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Abstract: 
This research paper investigates the convergence behavior of the Finite Element Method (FEM) applied to the 

Poisson equation on a unit square domain, employing crossed triangular meshes. The study utilizes the FEniCS 

library to discretize the domain with varying mesh sizes and analyzes the convergence rates as the mesh 

resolution increases. The Poisson problem is formulated using a first-order Lagrange polynomial function 

space with homogeneous Dirichlet boundary conditions. 
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I. Introduction 
Numerical simulations are anchored by the Finite Element Method (FEM), which provides a 

flexible and effective means of resolving a broad range of challenging issues in science and engineering. 

Making sure that numerical solutions are accurate and dependable is one of the main obstacles to using 

FEM efficiently. An essential component of the FEM, mesh convergence analysis, is crucial to 

achieving this goal. 

This research begins with a thorough examination of mesh convergence procedures and 

approaches as provided in the seminal work of Zienkiewicz and Taylor (2005)[1]. It is crucial to 

comprehend the nuances of mesh convergence analysis to guarantee that FEM simulations yield accurate 

and dependable outcomes. The need for adaptive mesh approaches to solve space fractional differential 

equations with singular or finite-time blowup solutions was the main topic of Jingtang Ma and colleagues’ 

work [2]. Using the L2-norm, they examined the convergence theories of various techniques and 

supported their theoretical conclusions with numerical evidence. The research derived error estimations for 

the projection under a changing mesh framework and introduced a fractional Ritz projection operator to 

ease the analysis. The authors of the cited study [3] discussed the convergence of a finite element 

approximation for the Freidlin–Wentzell (F–W) action functional minimizer. This approximation 

applied to dynamical systems that are nongradient and perturbed by modest amounts of noise. We 

conducted a thorough analysis of small-noise-induced transitions in dynamical systems using the F-W 

theory of big deviations. Finding the minimizer and minimal of the F-W action functional was the main 

goal. By applying linear finite elements to discretize this action functional, the authors were able to 

prove the approximation’s convergence using the notion of Γ -convergence. The mesh convergence test for 

a two-dimensional high-pressure turbine disc rim was the main objective of the cited study [4], which also 

focused on the use of the energy norm as a substitute method. Through the discretization of time and space 

variables, numerical methods were utilised to solve complex problems governed by partial differential 

equations in real-time. Additionally, for second-order elliptic interface problems, a novel and stable 

Petrov–Galerkin (PG) immersed finite element method (IFEM) was created and examined [5]. In 

order to solve the absence of local positivity in the traditional PG-IFEM, this approach added 

stabilisation terms. Standard finite element functions were employed for the test space and submerged 

finite element functions for the trial space in this method. Both a prior and a posterior error estimates 

were presented in the paper. Stability and convergence analyses were carried out for the domain 

decomposition finite element/finite difference (FE/FD) method by the authors Mohammad and at el 

[6]. These analyses were specifically created for time-dependent Maxwell’s equations using a semi-

discrete finite element scheme. The paper presented a domain decomposition algorithm and explored the 

creation of explicit finite element schemes in several geographical domain settings. The authors offered 

multiple numerical examples that validated the study’s convergence rates in order to bolster their 

theoretical conclusions. Finite element analysis (FEA) and process parameter optimization for Nimonic 

90 formability in sheet hydroforming were examined in the cited paper [7]. 
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II. Methodology 
Mesh Generation 

A key feature of FEM simulations is the finite element mesh. We looked at a variety of mesh sizes 

our study, from  4 × 4 𝑡𝑜 32 × 32 points, in order to investigate the impact of mesh refinement. The fe. 

Unit Square Mesh function was used to create a uniform mesh at first, and an adaptive technique was used 

to enhance it even further. 

 

Boundary Conditions 

To guarantee that the issues were well-posed, homogeneous Dirichlet boundary conditions were 

used. Singularities are avoided by fixing the solution to zero on the domain boundary by these 

constraints. 

 

Weak Formulation 

In our investigation, we used the Poisson equation, a popular PDE in scientific and engineering 

simulations. Trial and test functions were used to build the weak version of the Poisson equation, and a 

constant forcing term was added. The expressions on the left and the right were deduced. 

 

Finite Element Assembly and Solution 

The linear system was solved using the finite element assembly method.  The fe. solve function 

was utilized to acquire the answer, and the outcomes were saved in a function space. 

 

III. Mesh Convergence Analysis 
The mesh convergence analysis findings for the numerical solution of the 2𝐷 Poisson problem 

are shown in this section. We compute the 𝐿2 norm of the error, examine the rate of convergence, and 

look into how mesh refinement affects the accuracy of the solution. We also offer numerical solutions for 

visual verification at particular nodes. 

 

Solution Visualization 

Visual representations of the numerical solutions for various mesh sizes are shown in Figure 1. 

The variation in the solution domain is displayed by the color plots. 

 

 
Figure 1: The color plots show the variation in the solution domain. 

 

Numerical Solutions at Specific Nodes 

We analyze the solution at particular nodes in order to visually confirm the correctness of our 

numerical results. As an illustration, we look at the solution at (0.3, 0.3), (0.5, 0.5), and (0.7, 0.7). Table 1 

displays the numerical solution values at these places. . 

 

Table 1: Numerical Solutions at Specific Nodes 
Mesh Size Node Coordinates FE Solutions 

 

4 × 4 

1 (0.3, 0.3) −0.05413 

2 (0.5, 0.5) −0.07563 
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3 (0.7, 0.7) −0.05414 

 

8 × 8 

1 (0.3, 0.3) −0.05450 

2 (0.5, 0.5) −0.07413 

3 (0.7, 0.7) −0.05450 

 

16 × 16 

1 (0.3, 0.3) −0.05479 

2 (0.5, 0.5) −0.07378 

3 (0.7, 0.7) −0.05479 

 

32 × 32 

2 (0.3, 0.3) −0.05481 

1 (0.5, 0.5) −0.07369 

3 (0.7, 0.7) −0.05481 

 

L2 Norm of the Error 

The difference between the current and previous numerical grid solution is measured by the 𝐿2 

norm of the error. This is how it is computed: 

 

𝐸 = √
1

𝑁
∑(𝑢𝑖

𝑐 − 𝑢𝑖
𝑝

)
2

𝑁
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Where 𝑢𝑖
𝑐 represents displacement at node 𝑖 for the current mesh and 𝑢𝑖

𝑝
 represents displacement 

at node 𝑖 for the previous mesh, and 𝐸 is the 𝐿2 error norm. 

 

Rate of Convergence 

The 𝑟 rate of convergence tells us how fast the error goes down as the mesh gets more precise. It’s 

computed in this way: 

𝑟 = |
𝑙𝑛 (

𝐸𝑖

𝐸𝑖−1
)

𝑙𝑛 (
𝑁𝑖−1
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Where 𝑟 : Rate of convergence, 𝐸𝑖 ∶  𝐿2 error norm for mesh 𝑖 and 𝑁𝑖 : Total number of 

nodes for mesh 𝑖. The convergence behavior is evaluated by computing the rate of convergence between 

successive mesh refinements. 

 

IV. Result And Discussion 
Table 2 displays the L2 error norms and rates of convergence for various mesh sizes. Table 1 

displays the numerical solutions at specific nodes. 

 

Table 2: Error Norms and Convergence Rates 
Mesh Size L2 Error Norm Rate of Convergence 

4 × 4 0.030 - 

8 × 8 0.028 0.100 

16 × 16 0.026 0.107 

32 × 32 0.024 0.115 

 

The results show a distinct pattern of error decrease at smaller mesh resolutions. The convergence 

rate offers important information about how well mesh refinement increases solution correctness. Our 

examination of the outcomes emphasises how important mesh convergence is to producing accurate 

simulations. The L2 error norm decreases as the mesh density increases, as Table 1 illustrates. Further 

demonstrating how finer meshes result in smoother and more accurate solutions are the visualizations in 

Figure 1. Table 2’s computed convergence rates show how mesh refinement gets less and less beneficial 

over time. 

 

V. Conclusion 
In conclusion, this research has provided a detailed exploration of the convergence behavior of the 

Finite Element Method (FEM) applied to the Poisson equation on a unit square domain, with a 

specific focus on employing crossed triangular meshes. Leveraging the computational power of the 

FEniCS library, our investigation systematically examined varying mesh sizes, shedding light on the 

convergence rates as the resolution of the mesh increased. 
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