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ABSTRACT

Structures not subjected to any kind of load are rare to be seen in real life. This makes it necessary to consider
the factors that can affect the stability of structures when subjected to different loadings. There are different
loading histories for instance; step load, impulse load, periodic load, and moving load. This research
investigated the effect of two factors; viscous damping and geometric imperfections on the dynamic buckling
load of a model structure lying on a nonlinear cubic foundation trapped by a periodic load. Two-timing regular
perturbation method and asymptotic expansions are applied to the model representing the structure. The results
obtained showed that viscous damping and geometric imperfections indeed affect the dynamic buckling load of
a structure subjected to a particular loading history, periodic load, thereby altering the stability of the structure.
As damping increases, the dynamic buckling load of the structure increases and it reduces instability. Increase
in the imperfections, decreases the dynamic buckling load which causes it to buckle easily. Structures become
unstable when the buckle.
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. Introduction

Modern structural engineering occasionally demands the loading of some structures at various loading
conditions and loading durations. Such structures are normally inhibited by a series of imperfections caused by
some geometrical irregularities and nonlinearities that could have been inadvertently introduced into the
structure during the manufacturing process. These irregularities have the tendency of reducing the elastic
stability of structures below the stability level of the perfect structure. Damping of a structure is to enhance the
dynamic stability of the structure

The subject of dynamic buckling of structures whether at the elastic or plastic stage is a current area of
investigation embarked upon by applied mathematicians, civil engineers, mechanical engineers, structural
engineers, all in an attempt to determine the best designs for structures under various loading histories. The
subject matter originally developed from the initial exploratory investigation by Budiansky [9], Budiansky and
Hutchinson [10], and Hutchinson and Budiansky [26] and has since received international and global appeal and
acceptance. However, it must be emphasized that most of the investigation so far initiated, have mainly
concentrated on the dynamic buckling of structures at the elastic range, Ette [22]. It was noticed that before,
research in this area was dominated by Harvard school of engineers pioneered by Budiansky and Hutchinson
and there seemed to have been skepticism by the rest of other research communities in probing into this
emerging research interest Ette [17,18,19,20]. Later the pre-eminence of dynamic buckling became fully
established and soon peaked up to a very high crescendo. Thus, Tamura and Babcock [42] published an
appetizing finding on the dynamic stability of cylindrical shells under step loading while much earlier on,
Budiansky and Ruth [11], had investigated the axisymmetric dynamic buckling of damped shallow spherical
shells. Their findings are still relevant in our modern dispensation because they permit computer application. In
the same vein, Roth and Klosner [34] investigated the nonlinear response of cylindrical shells subjected to
dynamic axial loads while Chitra et al [13], looked at the dynamic buckling of composite cylindrical shells
subjected to axial impulse. It must be stressed for emphases that some loading histories are time independent
while some are strictly time dependent. Amazigo and Ette [4] investigated a two-small parameter nonlinear
differential equation with application to dynamic buckling while Svalbonas and Kalnus [41] explored the
dynamic buckling of shells. Simitses [38] introduced a new type of loading in which a structure would be pre-
statically loaded to a level below the static buckling load only to be trapped by a dynamic step load of finite
duration. Birman [8] investigated the problem of dynamic buckling of antisymmetric rectangular laminates and
also solved the problem of a pre-statically loaded plate superposed on a step load. The exact solution and
dynamic buckling of a beam-column system having the elliptic type of loading were introduced by Artem and
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Aydin [5]. Nima and Kai-Uwe [35] studied the dynamic buckling of crash boxes under an impact load. Ahmed
Naif et al [3] studied the improvement of dynamic buckling behavior of intermediate aluminized stainless steel
columns. Song-Hak et al [40], researched on the dynamic buckling of composite structures subjected to impulse
loads using the Lyapunov exponent. Most dynamic buckling problems have a high level of nonlinearity and
their solutions can involve a high level of complexities and formable computation. In fact, almost all the
investigations by Ette [17,18,19,20,21,22] are of this type. However, the method of solution depends on the
loading history as well as on the level of nonlinearity. Crocco [14] applied coordinate perturbation and multiple
scales to solve problems on gas dynamics. Relatively recent investigations into the dynamic buckling of elastic
structures have been rewarding and insightful. Mention in this regard must be made of Sahu and Datta [36],
Bazant [6], Onuoha [32], and Karagiozova [27]. The last mentioned actually investigated the dynamic plastic
and dynamic progressive buckling of elastic-plastic circular shell. More so, Ahmed and Gareth [2] investigated
lateral buckling of offshore pipeline as a result of high temperature and pressure on the pipelines. Onuoha and
Ette [31] determined the dynamic stability of a viscously damped elastic model structure subjected to step load.
Gladden et al [24] came up with the verification that buckling leads to fragmentation of rods. Special area of
interest on triply coupled vibrations of axially loaded thin-walled composite beams were investigated by Thuc et
al [43]. The investigation by Enrico et al [16] on the dynamic buckling of impulsively loaded prismatic cores
was particularly stimulating while Adhikari and woodhouse [1] studied identification of damping on structures.
Ferri et al [23] gave a brief recipe on the buckling of impulsive loaded prismatic cores. Capiez-Lernout et al [12]
came up with post-buckling dynamics of a cylindrical shell subjected to a horizontal seismic excitation. The
effect of damping on dynamic buckling was similarly investigated by Sapsis et al [37]. Belyaer et al [7] studied
the stability of transverse vibration of rod under longitudinal step-wise loading. Lei et al [28], in their research
work, investigated the vibration of nonlocal kelvin-voigtviscoelstic damped Timoshenko beams. An excellent
treaty by Slim et al [39] discussed the buckling of a thin-layer coquette flow. The dynamic buckling of an
inclined struct was investigated by Mcshane et al [30].

Problems with cubic nonlinearity appears to have been first studied by Hansen and Roorda [25] though it is
quadratic-cubic while Elishakoff [15] and Ette [17] later made similar investigation on quadratic-cubic
nonlinearities. Udo-Akpan and Ette [44], applied two-timing perturbation procedure on the dynamic buckling
load of a model structure with quadratic nonlinearities struck by a step load and superposed on a quasi-static
load. Osuji et al [33] employed the phase plane using asymptotic expansions of various variables to determine
the static buckling analysis of a quadratic-cubic model structure.

1. Buckling Load of the Simple Model Structure

Onuoha and Ette [31], investigated an elastic model structure under step load. This research extends their work
to study the dynamic instability of a simple model structure trapped by a periodic load. The model of the simple
structure is given as

d?z dz

?+25a+(1—/1)z—z3=g/1005at (1)
dz(0)

0)=—"_p 2

2(0) it @)

We shall obtain the classical buckling load, the static buckling load and the dynamic buckling load. Thereafter,
know the effect of geometric imperfections and damping on the structure’s buckling load.

2. Classical Buckling load A,

This is defined as the value of A at which the perfect structure buckles. A is obtained by neglecting the
nonlinear term in (1), and both the inertia and damping term, setting cosat =1, £ =0, we get

(1-2)z=0 (3)

Finally, we obtain A, from the condition (Bundisky and Hucthson [9])

dA

-0 4a
& (4a)

to get

A =1 (4b)

3. Static Buckling load A,
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This is the load at which the imperfect structure buckles statically. It is obtained from (1) by neglecting the
derivative terms and setting cosat =1to get

(1-2)z-2°=2¢ (5)
The condition for A, is the same as (4a), and we get
(1-4,)=32 (6)

where Z; is the value of z at 4= A,.
From equation (6)

1-2,
z, =% : 7
= ™
Determining A, from equation (5), we get
3
(1-4)2 = ?ﬂsg (8)
4. Dynamic buckling load of a model structure under a periodic load 4,

We intend to derive the dynamic buckling load, 4, , of a simple model structure. Equation (1) shall be solved
using two-timing regular perturbation and asymptotic expansions.

We let
=0t ©)
z(t)=w(t,7) (10a)
Here, we note that
dz
— =W, +0W 10b
d " i (10b)
d’z 5
F =W, + 25\N,tr +6°w,, (10c)
Using equations (10a), (10b) and (10c), equation (1) becomes
W, +26W, +5°W, +OW, +5°W_+(1-2)w—W’ = gAcosat (11a)
ow(0,0
w(0,0)= ( ):0 (11b)
We let
w(t,z) =Y we's) (12)
i=1

j=0

On substituting equation (12) in to equation (11a), andequating the coefficients of powers of
£51i=123..]=012,.., we get

(£5°): Wy +(1-2)w™ = Acosat (13)
(e5):wi) + 20 +wi? +(1-2)w™ =0 (14)
(£.57): Wi + 20 +wi + Wi+ wi + (1-2)wt) =0 (15)
(£26°): W +(1-2)w® =0 (16)
(£2.6): Wi + 2wl + W +(1-2)w™ =0 17
(£26%): Wi + 20+ W + Wi+ w4 (1- 2) W™ =0 (18)
(£2.8°) W +(1- )W (W) =0 (19)
(2.5): We +2w) - +(1- )W —(w | wé =0 (20)
(2.57) WD + 2w+ W W w4 (L )W — (W ) e —w (W) =0 (21)

The corresponding initial conditions are:
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w" (0,0)=0 (22)
w!® (0,0)=0 (23)
w{ (0,0)+w! (0,0)=0 (24)
wi? (0,0)+wi"(0,0)=0 (25)
W (0,0)=0 (26)
w (0,0)+w? (0,0) = (27)
w?? (0,0)+w?™ (0,0) = (28)
w(0,0)=0 (29)
w (0,0)+w™ (0,0)=0 (30)
wi? (0,0)+w (0,0)=0 (31)
Solution to equation of order (£.5° )
wi? +(1-2)w™ = Zcosat (32)
Solving equation (32), we get
W (t,7) = A, ()cosgt + By (7)sin gt +— 4 ~cosat (33)
o —

wherel—1 = ¢°
On imposing the initial conditions, equations (22) and (23) on equation (33), we have

A
A (0)= _(02 P (34a)
By, (0) =0 (34b)
Solution to equation of order (£.5)
\N’(;l) + oW = _ZW(tlTO) _W(tlo) (352)
Equation (35a) can be written as
vvfé” +o2w™ = —2(—goA1’0 (7)sin gt + @B/, (7)cos wt) - (—(pA10 (7)singt + By, (7)cos got) (35b)

To ensure a bounded solution int , we equate to zero the coefficients of singt and cosgt respectively.
Forsingt , we get

1
Ao(7)=ke 2 (36a)
From equation (34a),
ALO(O):_ zﬂL 7=k =- zﬂ 2 (36b)

2 4 ¢ -
Hence,
A e

Ay (T):_¢2 P e? (36¢)
For cos¢t , we get

1
By (7)=k,e ? (37a)
From equation (34b)
B,(0)=0=k, =0 (37b)
Hence,
B,(7)=0 (37¢)
The remaining part of equation (35b) is solved to get
w™ (t,7) = A, (¢)cos gt + By, (7)sin gt (38)
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On imposing the initial conditions, equations (22) and (24) on equation (38), we get
A, (O) =0

B, (O) = _%

o(p” —a’)

Solution to equation of order (£.5?)

W,(iZ) + (DZW(lZ) — _2W(11) _ W(ll) _W(lo) _W(lo)

Jtr As T T

Substituting for w(:,wi™, W W equation (40a) becomes

Wi + oW =-2{-pA, (z)sin gt + B}, (r)cospt} —{-pA, (r)sin gt + pB,, (7 )cos gt | -
{ A (r)cos gt + B, (z)sin gt} —{ A, (r)cos gt +Bj, (7)sin gt |

To ensure a bounded solution int , we equate to zero the coefficients of singt and cosgt respectively.

Forsingt , we get

1
A, (7)=kee 2
From equation (39a)
A, (0)=0=k, =0
Hence,
A,(r)=0
For cos ¢t , we get

1

B, (‘r) = k4e_7
From equation (39b)

A A
%(0)= (p(¢2_a2):k4 o(¢*-a’)
Hence,

p) e
Bn(f):—mez

The remaining part of equation (40b) is solved to get

W (t,7) = A, (r)cospt + By, (7)sin gt

On imposing the initial conditions, equations (22) and (25) on equation (43), we get
A, (0) =0

B,(0)=0

Solution to equation of order (&*.5°)

W,(th)

Solving equation (45), we get

W (t,7) = Ay (7)cosgt + By, (7)sin gt

On imposing the initial conditions, equations (22) and (26) on equation (46), we get
A (O) =0

B, (0)=0

Solution to equation of order (£”.5)

Mjl) " (DZW(M) _ _ZW,(:ZTO) _ W&zo)

Substituting for the terms on the right hand side of equation (48a), equation (48a) becomes

Wftfl) +o W™ = —2{—goA2'0 (7)sin gt + @By, (z)cos qot} - {—(DAZO (7)sin gt + @B, (z)cos (ot}

To ensure a bounded solution in t, we equate to zero the coefficients of singt and cos ¢t respectively.
Forsingt , we get

+ ¢2W(20) =0

(39a)

(39b)

(40a)

(40b)

(41a)

(41b)

(41c)

(42a)

(42b)

(42c)

(43)

(44a)
(44b)

(45)

(46)

(473)
(47b)

(48a)

(48b)
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1
A, (r) = kseiir
From equation (47a)
A20(0)=0:>k5 =0
Hence,
Ay (7)=0
For cosgt , we get
B, (7)= kee%[
From equation (47b)
BZO(O):O:>k6 =0
Hence,
B, () =0

(49a)

(49Db)

(49c)

(50a)

(50b)

(50c)

The remaining part of equation (48b) is solved to get
w? (t,7)= A, (7)cosgt + B,, (7 )sin gt (51)
On imposing the initial conditions equation (22) and (27) on equation (51), we have

A,(0)=B, (0)=0

(52)

Solution to equation of order (32 .52)

M‘fz) + ¢2W(zz) _ _2W(t2rl) —w

_w® ) (53a)

112

Substituting for the terms on the right hand side of equation (53a), we get
Wftfz) +o?w® =2 {_¢A2’1 (z)singpt+ @B, (7)cos (pt} - {—(/)A21 (7)sin gt + @B, (7)cos (pt} (53b)
To ensure a bounded solution int , we equate to zero the coefficients of singt and cos ¢t respectively.

Forsingt , we get

1
A, (r) =k.,e 2’
From equation (52a)
A21(0)=0:> k, =0
Hence,
Ay (T) =0
For cos gt , we get
By (7)= kge%T
From equation (52b)
821(0):0: k; =0
Hence,
B, (7)=0

(54a)

(54b)

(54c¢)

(55a)

(55b)

(55¢)

The remaining part of equation (53b) is solved to get
W (t,7) = A, (7)cosgt + B, (7)sin gt (56)
On imposing the initial conditions, equation (22) and (28) on equation (56), we get

Ay, (0) =0
B, (0)=0

(573a)
(57b)

Solution to equation of order (83 .60)

W,(th) 4 wzw(ao) _ (W(io) )3

(58)

Expanding (V\/<10) )3 and substituting into equation (58), equation (58) becomes
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2
Wi + "W = {E (A,) +g A, (#j }cos pt+ %(A10 )’ cos3pt +

(8 (2 oot 2t S (2 Jostar- 2y

¢2

ﬂ 2
—_ —2a)t
goz—azj cos(f—2a)t+

3 3
3 z/1 2 +§(Am)2% Cosatt+1 2/1 ~ | cos3at
4\ 9" -a 2 o -a 4\ ¢* —a

We write equation (59) in the form
W+ p* W™ = Q, cos gt +Q, cos3pt +Q, cos (e +28)t+Q, cos(a —28)t +
Q; c0s( B+ 2a)t+Q; cos(B—2a )t +Q, cosat +Q, cos3at

A, (#j cos(ﬂ+2a)t+§Am(

where

3, 3 3 2 ¥
Q1=Q1<T>={z<‘\o> = }
Qz:Qz(T):%(Aio)3

Q,=Q,(r)=Q, =Q4(r)=§(ao)2[¢zfazj

Q5:Qs(r):Qe:QS(T):%Alo[(pzfazj

34

o =Q7<f)={m(ao>z+§[¢zfazjs}
Q8=Q8(T)=%( 2/1 j3

2
Qo —a
To ensure a bounded solution in t, we equate to zero the coefficient of coset in equation (60) and get
Q (T) =0
The remaining part of equation (60) is solved to get
w®) (t,7) = Ay (r)cosgt + Bso(r)sin¢t—Q—220053(pt+ Q —cos(a+2¢)t+
8¢p 9" —(a+2p)
% ~Cos(a —2¢)t+ o ~C0S(@+2a)t+
2 2
¢’ —(a—29) ¢* —(p+2a)
%cos(gp—m)u 2Q7 ~cosat+ ZQ‘* ~C0s3at
9" —(p-2a) P -« 9" =%
On imposing the initial conditions, equation (22) and (29) on equation (64), we get
(0 (O QO QO (9

0 0)= 2 2 2 2 2
Aol ) 8p (02—(05+2¢)) goz—(a—Zgo) goz—(go+2a) (/)2—(¢—2a)

Q(0) Q(0)
(pz —a? (/)2 — 92
B,, (0)=0

Solution to equation of order (£°.5)

(59)

(60)

(61a)

(62b)

(62c)

(62d)

(62¢)

(62f)

(63)

(64)

(65a)

(65b)
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2
W P = 2w W) () i

=-2 {—q)Ago (7)sin gt + @By, (7)cos gt - 2

—(a ~20)Q ~sin(a —2p)t

o' —(a—29p) 9" ~(p+2a)

_aQ
@ O.’

Msin(omw)t—

3aQ;

sm at—

o” —(ar+29) 9" ~(a-2¢)

Qsm a aQ;
" —(p- 2a) (p=2a)t- o —a
1 A

A2 A2

7By singt+———— B, sin (¢* +2a)t+

2((/)2—0( 4((0 —a

¢Qz
9’

——(¢+ 20()Q5' 5sin (go+ Za)t

3 Sinat —

——=3in3pt —

e sin3at}—{—¢)A30( )sin gt + @By, (7)cos gt —

L(/))QAZSM (a—2p)t-

3aQ

2_

Z(Aio )2 Bllsin 3(0t—2(¢2—_a2)AlanSin(2(p+a)t+2(2—2

(a+20)Q;

sin(a +2¢p)t-
(pz—(a+2(p)2 ( )

_ (p-20)Q§
9" ~(p-2a)

¢Q2 ——=2sin 3pt —
§0

)
(p+2a)Qs

” (¢+2a) ———————sin(p+2a)t-

- 2 .
8“2 sin 3at}+Z(Am) B, singt +

4 ) AgB, sin(2p—a)t+

A? .
e > By sin(o” —2a)t
o -a

To ensure a bounded solution int , we equate to zero the coefficients of singt and cos ¢t respectively.

Forsin gt , we get

Ay (7)= e? {I H, (f)e?df + Ay (0)}
where

(7)== (o) B () B 2

407 ((p2 _az)
For cos gt , we get

1
By (7)= kgeif

From equation (65b)
By (0)=0=k,=0

Hence,
By () =0
The remaining part of equation (66) is solved to get
@ (t,7) = A, (r)cosgt + By, ()sing ng
@
Q11 H Q12
—sin(2p—a)t-
—(2(0—0()2 ( ) goz—((p+2a)2
QlB H Q14 H
—= _sin(¢-2a)t———=—-sinat
gDZ _(w_za)Z (q) ) ¢2 _az
where
3Q, 3 1
Q(r)=—22 -2k L(A) B,
220+ a)Q; 20+a)Q
o ()= 220+ a)Q | (2p+a)C

~(2+a) ¢*-(2p+a)

7 By

Qu

=sin(2p+a)t+

~sin(p—2a)t-

(66)

(67a)

(67b)

(68a)

(68b)

(68c)

(69)

(70a)

(70b)
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2(2(/)—0!)Q£ N (2¢7—05)Q4 4 AALBy

Qu = 2 2 2 2 2
() (pz—(Zgo—a) o’ —(2p-a) 2((p —a )
Qu(7)= 22(¢)+2a)Q5'2 N E(/)+20{)Q5 _ 7B, 2
o' —(p+2a)” ¢°—(p+2a) 4((/)2—0(2)
Q()- A2 (oo 2e)% A
9 —(p-2a) ¢'~(p-2a) 4(p*-a’)
Qu(r) == (2 +Q)
3 ,
Q)= (0 +Q)

On imposing the initial conditions, equation (22) and (30) on equation (69), we get
Ay (0) =0
8, (0)= 1{309 (0), (20+2)Qu(0) (20-a)Qu(0) (p+20)Q,(0)

2 2 T 2 2 T 2 2
p| 8¢ o' —(2p+a) ¢ -(2p-a) ¢’ —(p+2a)

((0_ 20{)Q13 (0) + aQy (0) + 3aQ; (0) Q (0) Q; (0)

— Ay, (O)+ -

(02—(¢—20l)2 o' —a® 9" -9 8¢ (/,2_(2(0+a)2
QO %O %) () ()
0 —(2p-a) ¢ -(p+2a) ¢ -(p-22) ¢ - ¢"-9%"

Solution to equation of order (83 .62)

V\/,(I?Z) " (pzw(sz) _ _ZMtil) _W,(tsl) _W,(rer) _VV,(TBO) +(V\/(m) )2 W2 10 (W(ll) )2 (72)

(70c)

(70d)

(70e)

(70f)

(709)

(71a)

(71b)

Expanding the terms on the right hand side of equation (72) and substituting all into the same equation, we get
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2 ! 29— !
wfj2)+q)2w(32):—2{—¢As’lsin¢t+goB;1c05qot— 5 cos3 ot — Mcos(2¢+a)t—%cos(2¢—aﬁ—
" —(2p+a) o’ —(2p-a)
2 ! /
((/”L—O‘)(gﬂzcos((ﬁga)t_ﬁscos(go 2a)t- Qi ——=—-cosat— ZaQ“’ZcosSat}_
9’ —(p+2a) 0* —(p-2a) o’ —a? > 9
{—¢A31$in(pt+goB31COSg0t— 3Q, cos 3pt — wcos(2¢+a)t—%cos(2q)—aﬁ—
~-(2p+a) " -(2p-a)
2 -2
(€0+—06)Q“2cos((p+2a)—((p—a)Q“2cos(go—2a) 0 ~cosat— zaQ15ZCOSSat}—
@ —(p+2a) 9" —(p-2a) o’ -a’ 0° -9
{AB"OCOS@.‘—QZ cos3pt +— 9 7 C0S(2p+a)t+— Qi ~c0s(2p—a)t+
9’ —(2p+a) o’ -(2p-a)
o o) o o }
—————C0S(p+ 2 )t + cos(p—2a)t+ cosat+ cos3at p—
(pz—(¢+2a)2 (p+2a) (pz—(go—Za)z (p=22) p*-a’ ¢’ -9a’
, Q Q; Q;
cos gt ——=c0s 3pt + cos(2¢p+a)t+ cos(2¢p—a)t
oot o rat S emteo=
Q o Q Q }
——=——c0s(p+2a)t+ ———————cos(p—2a)t+ cosat+ cos3at ;—
q)z—(go+2a)2 (o ) goz—(go—Za)z (v ) o —a’ 0> -9’
%(Am) A, cospt += (Aw) Amcos3<pt+ A“’A‘Z COSat+%(COS(2¢)+a)t+COS(2(/)—a)t)+
2 2
iV > COS @t + ¥ 2(COS((p+2a)t+COS((p—2a)t)+l(Am)2Blzsin¢t+
2((p2—052 4 (/12—0(2 2
2
1(Am)2 B,, (sin3pt —singt) + _ARoBy X (sin(2p+a)t+sin(2p - a)t )+&Zzsin¢t+
: o) 2o o)
2 B,) A(B,)
A By > (sin(p+2a)t+sin(p—2a)t)+ Ao (By )COS(O'[ Mc053¢t+¥cosat
4(¢*-a’ ) 4 4 2(¢* -a’)
A(B, )
%(cos(2¢+a)t+cos(2(p—a)t)
2((0 -a )
(73)
To ensure a bounded solution int , we equate to zero coefficients of singt and cosgt respectively.
Forsin gt , we get
1 T 1
A, (r)=e? {j H,(z)e? d z’} (74a)
0
where
1 A?
H, (r)=~(A) By —————5B, (74b)
8¢ 4(/)(@ -a )
For cos ¢t , we get
1 T 1
By(r)=¢? {j H,(7)e? +B, (0)} (75a)
0
where
1 1 3., v A2A 1 2
Ho(r)=—A" +— A ——— 2 4 - 75b
3(1’) 2(/)A30 2¢A30 8¢’(A10) ALZ 4(p((p2—a2)2 8¢)AL0(811) ( )
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The remaining part of equation (73) is solved to get

w® (t,7) = A, (r)cosgt + By, (7)sin gt - p (_glgaz cos 3pt —mcos(zgﬂaﬁ—
Q18 ng
———————C0s(2p-a)t- - 5 Cos(¢+2a)t -
—(2;0—0:) ( ) 1) —((p+2a) ( )
chos((p—m)t—%cosm— 2Q22 2COS3at+Q23 sin3pt — (76)
9" —(p-2a) P -a 9" =%
Q24 H QZS H
>sin(p+2a)t- ; >sin(p—2a)t -
o' —(p+2a) ( ) 9’ —(p-2a) ( )
QZG Sln 2 Q27 H
5 o+a)t— ; >Sin(2p—a)t
—(2p+a) ( ) ¢’ —(2¢p-a) ( )
where
3.3 & & (A)A A, AR
Qu(7)= 40 " 8p 8p Bp 4 +2((p2—a2) 4 (772)
Q17() 2(2¢+a)Q10 (2¢+a)Q102_ 2 Q S Q; _+ iAZ&oAzz _ /1(2811)22 (77b)
2~ (20— a) o —(2p-a) ¢ —(2p+a) ¢"-(2p+a) 2((0 -a ) 2((/) -a )
le(T) 2(2¢ a)Qll (2¢_a)Qllz_ 2 Q: 27, Q‘; 7T
2~ (29— a) o' —(20-a) ¢*-(2p-a) ¢"—(2¢p-a) @79
AAGA,  A(By)
20" -a*) 2(¢*-a’)
Q)= dertell L2 & &, Th 77
@ (qo+2a) o' —(p+2a) @' —(p+2a) ¢ —(p+2a) 4((/)2—0:2)
QZO( ) 2((0 2a)Q13 + (zw_za)lez - 2 Qg 2 2 Qé 2 +
" —(p- 2a) o' —(p-2a) ¢°—(p-2a) ¢°—(¢p-2a) a7e)
2n, B
4((p2—0(2)2 Z(qoz_az)
2aQ;, aQ, Q Q AAGA, A ( By )2
QZlT:z Nt 2\ (.2 2\ (.2 Nt 2 2\ 2 2 (771)
e o) 7)) () 2 )
_6aQ  3Q, Q
Q. (T)_(Dz 9> +(/72—90l2 0’ —92% ¢ —9a° (779)
Qu(7)= (A*°l & (77h)
Q24(T)=Q25(T)=% (77i)
4((/) -a )
ZAIOBlZ H
Qze :Q27 =77 2 2\ (771)
(T) (T) 4((/) e )
On imposing the initial conditions, equation (22) and (31) on equation (76), we get
~ Q(0) Q- (0) Qs (0) Qu (0) Q0 (0)
ASZ(O)_ 2 2, 2 5 2 5 2, 2
P"=9%" o’ —(2p+a) @' -(2p-a) ¢'—(p+2a) ¢*—(p-2a) (782)

Qu(0)  Qx(0)

2 2

o’ —a® ¢*-9a°
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3Q5(0) _ (¢+2a)Qy (0) _ (¢—2a)Qy (0) _ (20+a)Qy (0) _

B, (7)=
32( ) 8¢ (pz—((p+ 2a)2 o —(Q—Za)z o —(2(p+0{)2 (78b)
20-a)Q, (0 ,
(20-2)0:(0)_,, o)
~(2¢-a)

Now the displacement w(t,7) becomes

W(t,7) = (W 4 WD 4 5 (W) s+ 52 (79)
5. Maximum Displacement

Let the maximum displacement be denoted by w, (t,,7, ) . Then,

W, (t,,7,) = (W (t,,7,) + W (t,, 7, )} + 8 (WP (1, 7, ) + WS (8,7, ) + 5w, 7,)) (80)
where t, and r, are the critical values of the associated time variables at maximum displacement.
We shall now determine the maximum displacement. In determining the maximum displacement, we shall
assume the following asymptotic expansions as in Onuoha and Ette [31].

t, =ty + Oty + 8ty +.nnt &ty + Oty + 07t .t )+ &7 (b + 5y, + 07t 4t ) (81a)
7, = 5{t0 +3ty, +5°ty, +...+g(tm +3t, +5°, +...+)+g2 (t20 +3t, +5%,, +...+)+...} (81b)
Originally, the condition for maximum displacement is

dz

il 82
m (82)
This translates through (10b) to

Z\Mj") +6, w? =0 (83)
j=0 j=0

We evaluate equation (83) at the critical values t, and z,. Expanding the terms of W( ta,ra) in Taylor’s series

and equating to zero the coefficients of powers of ¢'6’; i=12,...;j=0,12,..., we get

(£.6°):w? (t,,0)=0 (84a)
(£.6") Wty + Wity +wi (g, 0)+W(10) (t,,0)=0 (84b)
(£.6%): Wilty, + Wity + Wity +wit, =0 (84c)
(62.6%): Wi, =0 (84d)
(¢2.6Y): wn 't Wit +wil, =0 (84e)
(£2.0%): widt, +wh t, +wil, =0 (84f)
(£°.6°): Wity +w® =0 (840)
(£°.6Y): W(1°)t AWt wi Wit =0 (84h)
(. 52) 0, + Wi, +witlt, =0 (84i)

Solving equatlon (84a) — (84i) respectively, we get

t,=nz,n=012,..

We need the least non-trivial value of t,and so we set n=1and get

t,=7 (85a)

1

ty=—7—7+ 85h

. Z(goz —a ) (85h)
1

t, = p (85c¢)
ty =0 (850)
t, =0 (85¢)
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t,=0 (85f)
t, =0 (859)
1 (0)
t, =—————wW"(t,,0 85h
21 22‘ (¢)2 _ az ) ( 0 ) ( )
t, =0 (85i)
Equation (80) becomes
w, (t,,7,)=¢ |:V\/(10) +0 (W,(Tm)t0 +wi ) +6° (V\/_(Tm)t01 + i, )} +é° [W(so) +0 (W_(,m)t20 + W )J (86)
Further simplification of equation (86) gives
w, (t,,7,) = ng{ﬂ+(02 fa2}+ N,&*(2+367) (87)
where
3
N, = A\ 4 (88)

-t 36(/)2(¢2 —a2)3
For ease of further analysis, as in Onuoha and Ette [31], we let

W, (t,,7,)=&C +&°C, +£°C; +... (89)
where
o
C, = N1(7Z+¢2_a2)
c,=0 (90)

c; =N, (2+367)

As in Budiansky and Hutchinson [10], the condition for dynamic buckling is
dA

aw,

As in Ette [21, 22] we first reverse the series in the form

e=dw, +d,W +d,w +... (92)

By substituting for w, in equation (92) from (90) and equating the coefficients of powers of &, we get
O(e):dgc, =1

(91)

(93a)
(93b)

c, (94c)

where d, depends on A for i=i,2,3,...
The maximization equation (91) is now accomplished through (92) to give
(;17& =d, +3d,w’ =0 (95)

a

which is evaluated at 4 =4, .
On solving for w, , we get

3
Wa2 = _i =+ i (96)
3d, 3c,

6. Dynamic Buckling Load A,
To determine the dynamic buckling load A, we evaluate equation (92) at A =4,

DOI: 10.9790/5728-1906025065www.iosrjournals.org62 | Page



The Dynamic Instability of A Periodically Loaded Simple Model Structure

&= dlDWa +d3DW§
Further simplification of equation (97), we have

2
On simplifying equation (98) at A = A, we get
N1(7t+(p2 faz ]
3\ 7aN, (2 or)
Further simplification of equation (99) gives

s0sp) | 5020 - [x{1- ) -} 5]
¢ 3(2+307)

1
2

o =

(97)

(98)

(99)

(100)

The dynamic buckling load, A, of the simple model structure is computed from equation (100). Numerically
computed values of the dynamic buckling load for various values of the parameters, 6 and & are summarized in

tables I and Fig. |

Table I: Computed Values of Buckling Load A, at Various Values of Damping ¢ and Imperfection &

o | Apat Ap at Ap at Ap at Ap at Ap at Ap at Ap at Ap at Ap at
=001 £=002 | £=0.03 | =004 | £=005 | £=006 | £=007 | £=0.08 | £=0.09 | £=0.10
0.0 0.797190 0.743390 | 0.701617 0.666700 0.636454 | 0.60965 0.585558 | 0.563646 0.543552 0.513900
8.0 0.798325 0.744360 | 0.703751 0.660000 0.638725 3.61263 0.588723 | 0.566900 0.547900 0.519877
(1).0 0.799527 0.746000 | 0.706017 0.671700 0.642115 2.61570 0.592095 | 0.570000 0.551000 0.523242
5.0 0.799999 0.748842 | 0.708428 0.674500 0.645227 8.61900 0.595699 | 0.574325 0.554600 0.526354
8.0 0.800000 0.750010 | 0.709999 0.677582 0.648557 8.62278 0.599563 | 0.578400 0.559671 0.530000
3.0 0.803026 0.753000 | 0.713755 0.680000 0.651220 3.62667 0.599067 | 0.582788 0.563554 0.530968
8.0 0.806750 0.755446 | 0.716712 0.684227 0.653500 3.63000 0.599936 | 0.587531 0.569872 0.538762
8.0 0.810056 0.757000 | 0.718004 | 0.687000 0.658061 8.63540 0.599987 | 0.587784 0.570111 0.540019
(7).0 0.818735 0.760000 | 0.723351 0.690000 0.664660 8.63885 0.608974 | 0.598296 0.578764 0.546708
g.O 0.820486 0.763674 | 0.725000 0.696376 0.669000 8.64035 0.613865 | 0.600087 0.581003 0.549762
§.1 0.827623 0.766000 | 0.731215 0.700000 0.670189 §.64608 0.617423 | 0.601687 0.583768 0.550000
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Fig I: Variation of the dynamic buckling load, 4, with damping, J at various values of geometric imperfection &

Il.  Conclusion
We have carried out an asymptotic determination of the dynamic buckling load of a cubic elastic model

structure from perturbation procedures. The unique feature here is that our analysis contains two small
mathematically unrelated parameters and upon which asymptotic series expansions are executed in two-timing
regular perturbation analysis. Our results showed that increase in viscous damping increases the dynamic
buckling load of periodically loaded simple model structure and the presences of imperfections in the structure
decreases its dynamic buckling load.
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