x, t) in the vicinity of boundary x = ~s is found by deriving the temperature
profile with respect to x, which has the following form:

aTs(s,t) _ Tr-Tw) | R hs | h%a h.as t) 2¢ _ 20 hs
ox ly==g Wt )ks exp (ks + k2 ) exp ((p + ks + V7 s exp(@?) h Jagt 21 ¢XP (ks +
vV s exp <<p+k—s>
hzast
- ) (20a)
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dTs(s,p) _ (Tr—Tw) h (E h? s2 ) ( hs ) 2¢ _ 2¢ (_s
ox  ly=—5 P(s,p) | ks P ks + 4 2 k2 exp\p + 20 ks + VT s exp(@?) VT s exp <<0+ "Z )2] exp ks +
29 kg
h? s?
4 @2 k§> (200)

A common way to write a solution of a partial differential equation to avoid instability concerning the
magnitude of the involved dimensional variables in the function evaluation is to express this in terms of
dimensionless numbers with physical meaning, such as Ste, Biot and Biot?Fo,

= 40;7 (21)
Fo = ‘%t (22)
Biot = ’;—S (23)
Ste = w (24)
Biot?Fo = 1250 — Biot® (25)

492kE " a2

Y(Biot,p) = {1 —erfc(p) +exp (Biot + B:;f) erfc ((p + ii—f)} (26)
The derivative of s with respect to t gives

das 2(p2a5

- = (27)

dac s

and by substituting the temperature gradientaTSa—(;‘t) into the moving boundary heat balance, Eq. (26), the

x="s

similarity root ¢ can be obtained as

20%ag (TF-Tw) ) R <hs h? 52 ) ( hs ) 2¢ 2¢ ( s
L =k — — 4+ —— ] erf - —
Ps B S G ) ks exp P +Wzk§ erfc(p + 2o ks +ﬁsexp(¢2) ﬁseprW hi )Z]exp ks +
29 ks
h? 52
492 kg) (28)

Eq. (28) is rearranged to the following form:

L S (E+—hzsz)erfc( + hs) : - ! ex <E+
¢ Crs(Tr=Teo)  Y(s.9) | 20ks P ks 4 @2 k§ e 20 ks/  Vmexp(p?) VT exp ((0"' hlsc )2] ’ ks
2¢0 kg

h? 52 ) (29)

4 @2 k%

Eqg. (29), expressed in terms of dimensionless numbers and parameters of heat conduction, becomes
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Ste Biot . Biot? Biot 1 1 . Biot?
Qo = 2Giote ) 29 exp (BlOt + o ) erfc ((p + E) + Vol e (¢+Biot)2] exp (BlOt + 4(p2)
29
(30)
Similarly, the temperature profile 6;(x,t) = % and the auxiliary function {(s, @) can be written as a
o~ IF

function of Biot and the interface position s according to the following expressions:

X N Biot?2 x , Biot .
Ts(x,s)-Tp {erfc((p;)—exp(Bwts to? )erfc(.,,s iy )+§(Blot,<p)}

To-TF Y (Biot,p) (31)
and
. , Biot? Biot
{(Biot,p) = —erfc(p) + exp (BlOt + 41:22 )erfc ((p + Zl:) ) (32)

Wagner, cited by Jost [59], assumed tentatively that the plane of discontinuity is shifted proportionally
with v/t when analysing one-phase solid-state diffusion, which is valid only for high Biot numbers. In the present
study, the relationship between the position of the interface and time is better posed by a combination of parabolic
and linear profiles, whose linear profile represents the ratio between any position s and the Biot related to the

material diffusion capacity :st, i.e., dimensional
S
_ 52 25ks @
t= 4agp? + hag (333-)
and dimensionless time,
*2 *
pr= 57 25T (33h)

" 4Fo @2 Biot Fo

Three-dimensional One-Phase Moving Boundary Problem

A three-dimensional one-phase transient solution for the freezing/solidification of a semi-infinite slab
can be described by the PDE in Eq. (34), the initial Eq. (35)-(37), and the boundary conditions Eq. (38)-(46) as
follows:

8%Ts | 8°Ts |, 8%*Ts _ 1 8Ts,

o T Vo2 — s ot 0<x<s(t), 0<y<sy(t),and 0 <z <s,(t) (34)
t=0,0<x< 40, Ty =T (35)
t=0,0<y<+400,Tg=Tg (36)
t=0,0<z<+40,Tg=Tx (37)
t>0,x=0,h(T = To,) = —ks, 5° -, (38)
t>0,y=0nh, (T - Tooy) = —ks, ‘% - (39)
t>0,z=0 h(T - T,,) = —ks, 2= - (40)
t>0,x=s,(t), Ts =T (41)
t>0,y=5s,(t),Ts="Ts (42)
t>0,2z=s,0t),Ts =T (43)
t>0,x >+, Tg =Tg (44)
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t>0,y > 40, Tg =T (45)

t>0,2z- 40, Ts=Tx (46)
ds _ 6& aTs aﬂ

pSLE T TSx ax x="sy ksy dy =5y +ks, 0z | =g, (47)

Where § = isx +ij + ]’ESZ y ‘Bs = ipsx +jp5y + i&psz y kS = iksx +jksy + ]Eksz and CPS = iCpr +
jCPSy + I?CPSZ. A three-dimensional solution for the temperature profile can be considered as the product of the
solutions in x, y and z axes, that is,

0(x,y,z,t) = 0,(x,t) - 0,(y,t) - 0,(z,t) (48)

- - T V,Z,t)=T .
which, in terms of % gives
F

00;

Tsyz)-Tr _ [Ts)-Tr| |TsGO-Tr| |TszO-TF (49)
Twi—TF Tooy—TF Twy—Tp Too,~TF

The solutions for the temperature profiles X, y, and z are designated as

h2ag t ha J@sxt
erk(#)—exp(};{’;x t kzs" ) erfc( 22— ks +{(sx.9)
Ts(o)-Tr 2 |ag,t x kS, 2 |ag,t x

Teoy=TF PY(sx.p) (50)
y | hyy. h2ag,t y ‘hy asyt

S {erfc(z\]?y) exp(ksy. k§y )erﬁ:(Z\/Fytl kSy +{(sy,<p)

Tooy=TF P(sy.0) (51)

hz aszt
erfc( z >—e p<2zz 2 Zsz )erfc< La— >+{(sz,<p)}
_ 2 (lszt Sz kSZ 2 llszt kSZ

Ts(Z,t) Tr — \ (52)

Tooz—TF PY(sz,90)
By making i = {x, y, z} and writing the auxiliary functions ¥ (s;, ¢) and {(s;, ¢) in terms of i, result in

20, h; as; t
Y(s;, t) =<1 —erfc(p) + exp( oty %) erfc| ¢ +— (53a)
S Si
hl L h h’l L
Y(s, @) = {1 —erfc(op) + exp( S; 4(p2j<2 ) erfc ((p + 2 ;Sl)} (53b)
and,
h2ae. h; as; t
{(s;,t) = —erfc(p) + exp < I %) erfc| ¢ + . (54a)
hisi i hi si

{(s;, ) = —erfc(p) + exp < Sl + 4(/)2;2 ) erfc ((p + TZ&) (54b)
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By writing Eq. (50)-(52) as a function of position s through the similarity variable ¢ =

derivatives of the temperature profileatx = “s,,y = “s,andz = "s, are

L I R o PR
0x  lx="s, Yisxt) | ksy ksy k3, ksy VT sy exp(?)

ksy

2¢
[ ol ( kse | K,
VT sy expll<¢+hx W) Jl 3 8

0T s(x,t)
ox

_ (TF—Teoy) ) s < (hx sx h% s% Ry Sx ) 2¢
x="Syx Y(sx.p) ka

2% exp (@ + -~
ksy = 4¢? k_qu) P ((p 29 ks,) = VT sxexp(p?)

S
2, /ast’

2 hy s hZ s%
P = exp x5x 4 x2 x2
N ylxsx hyx Sx ks 4@ ks
T Sy exXp|| ¢ 29 ks
hy |as, t
dTs(s,t) _(TF_Twy) hy hy5y+ y y exp (p+ v [*Sy n 2¢
=" Iy ——
W ly=-s, Y(syt) ks, ks, kS, ksy VT sy exp(9?)
2 yS h“ag,t
- hy |as,t Sy Sy
T Sy €X +
y exXp(| ¢ S
aTs(y,t) (TF-Ty) ) hy hy sy hj 5 hy sy 29
0 = W) Vs, P\ ks, Tapnnz )P Pt s ) T @)
vy o ly==s, ¥lye) |ksy Sy e° ks, ¢ ksy T Sy eXple

s
VT sy exp
ksy
Ast0) = TrTeog) ) iy oy (hz o 4 Moy )exp («) g t) NI —
0z lz=-s, Yiszt) | ks, ks, ksz ks, VT s, exp(@?)
2¢ hy sz nZag,t
rexp (12 4 Losat
hz |as,t Sz Sz
VT 55 exp ‘P+—
ks,

(55a)

(55b)

(56a)

(56b)

(57a)
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dTs(z,t)
dz

(TF=Tz) ) hz (hz Sz h% S% ) < hz sz ) 2¢
= I8 02 oxp (~22 4+ exp (¢ + + -
z="s, Y(z9) | ks, P ks, 4?2 k§z P\¥ 2¢ ks, VT 55 exp(p?)

2 .2
26 exp (hy Sz 4 e ) (57b)

2 2
L hzsz ks,  49%k§,
® 2¢ kSZ

The similarity variable is applied here to determine its derivative to express the dependence of the
transformation interface velocity on s, as shown by Eq. (57):

VT s, exp

ds _ 2¢%ag
= (58)

By inserting the temperature gradients into the heat balance in the moving transformation interface, as
shown in Eq. (47), the similarity variable can be determined as follows:

Cps,(TE—T. hy S hy s hZ s2 hy s 1 1 hy s
Q= Lxl(p G ”;‘) Zxk" exp(—;"‘+4 ’;k"z erfc| o + "k" +\/_ —— 55 EXp ;”‘+
x Yx(Sx.p @ ks, Sy P2 kS, 2¢ ks, 7 exp(¢?) VTex phasx Sx
P\ #*2pks,
h% s2 Cpsy (TF—Tooy) hy sy hy sy n% s3 hy sy 1
— xp | ——+——5|erfc{p + + ==
4 ka Lywy(syz(P) 2‘/’kSy kSy 49 ksy 2¢ kSy VT exp(9?)
1 hys h? s3 Cps,(TF—T. hy s hys h% s2 hys
2exp(}i’y+4 3;;;) + LZ(( °°)Z) szz exp —kzz+4 zzkzz erfc <p+—22kz +
Jrexp|(o+ Ry sy Sy e ks, 2z Wz(sz,9 ks, Sz ¢ ks, @ ks,
2¢ kSy
1 1 hz sy h% sg )
— ex + 59
v exp(9?) = hgsy | p<ksz 492 k3, (59)
mexp|( p+5, ks,

By writing the expressions for the temperature profile in each direction and auxiliary functions ¥ (s;, )
and {(s;, @) in relation to Ste;, Biot;, and Biot? Fo; dimensionless numbers,

_ $2 - s2+s3+s2 (60)
4ase 4\/a5§+a5§,+a5§ @2
Fo, ==& (61)
Biot; = MLt (62)
ksl.
cps;(Tr—Teo,
Ste; = Cosy(Te o) = ) (63)
. hi2 siz Bioti2
Biot?Fo; = TG ag? (64)
In this case, the functions ¥ (s;, ) are given by
. . Biottx2 Biot,
Y (Biot,, ¢) = {1 —erfc(p) + exp (Blotx + 0 )erfc ((p + 20 )} (65)
. . Biot,,? Biot
l/)(BlOty, (p) = {1 —erfc(p) + exp (Bloty + :(pi )erfc ((p + %)} (66)
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Y(Biot,, @) = {1 —erfc(p) +exp (Blot +2 )erfc ((p + Bwtz)} (67)

Similarly, the functions {(s;, ¢) in the corresponding directions are

{(Bioty, @) = —erfc(p) + exp (Blot +2 )erfc ((p + Bwt") (68)
{(Bioty, (p) = —erfc(p) + exp (Bioty + 2 >erfc ((p + Bwty) (69)
{(Biot,, @) = —erfc(p) + exp (Biotz L ) erfc ((p + Bmz) (70)

Then, by writing Eq. (59) as a function of the dimensionless heat conduction number, we obtain

@ = % B;(:px exp ( . Blfptf) erfc ((P + BZth) + ﬁexlp((pz) ‘/—exp[( 1 Bwtx) ] exp (Biotx +

ii(;tz% ) w(;;tyy,(p) B;(Zy exp ( 2) erfc ((p + B:Zy ) + \/ﬁexlp 7N o (;Bwty) ] exp (BL'oty +
) e (o + S5t (g + 59 s~ o v (o +
%) (71)

Similarly, for the temperature profiles for the three axes,

{erfc( x) exp(Blotxsx TBwt")e fc( xTBwt")+(x(Bwtx<p)}
Sx. Sx

0,(x,s,) = TST(x s;i)TFTF ¢i(€3lotx,¢) 72

foro,, (y, sy),
Ts(ysy) s { fC( y) exp(Bwty o (:t;)erfC( S};/+Bi2(:y)+{y(3ioty,(p)}

0(v.5y) = w0y ~TF y (Bioty.0) (73)

and for9,(z, s,)

0.(2,s,) = T5(z,5,)~TF _ {erfc( Z) exp(Bmtz SZ TE::;tzz') erfc( SzZTBwtz)_,_(z(Bwtz <p)} 74
Teo,=TF Yz(Biot,p)

Finally, the three-dimensional solution for the temperature profile can be given by

05(x, 7,2, 5, 5y,5;) = 0,(x,5,) 0,(v,5,) 0,(2,5,) (75)

that is,
Ts(x,¥,2,8¢,Sy,S;) — T,
Qs(x,y, Z, Sy, Sy, sz) = [ S( T x_ ;,F Z) F] = 0,(x,s,) Gy(y, sy) 6,(z,s,)
Ts(x S¢) — TF TS()" Sy) Tg TS(Z Sz)
T, — Tr

oo _TF
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_ x .. x |, Biot? x , Biot, .

= {erfc ((p g) —exp <BlOtx 5 + 4—(172) erfc ((p 5 + 70 ) + {,(Biot,, (p)}
Y (Bioty, ¢)
Biot? Biot

{erfc ((p %) —exp (Bioty% + 4(p2y> erfc ((p% + 2¢y) + (y(Biot ,(p)}
w(Bioty, (p)

z .z | Biot? z | Biot .
{erfc ((p g) —exp <BlOtZ 5, + W{) erfc ((p 5, + 2(pz) + {,(Biot,, go)}
Y(Biot,, ¢)

(76)

and the freezing/solidification time is given by the Biot number, which transitions from a parabolic to a
linear profile and vice versa, posed as% dimensional
L

ks;
t=t .+t 4+t = S:% 532; S% Zkgx Sx® sty Sy ZkSz o) (77a)
X y 27 sag 2 | 4das,@?  4ag, @? hya hya hya,
x y z x4Sx yasy z®S,
and dimensionless time,
5*2 5*2 S*Z 25* 25* @ 25*
t*=—=% 4 z x $ y z ¢ (77b)

4Foy 9?2 ' 4Foy @2  4Fo,p?  BiotyFoy Bioty Foy  Biot; Fo,

One-dimensional Two-Phase Moving Boundary Problem

In the case of two-phase freezing/solidification of a pure or eutectic material with superheating in the
liquid, as presented in Fig. 2, the governing partial differential equation and the initial and boundary conditions
for a semi-infinite slab are given by

9°Ts _ 1 9Ts

ax2  ag ot 0<x< S(t) (78)

82T, _ 19Ty

o = o s(t) <x < 4o (79)

t=0,0<x<+o0, T=T, (80)
aT

t>0,x=0, —k=—| =h(T-T,) (81)
Oxly=0

t>0,x=s(), T=Tr (82)

t>0, x> +00, T=Tp (83)

As| g, Lt (84)

Lds _
Ps dat S ox x="s L ax x=ts

Solid

Liquid

0 X = S(t) X - 40

Figure 2 Schematic representation of two-phase transient solidification.

DOI: 10.9790/0661-2103010848 www.iosrjournals.org 18 | Page



A Semi-Infinite Closed-Form Analytical Solution For Solidification Under Convective.......

For the liquid phase, the proposed solution is given by

T,(x,t) = A, + B, [1 — erf (2 \/);Tt)] (85)

A relationship between the diffusivity of the solid and liquid phases is necessary to assess the similarity variable,

= \F (86)

Then, the solution becomes

T, = (x,t) = A, +B, [1 —erf <Z%>] 87)

The substitution of initial and boundary conditions into the temperature profiles allows the constants A;
and B, to be determined:

T, (x = s(t),t) =Tr = A, + B,[1 — erf(ngp)] (88)
for A, inx — +oco, whent > 0,

Ty(x = 4+0,t) =Tp=A,+0 ~ A, =Tp (89)
Tr = Tp + B [1 — erf(ng)] (90)

The constant B, can be determined as

Tr=Tp

BL - 1-erf(ne) (91)
Finally, after the substitution of constants in the liquid-phase temperature profile gives
_ Tr-Tp . _ nx

T, (x,t) =Tp + Fpr— [1 erf (2 a5t>] (92)
However, by knowing that,

1__¢
2, /agst T s (938.)
and,

X X
N (93b)
and combining Eq. (93) and Eq. (92) results in
Tp(xt)-Tp _ _ 1 . _ nx

Tp-Tp 0.(x,0) = 1-erf(ng) [1 erf <2Ja_st>] (943)
TL(x,5)-Tp _ _ 1 . _ x

Tr—Tp - HL(X' S) - 1—erf(ng) [1 erf (n(p s)] (94b)

The derivative of T, (x, s) with respect to x at x = s* furnishes the temperature gradient for the liquid
phase at the moving interface,

aTy,
dx

=L _Te7TF . 1 . —n2p2
x=st VT [1-erf(ng)] n Jast exp(—n"¢?) (95)

By inserting the similarity variable ¢ in Eq. (95),

aTy,

| =R TR exp(—ng?) (96)

x=s+t Vs erfc(ng)
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It is important to mention that sometimes the thermal gradient is a function of both the interface position
and time, as presented in Eq. (97):

JaT, _ 2pn (Tp—TF)

_men Gyt e o s o

—st
0x ly=g TS orfel n—s 4agt
2 /agt

By combining Eq. (20), Eq. (27), Eq. (84), and Eq. (97), the similarity variable can be found:

2¢%ag (Tr=Tx) | R hs  h?s? hs 2¢
psL = kg —exp|-—+——]er (<p+ )+
s (s, 9) | ks ks 4 @? kg 29 ks/  \msexp(p?)
2¢ (hs+ h252> 20n (Tp —Tr) (—n2g?)
- exp|—+-—— ———— - exp(—n
Vi sexp|(p + 5 P\ks TapziZ) [T Vs erfelng) TP
Tsexp (¢ + 557
(98)

Rearranging the terms in a form for representing heat conduction parameters,

Cps (Tr —Ts,) | hs <hs+ hzsz) ( N h5)+ 1
= exp|—+-——=]erfc
LG |20ks P\ks 497 k2 P2 ks) T Vi exp(e?)
1 hs N h? s?
hs \? P ks 49? ki
Vi ew|(o 4 357c)
N Cpr(Tp — Tp) arp, n
L aspsm erfc(ng) exp(n?e?)
(99)
in which
aLPL
= ZLPL 100
N asps ( )
By substituting the dimensionless numbers and heat transfer parameters,
Stes | Biot (B' - Bi0t2> ‘ < N Biot) N 1
= —eX L0 eric
PTG 20 P 4 ¢? Y720 ) T r exp(0®)
! <B' t+Bi0t2) + Ste, N n
- ex Lo —_— e
Vi exp (o -+ B2ty ’ to? + Ui erfe(ng) exp(n?e?)
%
(101)
where Ste; = M is the Stefan number considering the liquid phase.

Three-dimensional Two-Phase Moving Boundary Problem
The governing equations and the initial and boundary conditions for three-dimensional unsteady
solidification are given by

9’Ts | 9°Ts | 9*Ts _ 1 9Ts
o T T o —ms ot 0<x<s(t), 0<y<sy(t)and 0 <z <s,(t)
(102)

DOI: 10.9790/0661-2103010848 www.iosrjournals.org 20 | Page



A Semi-Infinite Closed-Form Analytical Solution For Solidification Under Convective.......

82Ty, | 9%Ty , 9%T, _ 1 9Ty
o2 T2 T —mat Sp(t) < x < +00,5,(t) <y < to,and s5,(t) <z <+

(103)
t=0,0<x<40,T, =Tp, (104)
t=0,0<y<+0:,T, =Tp, (105)
t=0,0<z< 400, T, =Tp, (106)
t=0,x=0h(T-T,)=—k>® . (107)
t=0,y=0h, (T—Twy) = —kg—;yz_sy (108)
t=0,2=0h,(T - T,,) = —k2. e (109)
t>0,x=5()Ts, =Tr (110)
t>0,y=s(),Ts, =Tr (111)
t>0,z=5(),Ts, =Tg (112)
t>0,x > 400, T; = Tp, (113)
t>0,y > +o0, T, =Tp, (114)
t>0,z—> 400, T =Tp, (115)

psL Zi = ks, Zﬁ s + ks, %_7;,5 - Sz % e

_ (ka e otk % . by, 2 Z=+s> (116)

Where g = in +ij + IESZ, ,55 = i'DSX +]Ap5y + iépsz, k-)s = iksx +]Aksy + ieksz, Eps = iCpr +ijsy +
]ECPSZ y ﬁL = ipLx +ijy + ]’épLz y ]_C)L = ika +jkLy + iékLz and EPL = iCPLx +jCPLy + iéCPLZ . A three-

dimensional solution for the temperature profile can be considered the product of the solutions in each x, y, and
z axis, dimensional

2 s2 2 2ks. sxp = 2ks, Sy 2k
E=ty by b, = o T SRRy v g Sl (117a)
as, P asy P as, ¢ XSy yasy zAS,
And dimensionless equation,
* sy 5;72 572 253 @ 253*/ P 257 @ (117b)
4Foy 9?2 = 4Foy @2  4Fo,@?  BiotyFoy  Bioty Foy = Biot; Fo,
. . . . . . . as.
By substituting the similarity variable ¢ and setting n; = a—‘
Li
aTy, _2¢ny (Tpy=TF) 2.2
Ox ly="s, T Vmsy erfc(ng) exp(—n°¢?) (118)
Ty, _ 2¢mny (TPy_TF) 2,02
oy y= +sy - Vrsy  erfc(ng) exp(—n“e%) (119)
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aTy,

=t et o g (120)

z= +Sz \/Esz erfc(ng)

and, by writing s in relation to the similarity variables,

2 fast =" (121)
% =0, = I_e;(mp) . [1 —erf (nx(p i)] (122)
= 0 = iy [ et (e 3 129
% =0, = 1—er1(n<p) . [1 —erf (nzgo SZ—Z)] (124)

The three-dimensional solution for the temperature profile in the liquid phase can be expressed as follows:

HL(x' y' Z, Sx' Sy' Sz) = ng(x: Sx) HLy(yr Sy) QLZ(Z' Sz) (125)
that is,

T(X,Y,2,S¢,Sy,S;) — Tp,
HL(X' y' Z, Sx' Syﬁsz) = ng(x' Sx) eLy(y' Sy) GLZ(Z' Sz) = [ L( TFx— ;P- Z) Pl]

— [TSx(xr Sx) - TF] [TSy(y' Sy) - TF] [TSZ(Z’ Sz) - TF]

TF - TPX TF - pr TF - TPZ
~ e [t D ey | -0 2]} by [t D)
1 - erf(ng) ert\ne Sy 1 — erf(ng) e\ ne sy 1 — erf(ngp) ert\ne s,
(126)
By applying the temperature gradients in the solid and liquid phases in VTs|x- -5 and VT, |,_ +,
psL e = (ksVT) ym = — (kL VT o+ (127)
ds _20%as (128)

dt s

inwhich s =./sZ + 57 + 57

DOI: 10.9790/0661-2103010848 www.iosrjournals.org 22 | Page



A Semi-Infinite Closed-Form Analytical Solution For Solidification Under Convective.......

2¢%ag (Tr — Tw,) (hx (hx s, hZs? ) ( hy s, ) 2¢
L = o {—ex + erfc| ¢ + +
Ps2 s S PG @) ks, T\ ks, 47 KE YT 20 ks,) T Vi s, exp(e?)

2¢ hesy | hisy )

- exp 5
hy Sy 2 ( ka 4 (pz ka
VT s, exp [((p + 25 ksx)

Tr=Two,) | h, s h2 s2 h, s 2
+ kg —( y) —Lexp| 22+ yz yz erfc<<p+ 4 y>+ ¢
¥ P(sy ) ks, ks, —4@*kg 29 ks, ) s, exp(p?)

2 h, s h? s2
¢ —exp v Sy yz yz
<<p+ oY Sy) l ks, 4o%ks,

Vs, exp ZoKs, J

(TF —Tw ) hz (hz Sz hg Sz2 ) < z Sz > 2(/)
+kg ——Z<{—ex + erfc + +
2 YGne) kg \ks,  492kZ) T \? T 20kg) T Vi s, exp(e?)

2¢
JT s, ex ( LS
2 EXP || @ Z‘Pksz

2¢ n, (pr - TF)
Vs, erfc(n,p)

h,s hZ s? 20n, (Tp. —T,
- exp( z z+ 22 zz) +kL () x.( Py F)
) ] ks, ~4@?k§ *Jrs, erfc(ngg)

2¢0n, (Tp,—Tr)
' 2.2 z \'Ps
exp( nyg ) tky, Vs, erfc(ngg)

-exp(—nip?) + ki,

Z

-exp(—nZ¢?) (129
1

By arranging Eq. (130) so that it can represent a set of meaningful heat transfer parameters,
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Cos, (Tr — Too,) | RSy hys,  h%s? hy s, 1
= exp +——5 |erfc| ¢ + +
Lyy(su@) | 20ks, ks,  4@?kZ 20 ks, ) m exp(p?)

N Cps, (TF - Tooy) hys, . hy s, N h3 3 orfe ((p hy s, ) N 1
2¢ ks,)  m exp(p?)

1 exp (hy Sy N h} 5 )}
h, ks, 4 ¢? kéy
v e""( 2ot )l )
+Cp5 (Tr — h,s, h sz+ hZ s? )erfc(go h, sz>+ 1
L, (s, (p) Z(pksz ksz 492 kg 20 ks,) T exp(p?)
1 h,s, h?
Vr exp[(‘/"l‘zh z 5z ) ] Xp( ks, +49"2 kgz)
9 ks )
+ CPLx(TPx TF) AL, PLy Ny
L, s, Ps, VT erfe(n,p) exp(ni ¢2)
CPLy (pr - TF) aL,PL, n,
Ly as,ps, VT erfc(n, @) exp(n? ¢?)
n CPLZ(TPZ - TF) a,pL, n,
L, as,ps, N erfe(n,g) exp(n2 ¢?)

(130)

Eg. (130) can be expressed according to dimensionless numbers
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Ste, Biot, <B' . +Biot,%) ; ( +Biotx>+ 1
= n ex Lo — | eric
¢ Y(Biot,,p) | 2¢ P Y 42 ¢ 2¢ Vi exp(¢?)
1 <B' - iot?
- - exp | Biot,
Biot,\* 4 @2
VT exp [((p + 20 ) ]
N Ste,, Biot, <B' . +Biot32,> ; ( +Bioty>+ 1
ex 49] — | eric
W(Biot,, @) | 2¢ P Y 42 T2 Vi exp(9?)
1 <B' . +Biot32,>
- ex L0
/e Biot,\’ P Y 4P
T exp <(p +—2<p )
N Ste, Biot, <B' . +Bi0tzz) ‘ < +Biotz>+ 1
- ex o —-— | eric
Y(Biot,, @) | 2¢ P 20 492 ¢ 2¢ v exp(¢p?)
! (B' t, + Zz) + Ste,, N. M
- - exp | Bio e
Vrexp [(‘P + B—éotz)z] T BTN erfe(neg) exp(n2 ¢2)
+ Ste,, N ’ el + Ste,, N, Nz
e e
Y erfc(n, ) exp(nz ¢?) 1272 I erfe(n,g) exp(nz ¢2?)
(131)
CPLi(TPi_TF) . . . .. aL;PL;
where Ste,, = —=———=1s the Stefan number considering the liquid phase and N; = e represent

the ratio between the product of thermal diffusivity and the density of the liquid and solid phases, respectively.

Considerations for Calculating Interface Velocity and Position

The current solution is considerably complex when formulating simple equations for the solid-liquid

interface velocity. By writing t = ys? + §s, deriving and rearranging it as % =v= 2y51+ 5 [63]. The value of
1

V= tace? is straightforward. However, determining & requires a different approach: % =2ys+6 = i S04 =
S

i — 2ys. Finally, expressing the velocity v in terms of the thermal gradients of the solid and liquid phases provides

ds(t) 1
—r=vs= g (ks " Vsl = hey - VT i) (132)
The value of § can now be determined as,

5= pst —2ys (133)

ks VTsly==s=kLVTLl ) _+g

for solidification time,

t =vys?+6s (134)
and velocity,

1
v= 2ys+6 (135)
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The thermal gradients of the liquid(VT;) and solid (VTs) phases are analytical expressions derived in
this work. Here, k represents the thermal conductivity, expressed as k = ik, + jk, + kk,, and y is the positional

vector defined by y = ix + jy + kz. Equation (132) is complex and too lengthy to present fully here, but it
remains an analytical equation.

I11.  Results And Discussion
The analytical solutions formulated in this investigation will undergo analysis based on the following

criteria; one-dimensional one-phase and two-phase, as well as three-dimensional one-phase and two-phase.
Furthermore, Table 1 provides data on the thermodynamic properties of pure Al in its solid and liquid phases.

Tahle 1 Thermophyzical properties of pure AL
Properties Symbol Units Al ALIE 2wttaCa Sn3%witaPh ‘F.'abm'ra: 3000
= = 1 13
Tmper_ahn'enf T ¥ a33.15 82113 436 27113
conduetivity (solid) wm k| 220 - 7 238
Tharmal 71 317 06377
conductivity Ky Wm 'K* 91
(ligud)
Deansity (zolid) 2] kgm* 2550 3410 S840 019.76
Deensity (liqud) By kg m 2368 3240 3400 D§9.ED
- = =
Spetﬂd}hmt o Tk 'K 1181 1070 1862 1530
1 5 2 7
szhﬁdhjmt o Tk 'K 1086 2935 2129 419294
15 75 2
Latent }J.eat of Al kgt 397500 330000 47380 341820

The analytical calculations are plotted against the numerical results for one-phase transient solidification
considering the solid/liquid interface position versus time and temperature profile, according to Figure 3A and
Figure 3B, respectively. The global heat transfer coefficients h; are constant and equal to 500, 1000, 3000, 7000
and 18000 W m~! K~1. The numerical method [28,60,61] cannot be carried out in this study as published. Based

on the present proposition: Firstly, the second order Biot number, Biot = hiz", concerning the thermal diffusion
layer resistance is absent. Secondly, the numerical model has a function called dgd T, which relates the dependence
of the liquid volume fraction on temperature associated with an equation governing the latent heat release rule in
the energy equation in terms of solute concentration density field. For pure materials, this is not the case.
Consequently, this numerical solution scheme fails to accurately predict the solidification of pure materials, by
adding an artificial amount of latent heat which dislocates the global heat transfer coefficient. The corresponding
numerical solution of the energy equation for pure and eutectic materials under convective boundary condition,
associated with the other transport equations is being studied to develop a suitable solver to this problem and will
be discussed in a forthcoming publication.

In Figure 4, a two-phase analytical solution is applied for the interface position as a function of melt
superheat for 0.1, 5, 35, 55, and 105K. When the same Biot number and melt superheat are considered for all the
superheating events, the interface position as a function of time is not sensitive. However, the same cannot be
said for the velocity of the solid/liquid interface, as shown in Fig. 5, for which the speed is ~14 mm s~ for the
given combination of both the highest Biot and superheat. It is well known that under transient experimental
solidification conditions, the Biot number usually depends on overheating and cannot be kept constant.

Figures 6 and 7 represent the thermal gradients for the liquid and solid phases, respectively, in the vicinity
of the solid/liquid interface against position. The melt superheat is more sensitive to the thermal gradient of the
liquid and less sensitive to the gradient of the solid for a given Biot and melt superheat.

The temperature profile was calculated as a function of both the Biot number and melt superheat, as
shown in Fig. 8. The temperature at x = 0 depends only on the Biot number for a given Biot and melt superheat.
However, the temperature profile of the solid phase is affected.
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Analytical Solution of Transient Two-Phase Solidification of Pure Al
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Figure 3 Analytical solution of unidimensional one-phase solidification against numerical simulation: (A) Position of
solid/liquid interface as a function of time, and (B) Temperature profiles.
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Analytical Solution of Transient Two-Phase Solidification of Pure Al
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Figure 4 Analytical solution for one-dimensional two-phase solidification for interface position as a function of melt superheat:

(A) 0.1K, (B) 5K, (C) 35K, (D) 55K, and (E) 105K.
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Analytical Solution of Transient Two-Phase Solidification of Pure Al

T 0.005
9 Biot = 0.36036
E Biot = 0.72072
als Biot = 2.16216
I 0.004- Biot = 5.04505
> Biot = 12.97297
@ J
v
0
E 0.003 Simulation Data
c T. =300.15[K]
_'g TF=933.15[K]
g Tp=938.15[K]
3 0.002+ s =0.16[m]
°
0
@
c
£ 0.0014
[S)
Jrd
g
o
2 0.00Q
> 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Position of the Solid/Liquid Interface, s [m]
(3]
- 0.008 Analytical Solution of Transient Two-Phase Solidification of Pure Al
T .
“ Biot = 0.36036
E iot =
= 0.007 B!Ot 0.72072
als Biot = 2.16216
Il Biot = 5.04505
0.006 Biot = 12.97297
0.005 Simulation Data
Te =300.15[K]
0.004 Tr=933.15[K]

Tp=968.15[K]

0.003 =0.16[ml
0.002
oo g

Velocity of the Solid/Liquid Interface, v

0.000
0.00 0. 0. 0.06 0.08 0.10 0.12 0.14 0.16
POSItIOn of the Solid/Liquid Interface, s [m]
©

= 0.010 Analytical Solution of Transient Two-Phase Solidification of Pure Al

7 X

2 Biot = 0.36036
£ Biot = 0.72072
gl Biot = 2.16216
I 0.008 Biot = 5.04505
> ot =

) Simulation Data Biot = 12.97297 |
v

@ To =300.15[K]

@ 0.006 Te=933.15[K]

E Tp = 988.15[K]

5 sr=0.16[m]

g

= 0.004

he)

°

0]

[}

=

= 0.002

-

5}

z ¥

‘S

o

2 0.000 - -

> 0.00 0. 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Position of the Solid/Liquid Interface, s [m]
(®)

DOI: 10.9790/0661-2103010848 www.iosrjournals.org 30 | Page



A Semi-Infinite Closed-Form Analytical Solution For Solidification Under Convective.......

- 0.014 Analytical Solution of Transient Two-Phase Solidification of Pure Al
| .
9 Biot = 0.36036
E Biot = 0.72072
gl 0.012 Biot = 2.16216
Il Biot = 5.04505
> ot =
$ 0.010 Biot = 12.97297 J
o
£
2 Simulation Data
£ 0.008
5 T.=300.15[K]
3
£ 0.006 Te=933.15[K]
3 Te = 1038.15[K]
@ 0.004 §r=0.16[m]
@
=
=
© 0.002
z
v}
°
¢ 0.00Q ; ; ; : : . .
> 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Position of the Solid/Liquid Interface, s [m]
()

Figure 5 Analytical solution for one-dimensional two-phase solidification for interface velocity as a function of melt superheat:
(A) 0.1K, (B) 5K, (C) 35K, (D) 55K, and (E) 105K.
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Figure 6 Analytical solution for one-dimensional two-phase solidification for thermal gradient of the liquid as a function of melt
superheat: (A) 0.1K, (B) 5K, (C) 35K, (D) 55K, and (E) 105K
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Figure 7 Analytical solution for one-dimensional two-phase solidification for thermal gradient of the solid as a function of melt
superheat: (A) 5K, (B) 35K, (C) 55K, and (D) 105K.
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