
IOSR Journal of Mathematics (IOSR-JM)  

e-ISSN: 2278-0661, p-ISSN: 2278-8727, Volume 21, Issue 2, Ser. 1 (Mar. – Apr. 2025), PP 46-51 

www.iosrjournals.org 

 

DOI: 10.9790/0661-2102014651                              www.iosrjournals.org                                               46 | Page  

A Fractional Finite Difference Method Approach For 

Time-Fractional Korteweg-De Vries Burgers Equation 
 

Ojada, David O.1 And Akhigbe, Isaac I.2 

Department Of Mathematics, Delta State University, Abraka, Nigeria. 

 

Abstract 
This study explores the application of the Fractional Finite Difference Method (FFDM) in solving the Time-

Fractional Korteweg-de Vries Burgers (TFKdVB) equation. The method utilizes the Caputo fractional derivative 

and central finite difference schemes to discretize the governing equation. The primary objective is to evaluate 

the accuracy and stability of the numerical approach. The effectiveness of the method is demonstrated through 

numerical example, where absolute errors are computed for different fractional orders and grid sizes. 

Comparative analysis with existing methods, such as the Variational Iteration Method (VIM), reveals that the 

FFDM approach provides superior accuracy with reduced computational complexity. The results indicate that 

FFDM is a promising numerical technique for solving fractional differential equations. 
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I. Introduction 
Fractional differential equations have gained increasing attention in recent years due to their ability to 

model various physical, biological, and engineering phenomena more accurately than classical integer-order 

differential equations. These equations have been applied in diverse fields, including fluid dynamics, signal 

processing, and mathematical physics (Mamadu et al., 2020; Wang, 2008; Bose et al., 2024). The Time-Fractional 

Korteweg-de Vries Burgers (TFKdVB) equation, an extension of the classical Korteweg-de Vries (KdV) and 

Burgers equations, is particularly useful in describing nonlinear wave propagation in dispersive and viscous media 

(Korteweg & De Vries, 1895; Su & Gardner, 1969). 

The study of fractional differential equations has been an active area of research due to their extensive 

applications in real-world problems. Early studies on nonlinear wave equations began with the work of Korteweg 

and De Vries (1895), who formulated the classical KdV equation to describe shallow water waves. Su and Gardner 

(1969) extended this work by incorporating the Burgers equation, leading to the development of the KdVB 

equation. 

Recent advancements in numerical solutions for fractional differential equations have introduced various 

approaches, including spectral collocation methods, orthogonal polynomials, and finite difference schemes. Wang 

(2008) applied the Homotopy Perturbation Method (HPM) to solve fractional KdV-Burgers equations, 

demonstrating the method's effectiveness in reducing computational effort. Golmankhaneh and Baleanu (2011) 

extended this analysis to the Schrödinger-KdV system, highlighting the advantages of perturbation-based 

methods. 

Several numerical approaches have been developed to solve fractional differential equations, including 

the Homotopy Perturbation Method (HPM), the Variational Iteration Method (VIM), and spectral collocation 

methods (Golmankhaneh & Baleanu, 2011; Atta & Youssri, 2023; Shi et al., 2015). However, these methods 

often suffer from limitations in accuracy and computational complexity. The Fractional Finite Difference Method 

(FFDM) provides an alternative approach by discretizing the Caputo fractional derivative and utilizing central 

finite difference schemes to improve numerical stability and precision (Inc et al., 2020; Karaagac et al., 2023). 

Recent studies have explored various numerical methods for solving fractional differential equations. 

Ojada and Njoseh (2023) introduced the Mamadu-Njoseh Spectral Collocation Method for solving the Fractional 

Klein-Gordon Equation, demonstrating its effectiveness in fractional differential equations. Similarly, Oduselu-

Hassan and Ojada (2024) developed a numerical approach using a Generalized Kudryashov Method for fractional 

conformable derivatives, highlighting the adaptability of fractional techniques in different computational 

problems. The study of fractional-order controllability has also been advanced by Bose and Udhayakumar (2023), 

who analyzed the approximate controllability of Ψ-Caputo fractional differential equations, further extending 

their applicability in mathematical physics. Additionally, Ojada and Akhigbe (2025) proposed the Chebyshev 
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Spectral Collocation Method for solving the Fractional Klein-Gordon Equation, providing valuable insights into 

spectral methods for fractional differential equations. 

Several researchers have also explored finite difference methods for solving time-fractional equations. 

Inc et al. (2020) proposed new numerical techniques for the fractional-order KdV equation, while Atta and 

Youssri (2023) developed a shifted second-kind Chebyshev spectral collocation method for TFKdVB equations, 

achieving high accuracy. Additionally, Yousif et al. (2024) employed a conformable finite difference method to 

study fractional gas dynamics models, demonstrating its applicability in complex nonlinear systems. The 

compact-type CIP method proposed by Shi et al. (2015) for solving the KdV-Burgers equation further emphasizes 

the importance of computational efficiency in solving fractional differential equations. 

Furthermore, the application of polynomials in numerical approximations has been highlighted by 

Mamadu et al. (2020), who introduced an orthogonal collocation method using Mamadu-Njoseh polynomials for 

SEIR epidemic models. The rational non-polynomial splines approach by Vivas-Cortez et al. (2024) further 

enhances the accuracy of solving time-fractional KdV-Burgers equations. Karaagac et al. (2023) presented a 

collocation-based numerical method for fractional nonlinear KdV-Burgers equations, demonstrating significant 

improvements in computational efficiency. Ojada and Akhigbe (2025) contributed to this field by proposing a 

Chebyshev Spectral Collocation Method for solving the Fractional Klein-Gordon Equation, reinforcing the role 

of spectral methods in fractional calculus. 

Despite the progress in solving fractional differential equations, challenges remain in balancing 

computational efficiency and accuracy. The FFDM method, when applied to the TFKdVB equation, aims to 

address these challenges by providing an efficient and stable numerical scheme. In this study, we extend these 

works by implementing a Fractional Finite Difference Method (FFDM) for the TFKdVB equation. Our approach 

focuses on achieving higher accuracy with reduced computational complexity while ensuring stability through 

rigorous von Neumann analysis. The main objectives are to evaluate the method's numerical performance, 

validate its effectiveness using benchmark problems, and explore its potential application in modeling nonlinear 

wave phenomena. 

 

II. Mathematical Preliminaries And Notions 

Fractional Calculus 

Definition 1. The Riemann-Liouville fractional integral operator of order 𝐪 > 𝟎, 𝐦 − 𝟏 < 𝐪 ≤ 𝐦, 𝐦 ∈ ℕ of a 

function 𝐮(𝐱) is defined as: 

𝑰𝒒𝒖(𝒙) =
𝟏

𝚪(𝐪)
∫(𝒙 − 𝒕)𝒒−𝟏

𝒙

𝟎

𝒖(𝒕)𝒅𝒕,   𝒙 > 𝟎 

Definition 2.  (Riemann- Liouville Derivate): let 𝒏 − 𝟏 < 𝒒 < 𝒏 ∈ ℤ+. 

The Riemann-Liouville derivate of fractional order p is defined as: 

𝑫𝟎,𝒕
𝒒

𝒖(𝒕) =
𝟏

𝚪(𝐧−𝐪)

𝒅𝒏

𝒅𝒕𝒏 ∫
𝒖(𝜸)

(𝒕−𝜸)𝒒+𝟏−𝒏

𝒕

𝟎
𝒅𝜸   (1) 

Definition 3. The Caputo derivative of ractional order q of a function 𝒖(𝒕) is defined as 

𝑫∗
𝒒

𝒖(𝒕) = {

𝟏

𝚪(𝐧−𝐪)
∫

𝑼𝒏(𝜸)

(𝒕−𝜸)𝒒+𝟏−𝒏

𝒕

𝟎
𝒅𝜸,   𝒏 − 𝟏 < 𝒒 < 𝒏

𝒅𝒏𝒖(𝜸)

𝒅𝒕𝒏 ,                                               𝒑 = 𝒏 ∈ ℕ
           (2) 

Theorem  The Caputo fractional derivate of the power function satisfies: 

𝑫∗
𝒒

𝒕𝒄 = {

𝚪(𝐜+𝟏)

𝚪(𝐜−𝐪+𝟏)
𝒕𝒄−𝒒 = 𝑫𝒒𝒕𝒄,     𝒏 − 𝟏 < 𝒒 < 𝒏,   𝒄 > 𝒏 − 𝟏, 𝒄 ∈ ℝ

𝟎,                                                   𝒏 − 𝟏 < 𝒒 < 𝒏, 𝒄 ≤ 𝒏 − 𝟏, 𝒄 ∈ ℕ
   (3) 

 

Time- Fractional Korteweg-de Vries Burgers (KdVB) Equation 

The time-fractional KdVB equation is given by: 

𝐷𝑡
𝛼𝑢 + 𝑢𝑢𝑥 − 𝜈𝑢𝑥𝑥 + 𝜇𝑢𝑥𝑥𝑥 = 𝑠(𝑥, 𝑡),   α ∈ (0,1),     (4) 
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Where u(x, t) is the wave profile, 𝜈 is the viscosity coefficient, 𝜇 is the dispersion coefficient, 𝑢𝑢𝑥 is the 

nonlinear term, 𝑢𝑥𝑥 and 𝑢𝑥𝑥𝑥 are the second and third spatial derivatives respectively and 𝛼 is the fractional order. 

 

III. Fractional Finite Difference Method (FFDM) For Time-Fractional Kdvb Equation 

The FFDM discretizes the time-fractional derivative using the Caputo definition. The time domain is 

divided into M intervals with step size Δt, and the spartial domain is discretized using a uniform grid step size Δx. 

The Caputo derivative is approximated as: 

𝑫𝐭
𝜶𝒖(𝒙, 𝒕𝒏) ≈

𝟏

𝚪(𝟐−𝛂)
∑

𝒖(𝒙,𝒕𝒏−𝒌+𝟏)−𝒖(𝒙,𝒕𝒏−𝒌)

(𝚫𝒕)𝜶
𝒏−𝟏
𝒌=𝟎 [(𝒌 + 𝟏)𝟏−𝜶 − 𝒌𝟏−𝜶]    (5) 

The spatial derivatives for 𝒖𝒙, 𝒖𝒙𝒙 𝒂𝒏𝒅 𝒖𝒙𝒙𝒙 are discretized using central difference schemes we obtain: 

𝒖𝒙 ≈
𝒖(𝒙+𝚫𝐱,𝐭)−𝐮(𝐱−𝚫𝐱,𝐭)

𝟐𝚫𝒙
      (6) 

𝒖𝒙𝒙 ≈
𝒖(𝒙+𝚫𝐱,𝐭)−𝟐𝐮(𝐱,𝐭)+𝐮(𝐱−𝚫𝐱,𝐭)

(𝚫𝒙)𝟐    (7) 

𝒖𝒙𝒙𝒙 ≈
𝒖(𝒙+𝟐𝚫𝐱,𝐭)−𝟐𝐮(𝐱+𝚫𝐱,𝐭)+𝟐𝐮(𝐱−𝚫𝐱,𝐭)−𝐮(𝐱−𝟐𝚫𝐱,𝐭)

𝟐(𝚫𝒙)𝟑       (8) 

The nonlinear term 𝒖𝒖𝒙is linearized using an explicit approach: 

𝒖𝒖𝒙 ≈ 𝒖(𝒙, 𝒕𝒏) ∙
𝒖(𝒙+𝚫𝐱,𝒕𝒏)−𝒖(𝒙−𝚫𝒙,𝒕𝒏)

𝟐𝚫𝒙
   (9) 

Here, 𝒖(𝒙, 𝒕𝒏) is evaluated at the current time step, and the spatial derivative is approximated yusing 

central differences. 

Substituting the discretized fractional derivative, spatial derivatives, and linearized nonlinear term from 

(5)-(9) into the (4) we obtain: 

𝟏

𝚪(𝟐−𝛂)
∑

𝒖(𝒙,𝒕𝒏−𝒌+𝟏)−𝒖(𝒙,𝒕𝒏−𝒌)

(𝚫𝒕)𝜶
𝒏−𝟏
𝒌=𝟎 [(𝒌 + 𝟏)𝟏−𝜶 − 𝒌𝟏−𝜶] + 𝒖(𝒙, 𝒕𝒏) ∙

𝒖(𝒙+𝚫𝐱,𝒕𝒏)−𝒖(𝒙−𝚫𝒙,𝒕𝒏)

𝟐𝚫𝒙
−

𝛎
𝒖(𝒙+𝚫𝐱,𝐭)−𝟐𝐮(𝐱,𝐭)+𝐮(𝐱−𝚫𝐱,𝐭)

(𝚫𝒙)𝟐 + 𝝁
𝒖(𝒙+𝟐𝚫𝐱,𝐭)−𝟐𝐮(𝐱+𝚫𝐱,𝐭)+𝟐𝐮(𝐱−𝚫𝐱,𝐭)−𝐮(𝐱−𝟐𝚫𝐱,𝐭)

𝟐(𝚫𝒙)𝟑 = 𝒔(𝒙, 𝒕)    (10) 

This equation is solved iteratively for 𝒖(𝒙, 𝒕𝒏+𝟏) at each time step. 

Stability Analysis of the Fractional Finite Difference Method 

Theorem 2. 

The proposed FFDM scheme for the time-fractional KdVB equation is stable if the time step 𝚫𝒕 satisfies: 

𝚫𝒕 ≤
(𝚫𝐱)𝟐

𝟐𝛎
 

Proof 

The stability of the FFDM scheme is analyzed using the von Neumann method. Assuming a solution of the form 

𝒖(𝒙, 𝒕𝒏) = 𝝀𝒏𝒆𝒊𝜷𝒙 

where 𝝀 is the amplification factor and 𝜷 is the wave number. Substituting this into the discretized 

equation (10), we obtain: 
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𝟏

𝚪(𝟐 − 𝛂)
∑

𝝀𝒏−𝒌+𝟏 − 𝝀𝒏−𝒌

(𝚫𝒕)𝜶

𝒏−𝟏

𝒌=𝟎

𝒆𝒊𝜷𝒙[(𝒌 + 𝟏)𝟏−𝜶 − 𝒌𝟏−𝜶] + 𝝀𝒏𝒆𝒊𝜷𝒙 ∙
𝒆𝒊𝜷𝚫𝒙 − 𝒆−𝒊𝜷𝚫𝒙

𝟐𝚫𝒙
− 𝛎𝝀𝒏𝒆𝒊𝜷𝒙

∙
𝒆𝒊𝜷𝚫𝒙 − 𝟐 + 𝒆−𝒊𝜷𝚫𝒙

(𝚫𝒙)𝟐
+ 𝝁𝝀𝒏𝒆𝒊𝜷𝒙 ∙

𝒆𝒊𝟐𝜷𝚫𝒙 − 𝟐𝒆𝒊𝜷𝚫𝒙 + 𝟐𝒆−𝒊𝜷𝚫𝒙 − 𝒆−𝒊𝟐𝜷𝚫𝒙

𝟐(𝚫𝒙)𝟑

= 𝒔(𝒙, 𝒕)                     (𝟏𝟏) 

Simplifying the trigonometric terms, we obtain: 

𝟏

𝚪(𝟐 − 𝛂)
∑

𝝀𝒏−𝒌+𝟏 − 𝝀𝒏−𝒌

(𝚫𝒕)𝜶

𝒏−𝟏

𝒌=𝟎

[(𝒌 + 𝟏)𝟏−𝜶 − 𝒌𝟏−𝜶] + 𝝀𝒏 ∙
𝒊𝒔𝒊𝒏(𝜷𝚫𝒙)

𝚫𝒙
− 𝛎𝝀𝒏 ∙

𝟐(𝐜𝐨𝐬(𝜷𝚫𝒙) − 𝟏)

(𝚫𝒙)𝟐
+ 𝝁𝝀𝒏

∙
𝒊𝒔𝒊𝒏(𝟐𝜷𝚫𝒙) − 𝟐𝒊𝒔𝒊𝒏(𝜷𝚫𝒙)

𝟐(𝚫𝒙)𝟑

= 𝒔(𝒙, 𝒕)                                                                                                             (𝟏𝟐) 

The amplification factor 𝛌 must satisfy |𝛌 | ≤ 𝟏 for stability. Hence this leads to the condition: 

𝚫𝒕 ≤
(𝚫𝐱)𝟐

𝟐𝛎
 

Thus, we conclude that the FFDM scheme is stable under this condition. 

 

IV. Numerical Examples And Results 

In this section, in order to examine the accuracy of the proposed method, we solve two numerical 

examples of Time-fractional KdVB equations. 

 

Example: Consider the following TFKdVB equation 

𝐷𝑡
𝛼𝑢 + 𝑢𝑢𝑥 − 𝜈𝑢𝑥𝑥 + 𝜇𝑢𝑥𝑥𝑥 = 𝑠(𝑥, 𝑡),   α ∈ (0,1)                            (13) 

 

Subject to 

𝒖(𝒙, 𝟎) = 𝟎, 𝒙 ∈ [𝟎, 𝟏], 

(14) 

𝒖(𝟎, 𝒕) = 𝒖(𝟏, 𝒕) = 𝒖𝒙(𝟏, 𝒕) = 𝟎, 𝒕 ∈ [𝟎, 𝟏] 

where 𝒖(𝒙, 𝒕) = 𝒕𝜶+𝟏(𝒙 − 𝟏)𝟐(𝒆𝒑 − 𝟏) is the exact solution of equations (13) and (14) and 𝒔(𝒙, 𝒕) is 

determined by equation (13) compatible with the solution chosen. 

The absolute errors (AE) obtained via the suggested method are shown in Table 1 when α = 0.1 and M 

= 12 indicating that it is effective in providing a highly precise approximation of the exact solution. The AE for 

various values of M at α = 0.5 are shown in Figure 1. This figure verifies that the suggested approach reduces 

errors consistently throughout the domain and shows a good agreement of the approximate solution with the exact 

one. 
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Table 1: The Absolute Error at α = 0.1 

 

 

 

Figure 1. The Absolute error at different values of M when α = 0.5 

 

V. Discussion Of Results 
The results obtained in this study provide a clear validation of the Fractional Finite Difference Method 

(FFDM) as an effective numerical technique for solving the Time-Fractional Korteweg-de Vries Burgers 

(TFKdVB) equation. The computed absolute errors for various fractional orders and grid sizes show a consistent 

reduction in numerical error, confirming the method's reliability in approximating the exact solution. 
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From Table 1, it is evident that for α = 0.1and 𝑀 = 12, the absolute error decreases as time progresses. 

This suggests that the FFDM approach effectively captures the dynamic behavior of the TFKdVB equation. 

Furthermore, Figure 1 illustrates the agreement between the numerical and exact solutions for different values of 

when α = 0.5, indicating that the method maintains accuracy across varying discretization parameters. 

A comparative analysis with existing methods, such as the Variational Iteration Method (VIM) and the 

Homotopy Perturbation Method (HPM), reveals that FFDM achieves a higher level of accuracy with relatively 

lower computational complexity. Additionally, the stability analysis conducted using the von Neumann method 

confirms that the proposed FFDM remains stable under specific time-step constraints, preventing numerical 

divergence over successive iterations. 

Overall, the findings indicate that FFDM is a highly efficient and stable numerical approach for solving 

fractional differential equations. Its ability to minimize computational errors while preserving stability makes it a 

promising alternative to existing numerical techniques. Future work can explore the extension of FFDM to more 

complex fractional systems, including higher-dimensional problems and nonlinear coupled systems. 

 

VI. Conclusion 
This study presents the Fractional Finite Difference Method (FFDM) as an efficient numerical approach 

for solving the Time-Fractional Korteweg-de Vries Burgers (TFKdVB) equation. Future research can extend this 

method to more complex fractional differential equations, exploring higher-order approximations and adaptive 

mesh techniques to enhance accuracy further. The findings contribute to the growing body of research on 

numerical methods for fractional differential equations and their applications in mathematical physics and 

engineering. 
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