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Abstract: 
An infectious viral disease called dengue fever (DF) is prevalent in urban and peri-urban areas of the tropics 
and subtropics. This disease continues to be a threat to global public health. In this study, a dengue virus 
transmission based on an equation system for ordinary differentials was developed to study the dynamics of DF 
as a measure to prevent epidemics in Kenya, quarantines during treatment and health education are used to 
prevent transmission. The next generation matrix approach determines the effective basic reproduction number 
(Ro). The model's equilibrium points are identified, and their stability analysed. The effectiveness of DF health 
education and patient quarantining also examined through numerical simulation utilizing the MATLAB 
program. The results of the stability analysis demonstrate that the disease-free equilibrium is asymptotically 
stable both locally and globally when R0<1 and the endemic equilibrium (EE) point was found to be locally 
asymptotically stable when R0 > 1. Numerical simulation performed with MATLAB software demonstrates that 
when health education campaigns are effective, the number of DF-infected people falls o more quickly, 
suggesting that health education campaigns are essential for halting the spread of DF.
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I. INTRODUCTION
When not treated in a timely manner, dengue fever, a viral infection disease, can be fatal. Dengue is 

caused by viruses of the genus Togaviride, subgenus Flavivirus. It can be brought on by any of the four 
serotypes, which are DEN 1, DEN 2, DEN 3, and DEN 4, and is spread by the genus Aedes, which has two 
varieties; dengue fever (DF) and dengue haemorrhagic fever (DHF), which can progress to a more serious form 
called dengue shock syndrome (DSS). The two species of Aedes transmitting dengue are Aedes aegypti and Aedes 
albopictus. The first is highly anthropophilic, living in busy places and biting throughout the day, while the 
second is less anthropophilic and lives in rural areas, according to WHO (2016). Dengue symptoms appear 3 to 
14 days after infection. High temperature, headache, nausea, pain in the muscles and joints, and a characteristic 
skin rash are some of these symptoms. After contracting one of the four serotypes, a person will never contract 
that serotype again and will become more vulnerable to developing DHF in roughly 12 weeks.

Because the lifetime movement of Aedes aegypti is less than a kilometre, the spread of dengue virus is 
likely to be driven by human movement. Infected mosquitoes transmit infection by biting susceptible people, 
and when a susceptible mosquito bites an infected person, it becomes infected. As a result, humans serve as the 
primary vectors between localized mosquito populations. Because population growth, urbanization, and poverty 
increase the presence and transmission of infectious diseases, the primary method for controlling and preventing 
the spread of dengue virus is to combat vector population through various measures such as reducing mosquito 
habitat and exposure to bites. Temperature and precipitation have a significant impact on dengue virus 
transmission, according to Rueda et al (1990).

In developing countries, infectious diseases are still the main cause of mortality and morbidity. We 
must f i rst comprehend the dynamics of disease transmission and take into consideration all pertinent factors, 
such as vector dynamics, in order to limit dengue infection.

According to Lutomiah J et al. (2016), the earliest dengue outbreaks in East Africa were 
recorded in the late 1970s and early 1980s, including the one that took place in 1982 near the Kenyan coast. 
WHO (2020), received 500,000 reports of dengue cases and estimates that the disease poses a risk to nearly 2.5 
billion people. With 553 instances of dengue fever epidemic in coastal Kenya in 2021 reported over the 
preceding four months of January, February, March, and April, more than 100 tropical and subtropical countries 
were affected. The transmission of infectious virus and the efficacy of prospective control strategies can both 
be studied effectively using mathematical models.  In their 1992 proposal, Anderson and May suggested 
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using mathematics to re- search infectious diseases. Sensitivity tests and a comparison of conjectures are made 
possible by the model's formulation and the availability of a simulation with parameter estimation Hethcote 
(2000). Consequently, DF remains a major cause of morbidity and mortality in Kenya and further study is 
required to comprehend its dynamics.

According to Whitehead et al. (2007), despite numerous attempts, no vaccine exists to protect against 
any of the virus's four serotypes. The DF can be eradicated if the mosquito population declines and evaluation 
of the impact of vector management on dengue virus trans- mission according to Yang et al (2008). Fischer et 
al. (2019) investigated optimal dengue vaccination and control strategies and discovered a positive effect on 
the number of infected people. According to Burattin et al. (2007), DF can be controlled by quarantining 
infected people and developing other control strategies.

II. THE MATHEMATICAL MODEL FORMULATION AND DESCRIPTION
To investigate the dynamics of DF transmission by implementing public health initiatives and isolating 

sick individuals. An equation system for mathematical model based on ordinary differential equations is created. 
In the study, both qualitative and quantitative analyses are conducted on the model. The next-generation matrix 
technique is used to calculate the (R0). The equilibrium points of the model are, and its stability is assessed.

A mathematical model based on ordinary differential equations will be developed and used to study the 
dynamics of DF. There are two categories of population namely, human population Nh and vector population Nm. 
For convenience, human population shall be separate into four classes: Susceptible, Infectious, Quarantined, 
Recovered Rh there are two classes within the vector population. Susceptible, Infectious  There will be natural 
death rate of human µh in all compartments of human and mosquito natural death rate will be µm in all mosquito 
compartments. Rates of DF infection-related deaths in infected and conned compartments is dh. The model 
assumes that people and mosquitoes are mixed uniformly, giving each bite an equal chance of coming from any 
individual person. At a rate of βh, the human population will be recruited to the susceptible compartment and 
at a rate of, Mosquito population will be recruited to susceptible compartment. The human will become infected 
at rate  and mosquito will become infected at rate (t). Infected people enter quarantine at  rate, and those 
quarantined individuals recover at . The mosquito-human inter- action rate is  and the human-to-mosquito 
interaction is. Therefore  (0<q<1) will be the decrease in mosquito-human contact because of the education 
campaign and  (0<p<1) will be decreased human to mosquito interaction ratio as a result of education campaigns 
where p is a measure of education campaign efficiency human mosquito interaction and q is a measure of 
education campaign efficiency mosquito human interaction.

Table 1: Variables of the model
Description of variables Symbol
Susceptible Individuals

Infected Individuals
Quarantined Individuals
Recovered Individuals
Susceptible Mosquitoes

Infected Mosquitoes

Table 2: Parameters of the model
Description of parameters Symbol

Human population recruitment rate
Death rate of human population

Measure of education efficiency human mosquito inter-
action

Measure of education efficiency human mosquito inter-
action

Rate o f  t r a n s m i s s i o n  p r o b a b i l i t i e s  f r o m  h u m a n  t o
mosquito

Rate of quarantining of infected individuals
Rate of recovery of quarantine individuals
Mosquito population recruitment rate

Death rate of mosquito’s population
Rate of transmission probabilities from mosquito to

human
Biting rate of susceptible mosquito

Biting rate of infected mosquito

• Model assumption
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The model's underlying presumptions are as follows:
• Rates of birth and death are equal.
• All identif ied DF-infected people will be placed in quarantine.
• Those who have been quarantined will be treated.
• After recovery, there is no re-infection with another serotype.

Model f l ow chart and equations

Figure 1: Flow chart of the model

The equations of the model are; 
Human population

=

=-

=-)
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Mosquito population

 =

= - - 
=
=[
=

Model analysis
In this section, we talk about the model's equilibrium points, basic reproduction number, and 

positivity and boundedness of solutions.

Positivity and Boundedness of Solution
Theorem 2.1. Let the solution of the equations 2.1 to 2..6 on the compact set be Γ = ∈  ,     t
Proof; in an appropriate subset Γ, to demonstrate that the solutions are uniformly bounded, the model 

equations 2.1 to 2.6 are separated into the mosquito compartment Nm and the human compartment 

Let be the model equation system's solution from equations 2.1 to 2.4, that determines the derivative 
of  along the solution path of a model equation

Simplifying equation above

The integrating factor of the above is

Equation 2.8's two sides are multiplied by an integrating factor to get.

Integrating both sides of equation 2.10

C being a constant of integration. Thus, dividing equation above by  

Applying initial conditions t=0, 

Applying equation to the values of C that were found above
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Applying differential inequality theorem

This demonstrates that  is bounded and that all possible answers for the human component in the 
equations 2.1 through 2.4 system of the dengue fever model, beginning in the  approach, enter or stay in the area 
where;

                        

Similar to that, the feasible solution set for the mosquito population.

As a result of the aforementioned, both   and  are positively bounded, and all of the model's potential 
solutions that start in Γ will remain in the same region. =  ∗  for all t>0.The dengue disease equation system, 
which ranges from 2.1 to 2.6 is thus both biologically meaningful and theoretically properly formulated in the 
domain  since is positively invariant.

Stability analysis
Local Stability of the Disease-Free Equilibrium Point (DFE)

The point at which no disease is present in a given population is known as the disease-free equilibrium. In 
the model, it is the moment at which the infected population equals zero, =0 and =0 is found at this point, 
therefore = and Nm=. Equations 2.1 to 2.6 are nonlinear ordinary differential equations, so the system is 
linearized to produce a Jacobian matrix in order to ascertain the local stability of a disease-free equilibrium. To 
determine whether this mathematical model is stable, we set the RHS of systems of differential equations 2.1 
to 2.6 equal to zero, that is:

 
In absence of Dengue fever, this model has DFE. This means that =  =0 as mention above. Therefore, = 

and Nm = Sm. Using a Jacobian matrix, we investigate the linear stability of the DFE. To derive the Jacobian 
matrix, each equation is partially differentiated with regard to S, I, Q and R in human population and S and I in 
mosquito population. Theorem 2.2. The system's disease-free equilibrium is locally asymptotically stable when 
R0 < 1 and unstable whenR0 > 1.

In human population, the linearized Jacobian matrix is

Equating equations 3.1 to 3.4 to zero, the equations 2.2, 2.3 and 2.4 gives 
= = Rh = 0. Equations 2.1 becomes  - =0
⇒  = 
Due to our assumption that human population remain constant. This

Implies that 
The Jacobian at  is given by

The characteristic equation for the disease-free equilibrium is as follows:
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On solving equation 2.18, the eigen values are;

Since all eigen values are negative, thus DFE is asymptotically stable and R0<1
Equating the RHS of system 2.5 and 2.6 equal to 0 for the Aedes mosquito. Since = 0 from 2.6, we 

get − = 0.
Letting  the subset, we obtain = 
But the death rate is equal to the intake rate,
Implying that.
In mosquito population, the linearized Jacobian matrix is

Indicating that.

⇒ (−µm − λ) (−µm − λ) = 0. It implies that λ = −µm

Since the eigenvalues are negative, it means that the DFE is asymptotically stable if Ro < 1. Thus, 
the disease can be eradicated. Local Stability of the Endemic Equilibrium Point

When a disease reaches an endemic equilibrium, it remains in the population but cannot be totally 
eliminated. When endemic conditions are met, the classes      but the population is still infected with the disease 
when. At the endemic equilibrium point in the human population, the linearized Jacobian matrix is given by

and the characteristics equation is given as

 
h

The above equation is of the formλ4 + a1λ3 + a2λ2 + a3λ + a4 = 0 which implies that

This clearly shows that a1>0, a3>0, a4>0 and a1a2a3 > a3
2 + a1

2a4. According to Routh- Hurwitz 
criterion, all have negative real roots. Therefore, the endemic equilibrium point of the human population is 
locally asymptotically stable when R0> 1 and disease can persist in human population.
The Jacobian matrix (J) for mosquito population is given by

The characteristic equation is equals to

Which is in the form of  +  + a = 0. Using 
Thus a=1

Solving the equation 2.21 using quadratic formula
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This clearly shows that real part of eigen values is negative. The Routh-Hurwitz criterion states that if 
R0 >1, the endemic equilibrium is locally asymptotically stable. Therefore, the disease may continue to spread 
among mosquitoes.

Global Stability of the Endemic Equilibrium Point
Theorem 2.3 If R0 > 1, the system's Endemic equilibrium point  is globally asymptotically stable.
To proof global stability, application of Laselle (1976) is used through construction of Lyapunov function.
For human population, the Lyapunov function will be;
H (S, I, R, Q) =+  +  +

On differentiating the above
 +   + 

On substituting the values of   

Rearranging equation 2.1 to 2.4

+

Substituting in the above

+

It implies that Thus if S=Se, I= Q= and R=Re, then =0. Based on Lasalle's invariant principle, the 
endemic equilibrium points of the system 2.1 to 2.4 is therefore globally asymptotically stable. For Mosquito 
population, the Lyapunov function will be;
 +
Differentiating the above
=
On substituting the values of and  from equation 2.5 and 2.6                                            

Rearranging equation 2.5 and 2.6

Replacing the values of  and µm

It implies that Thus if S=Se and  then.Therefore, the endemic equilibrium points of systems 2.5 and 2.6 is 
globally asymptotically stable according to Lasalle's invariant principle.

The Basic Reproduction Number (Ro)
In a perfectly sensitive population, the Basic Reproduction Number (R0) is the total number of 

secondary illnesses caused by a single ill person.
Using the next-generation matrix approach developed by Van den Driessche and Watmough (2002) to 

ascertain the R0. This approach uses to calculate the basic reproduction number. The susceptible population in 
the model are human and mosquito population. Just the infected compartments of the systems of differential 
equations 2.2 and 2.6 of the two populations mentioned above are utilized to calculate R0 (Gaff et al., 
2007).

In the human and vector model, the rate at which a new infection emerges
is known as the vector valued function, or f
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Linearizing the matrix about DFE, it forms Jacobian of F

But

Individuals are moved from an infectious class by the following
                                                                                     

The Jacobian matrix for removing people from infectious classes is equals to

Obtaining V inverse results in

The basic reproduction number is equal to the spectral radius of 

Therefore;

Ro will be given by the greatest positive Eigen value of the above

Thus:

III. NUMERICAL SOLUTION
This chapter will address the numerical simulations to look at the state Variable dynamics. The 

parameter values are partly estimates, derived and obtained from literature. The KNBS-2011 population 
projection was used to get the human population. In 2011, there was an outbreak of Dengue fever in North 
Eastern Kenya, Mombasa and Mandera. The state variables have the initial values as estimates. MATLAB 
R2023a was used to generate numerical simulations, using the appropriate parameters and initial values for the 
variables as listed in Table 3 and the output is obtained in relation to in regard to the human population and 
vector population compartments. By performing a sensitivity analysis in the basic control reproduction number 
R0 using the parameter values shown in the table, we are able to determine the contribution of each 
parameter in the model.

Description o f  p a r a m e t e r s Initial values Source
1208333 KNBS - 2011 population projection
1208332 Assumed

1 Assumed
1 Assumed
0 Assumed

600 Chepkorir et al. (2014)
599 Assumed
1 Assumed
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0.75 Derouich et al.2006
0.75 Derouich et al.2006

48.33 Computed
150 Computed

0.00004 Iurii Bakach (2015)
0.25 Iurii Bakach (2015)

p 0<p<1 Assumed
q 0<q<1 Assumed

0.3 Assumed
0.2857 WHO-2021

b1 0.5 Derouich et al.2006
b2 1.0 Derouich et al.2006

Table 3: Parameter and initial variable values of the model and their sources

The basic reproduction number R0 and sensitivity analysis
This will be applied as the total number of secondary infections caused by a single infected person. 

Systemically, we obtain R0 by the next generation matrix phenomenon. By applying the spectral radius theory, 
the R0 will represent the spectral radius of the next generation matrix which will be evaluated as the greatest 
Eigen value of FV −1 and R0=0.27931<1
Therefore, according to theorem 2.2, the systems DFE is locally asymptotically stable

From f i gure 2, it's observed that for different initial conditions, solutions' trajectories converge to 
(635, 0, 40, 0). This result agrees with our proposition that the disease-free equilibrium is globally 
asymptotically stable when R0 < 1. It's important to observe in this case that, R0 is a decreasing function related 
to self-protection awareness. Which result means identifying ways to reduce the community's dengue virus 
outbreak. Reduction in the basic re- production number will be instrumental in controlling such spread. It’s 
also instructional to note that the self-protection awareness includes.

By performing a sensitivity analysis in the control reproduction number R0 using the values given in 
Table 3, we are able to determine the contribution of each parameter in the model.

Figure 2: Simulation 1(The disease-free equilibrium is globally asymptotically) stable if R0 < 1.

Elasticity indices
The formula for a parameter α elasticity index is

εα=

Therefore, it is a measurement of the proportional change in R0 to the proportional change in α. The 
spread of the disease in the populations is caused by the parameter with the largest elasticity magnitude, which 
has the greatest ef f ect on R0. The factor the scaling factor normally referred to as the normalization of εα. 
We compute the elasticity of 
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=

Which is an indication of a linear relationship between βh, , b1, b2, and the basic reproduction number. 
Therefore, an increase of the rate of one unit to these parameters will increase the rate of transmission at the 
same rate.

Therefore, an increase in p and q of 3 units will lead to a decrease of the same rate in the R0 thus 
necessitating a decrease in the disease transmission rate. = −2− = εµm meaning that decrease in  and by two units 
will increase the basic reproduction number.

Finally,  ,  hence a rise in  will cause a nominal decrease in Ro

Elasticity is a concept used to measure how the transmission of the virus will vary with change in 
different parameters. It's clear from our study that the parameters with the most elastic properties are the 
education/campaign

Figure 3: Elasticity of different parameters α.

Parameter is in relation to disease transmission dynamics. A parameterise considered to be elastic if 
the parameter changes more than proportionally then the system increases or decreases.

IV. Discussion
We consider the dynamics of transmission of the dengue virus by analysing variation of model state 

variables over a period of time. The variables under consideration will be 
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Figure 4: Population rate of susceptible humans with time.

Figure 5: Variation infected human population with time.

From the f i g u r e  above, it is noted that as time passes, the number of susceptible humans 
decreases up to some equilibrium point which is attained in five months. This could be partly because of the 
rise of infected persons from one individual and also due to the education campaign. From the graph, we note 
that there is a variation in the rate of change susceptible humans with time based on the education campaign 
index. It can be noted that a higher rate of education campaign will have a higher effect on reducing the 
susceptible population.
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Figure 6: Variation of quarantined population of humans over time.

The population of infected humans is expected to grow with time, but at a decreasing rate, as is 
evident. As the infected transmission vector comes with human populations, the human population get 
infected with the virus at the rates as displayed in the f i gure above. The rate of vector to human infection of 
observed to decrease with the increase in the education efficiency for human vector interaction. Note that the 
rate of quarantine starts from zero and increases gradually over time. Still, the variation of p is seen to have an 
effect on the quarantine rate. Just as observed in figure 3, f i g u r e  4 implies that there is the effect of 
education on quarantined human. The higher the p the lower the quarantined population.

Figure 7: Variation of susceptible mosquito population with time.

Figure 7, the number of susceptible mosquitoes come in contact with infected persons, they do get 
infected and thus reducing their population. It is also clear that q has an effect on this since the lower the q, the 
higher the decrease in the rate of susceptible mosquito population. Where as in f i gure 6, as the susceptible 
population decrease, the infected population increase over the same period. The two vary mutually but in an 
opposite manner.
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Figure 8: Variation of infected mosquito population with time.

V. CONCLUSION
The mathematical model to study the dynamics of the dengue virus was formulated and analysed for 

equilibrium points. Using the spectral radius theory, the R0 is acquired as the subsequent generation matrix's 
spectral radius, which will be assessed as the largest Eigen value of FV −1 and R0<1. The system DFE is thus 
locally asymptotically stable, as stated by Theorem 2.2. The education efficiency in this study is observed as the 
most elastic variable and is seen to have an impact on the rates of decline in number of susceptible populations 
of both humans and mosquito. It also affected the increase of the infected humans, mosquitoes and quarantined 
humans substantially. Recovery rate as observed is assumed to be higher than the mortality rate. Evidence of 
the importance of DF health education programs in enhancing knowledge and emphasizing application of 
that knowledge is shown by this study. Regular and more intensive health education campaigns about human-
mosquito and mosquito-human interaction as well as the broader control of the mosquito population using 
currently available eco- logically friendly approaches could lead to even greater improvement. Social and 
community mobilization is also useful for in raising awareness and transforming knowledge into practice on 
control of Dengue Fever transmission. It has been shown that quarantining significantly lowers the infection 
rates in populations of mosquito’s and humans. This is an aspect of control that its effect to the population is 
noted based on the rate high rate of decline in susceptible populations.

VI. Recommendations
Observation of outbreak trends and indicator surveillance will be useful in preparation of the health 

infrastructure and prevention mitigating measure. Accurate surveillance should inform the programs to be 
implemented and at what time. This surveillance however ought to be routine. The availability of a safe and 
effective vaccine would improve on measures dengue prevention. Vaccine development May be costly and time 
consuming but with long term benefits
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