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Abstract : 
Fuzzy set 𝐴 is a subset of set 𝑆 with membership function 𝐴(𝑥) that has membership degree  𝛼 ∈ [0,1]. Fuzzy 

numbers are needed to help overcome the uncertainty that occurs, so the idea of  transforming ordinary 

differential equations into differential equations with fuzzy initial value problems to solve the problem. The 

transformation of ordinary differential equations into fuzzy differential equations is based on the definition of 

Hukuhara differential equations. The numerical solution analysis is compared with the fourth-order Runge-Kutta 

method. Based on the analysis, for 𝛼 < 1, the (2,2,2)-differentiable form is obtained which provides a solution 

that is in accordance with biological conditions, while the results in other forms do not show results that are close 

to the solution of the ordinary fourth-order Runge-Kutta method.  For 𝛼 = 1, all forms of the Hukuhara 

differential derivative have the same value as the ordinary fourth-order Runge-Kutta method. 
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I. Introduction 
Recently, Greenhalgh [1] proposed an eco-epidemic model which is basically a predator-prey model with 

disease amongst the prey and ratio-dependent functional response for both infected and susceptible prey. The 

predator and prey in this model are pelicans and tilapia. It is assumed that the disease can be spread through direct 

contact on the prey. The predator population is denoted by 𝑌(𝑡). In the presence of vibrio infection, the total prey 

population at time 𝑡 , i.e. 𝑋(𝑡), is divided into two classes, namely susceptible tilapia (𝑆(𝑡)) and infected 

tilapia (𝐼(𝑡)), that is 

 

𝑋(𝑡) = 𝑆(𝑡) + 𝐼(𝑡). 
 

Assuming that only susceptible tilapia breed, in the absence of infected tilapia from breeding, the growth 

rate is given as a logistic function with carrier capacity 𝑘. Both susceptible and infected tilapia are subject to 

predation by pelicans, with pelicans preferring to feed on infected tilapia due to tilapia becoming weakened by 

infection and rising to the sea surface in search of oxygen. This makes infected tilapia easier to catch and thus 

more attractive to pelicans. 

Based on the assumptions, the basic equation of the model is 

 
𝑑𝑆

𝑑𝑡
= 𝑟𝑆 (1 −

𝑆 + 𝐼

𝑘
) − 𝜆𝑆𝐼 −

𝑝𝑌𝑆

𝑚𝑌 + 𝑆
, 

𝑑𝐼

𝑑𝑡
= 𝜆𝑆𝐼 −

𝑐𝑌𝐼

𝑚𝑌 + 𝐼
− 𝛾𝐼, 

𝑑𝑌

𝑑𝑡
= 𝛿𝑌 (1 −

ℎ𝑌

𝐼 + 𝑆
), 

where 

(1) 

𝑟 : growth rate of tilapia species in the subpopulation, 

𝜆 : disease transmission coefficient, 

𝛾 : per capita mortality rate of infected prey, 

𝑝 : pelican search rate for susceptible tilapia 

𝛿 : per capita growth rate of pelicans, 

ℎ : a constant relating the density dependent mortality of the predator population, 

𝑚 : a positive constant. 

𝑐 : pelican search rate for infected tilapia. 
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The model parameters used to express the rate of population change and the initial values in model (1) 

are assumed to have certain values. In many cases, the initial values or parameters in the model are uncertain and 

heterogeneity in the population is very likely to occur. Uncertainty that occurs in a real-world phenomenon can 

be caused by data deficiencies, measurement errors or when determining the initial value of differential equations. 

Therefore, fuzzy differential equations are introduced that can overcome this uncertainty [2]. Fuzzy set theory, 

proposed by Zadeh [3], can be used to account for uncertainty in biological data. The application of fuzzy logic 

and fuzzy sets in biological systems offers a lot of potential, but to date there is not much research in this field. 

Several studies that discuss epidemic models that take into account parameter uncertainty and population 

heterogeneity, including Mondal et al. in 2015 which discussed the dynamic behavior of epidemic models with 

fuzzy transmission [4]. In 2017, Verma et al. proposed a fuzzy model to study the spread of influenza [5]. 

Motivated by the above discussion, in this paper we consider model (1) with fuzzy initial condition. 

Eco-epidemiological model (1) with fuzzy initial initial values is a system of nonlinear fuzzy differential 

equations, where its general exact solution is not known. Hence, we usually solve the problem numerically. Ma 

et al. in [6] introduced an Euler method to solve fuzzy differential equation. Sekar and Prabhavathi in [7] proposed 

a leapfrog method when solving the fuzzy differential equation. The Runge-Kutta method is recently introduced 

by Abbasbandy et al. [8]. 

In this paper, we apply the Runge-Kutta proposed in [8] to solve model (1) with fuzzy initial value. For 

this aim, we review fuzzy differential equation in Section II. Then the review of Runge-Kutta method for fuzzy 

differential equation is presented in Section III. We implement the Runge-Kutta method to solve model (1) with 

fuzzy initial value and discuss the numerical results in Section IV. Finally, Section V provide some conclusions. 

 

II. Fuzzy Differential Equation 
Definition 1 [2] :A fuzzy subset 𝐴 of a set 𝑆 is defined by a membership function written as 𝐴(𝑥) with 

values [0,1] for each 𝑥 in 𝑆, so 𝐴(𝑥) is a function that maps 𝑆 to [0,1]. If 𝐴(𝑥) is always equal to one or zero, then 

the subset 𝐴 is called a crisp set. In the crisp case, 𝐴(𝑥) is called the characteristic function (or indicator function) 

and is denoted by 𝜒𝐴. If 𝜒𝐴(𝑥) = 0, then 𝑥 is not a member of 𝐴, otherwise if 𝜒𝐴(𝑥) = 1, then 𝑥 is a member of 

𝐴. A fuzzy subset is a generalization where an element in 𝑆 has partial membership in 𝐴 characterized by a degree 

in the interval [0,1], for example when 𝐴(𝑥) = 0.6, then the membership value of 𝑥 in 𝐴 is 0.6. 

 

A fuzzy number 𝑁 is a fuzzy subset of real numbers if it satisfies: 

1. ∃𝑥:𝑁(𝑥) = 1, 

2. [𝑁]𝛼 is closed and finite interval for 0 < 𝛼 ≤ 1. 

 

The set of all fuzzy numbers will be denoted by 𝑅𝐹 

A special type of fuzzy number 𝑀 is called a triangular fuzzy number, defined by 𝑎1 < 𝑎2 < 𝑎3 such that: 

1. 𝑀(𝑥) = 1 𝑎𝑡 𝑥 = 𝑎2. 

2. The graph of 𝑀(𝑥) on [𝑎1, 𝑎2] is a straight line from (𝑎1, 0) to (𝑎2, 1) and also on [𝑎2, 𝑎3] the graph is a 

straight line from (𝑎2, 1) to (𝑎3, 0). 
3. 𝑀(𝑥) = 0 for 𝑥 ≤ 𝑎1 or 𝑥 ≥ 𝑎3. 

 

 
Figure 2.1. Triangular fuzzy numbers written as 𝑴 =  (𝒂𝟏, 𝒂𝟐, 𝒂𝟑) for triangular fuzzy numbers. 

 

If in Figure (1) there is at least one graph that is not a straight line (curve), then it is said to be a triangular 

fuzzy number and is written 𝑀 ≈ (𝑎1, 𝑎2, 𝑎3). 

 

Definition 2 [9]: Let be 𝑢, 𝑣 ∈ 𝑅𝐹. If there exist 𝑤 ∈ 𝑅𝐹, such that 𝑢 = 𝑣 + 𝑤, then 𝑤 is called Hukuhara 

difference (H-difference) from 𝑢 and v, denoted by 𝑢 ⊝ 𝑣. Some properties of  H-difference include: 

1. Hukuhara difference is not defined for pairs of fuzzy numbers such that the support of a fuzzy number has a 

diameter larger than the reduced one. 

2. If 𝑢 ⊝ 𝑣 = {0}, then 𝑢 ⊝ 𝑣 = {0}. 
3. (𝑢 + 𝑣) ⊝ 𝑣 = 𝑢. 

0

1

a1 a2 a3
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4. H-difference unique and its 𝛼 − 𝑙𝑒𝑣𝑒𝑙 is [𝑢 ⊝ 𝑣] = [𝑢1𝛼 − 𝑣1𝛼 , 𝑢2𝛼 − 𝑣2𝛼]. 
 

Definition 3 [2]: Let be 𝑓: [𝑎, 𝑏] → 𝑅𝐹, with 𝑓 is Hukuhara Differentiable (H-Differentiable) at 𝑥0 if 

 

lim
ℎ→0+

𝑓(𝑥0+ℎ)⊝𝑓(𝑥0)

ℎ
 and lim

ℎ→0+

𝑓(𝑥0)⊝𝑓(𝑥0−ℎ)

ℎ
 exist and equal to 𝑓′(𝑥0). 

 

The definition of the Hukuhara derivative is very limited, if a fuzzy differential equation (𝑥) = 𝑐 ∙ 𝑔(𝑥), 
where 𝑐 is a fuzzy number and 𝑔: [𝑎, 𝑏] → 𝑅+is a function with 𝑔′(𝑥) < 0, then 𝐹 is not differentiable. To avoid 

this, a more general definition of derivative for fuzzy mapping is introduced. 

 

Definition 4 [9]: Consider a mapping 𝑓: (𝑎, 𝑏) → 𝑅𝐹 and 𝑥0 ∈ (𝑎, 𝑏) where 𝑓 is a strongly differential 

generalization at 𝑥0 if there exist 𝑓′(𝑥0) ∈ 𝑅𝐹 such that: 

1. for ℎ > 0 sufficiently small, ∃𝑓(𝑥0 + ℎ)⊝ 𝑓(𝑥0), 𝑓(𝑥0) ⊝ 𝑓(𝑥0 − ℎ) and satisfies the 

limit lim
ℎ→0+

𝑓(𝑥0+ℎ)⊝𝑓(𝑥0)

ℎ
= lim

ℎ→0+

𝑓(𝑥0)⊝𝑓(𝑥0−ℎ)

ℎ
= 𝑓′(𝑥0) 

2. for ℎ > 0 sufficiently small, ∃𝑓(𝑥0) ⊝ 𝑓(𝑥0 + ℎ), 𝑓(𝑥0 − ℎ) ⊝ 𝑓(𝑥0) and satisfies the 

limit lim
ℎ→0+

𝑓(𝑥0)⊝𝑓(𝑥0+ℎ)

(−ℎ)
= lim

ℎ→0+

𝑓(𝑥0−ℎ)⊝𝑓(𝑥0)

(−ℎ)
= 𝑓′(𝑥0) 

3. Untuk ℎ > 0 sufficiently small, ∃𝑓(𝑥0 + ℎ) ⊝ 𝑓(𝑥0), 𝑓(𝑥0 − ℎ) ⊝ 𝑓(𝑥0) and satisfies the 

limit lim
ℎ→0+

𝑓(𝑥0+ℎ)⊝𝑓(𝑥0)

ℎ
= lim

ℎ→0+

𝑓(𝑥0−ℎ)⊝𝑓(𝑥0)

(−ℎ)
= 𝑓′(𝑥0) 

4. for ℎ > 0 sufficiently small, ∃𝑓(𝑥0 + ℎ)⊝ 𝑓(𝑥0), 𝑓(𝑥0 − ℎ) ⊝ 𝑓(𝑥0) and satisfies the limit 

lim
ℎ→0+

𝑓(𝑥0) ⊝ 𝑓(𝑥0 + ℎ)

(−ℎ)
= lim

ℎ→0+

𝑓(𝑥0) ⊝ 𝑓(𝑥0 − ℎ)

ℎ
= 𝑓′(𝑥0). 

 

A function which is strongly differentiable according to cases (1) and (2) in Definition 4, will respectively 

denoted by (1)-differentiable and (2)-differentiable. 

 

Lemma 1 [9]: If 𝑢(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), 𝑤(𝑡))  is a trapezoidal fuzzy number-valued function, then: 

If 𝑢 is (1)-differentiable (Hukuhara differentiable) then 𝑢′ = (𝑥′, 𝑦′, 𝑧′, 𝑤′). 
If 𝑢 is (2)-differentiable, then 𝑢′ = (𝑤′, 𝑧′, 𝑦′, 𝑥′). 
 

Theorem 2 [9]: Given 𝑓[𝑎, 𝑏] → 𝑅𝐹, with [𝑓(𝑥)]𝛼 = [𝑓1𝛼(𝑥), 𝑓2𝛼(𝑥)] for each 𝛼 ∈ [0, 1] 
1. If 𝑓 is (1)-differentiable, then 𝑓1𝛼 and 𝑓2𝛼 are differentiable functions and [𝑓′(𝑥)]𝛼 =

[𝑓′1𝛼(𝑥), 𝑓′2𝛼(𝑥)]. 
2. If 𝑓 is (2)-differentiable, then𝑓1𝛼 and 𝑓2𝛼 are differentiable functions and dan [𝑓′(𝑥)]𝛼 =

[𝑓′2𝛼(𝑥), 𝑓′1𝛼(𝑥)] 
 

III. The Fourth-Order Runge-Kutta Method 
In this Section, we review the Runge-Kutta method proposed by by Abbasbandy et al. [8]. Here we 

consider an initial value problem 

{
  
 

  
 

𝑦1
′ = 𝑓1(𝑡, 𝑦1, … , 𝑦𝑛)

.

.

.
𝑦𝑛
′ = 𝑓𝑛(𝑡, 𝑦1, … , 𝑦𝑛)

𝑦1(0) = 𝑦1
[0]
= 𝑎1, … , 𝑦𝑛(0) = 𝑦𝑛

[0] = 𝑎𝑛 ,

 

 

(2) 

where 𝑓𝑖  (1 ≤ 𝑖 ≤ 𝑛) is a continuous mapping from 𝑅+ × 𝑅
𝑛 to 𝑅 and 𝑦𝑖

[0]
 is a fuzzy number in 𝐸 with 

α-level interval 

[𝑦1
[0]]

𝛼
= [𝑦𝑖

[0](𝛼), 𝑦𝑖
[0]
(𝛼)] for 𝑖 = 1, . . . , 𝑛 and 0 < 𝛼 ≤ 1. If 

𝑦𝑖(𝑡, 𝛼) = 𝑚𝑖𝑛{𝑓𝑖(𝑡, 𝑢1, . . . , 𝑢𝑛); 𝑢𝑗𝜖[𝑦𝑖
[0](𝛼), 𝑦𝑖

[0]
(𝛼)]} = 𝑓𝑖(𝑡, 𝑦(𝑡, 𝛼)), 

𝑦𝑖  (𝑡, 𝛼) = 𝑚𝑎𝑥{𝑓𝑖(𝑡, 𝑢1, . . . , 𝑢𝑛); 𝑢𝑗𝜖[𝑦𝑖
[0](𝛼), 𝑦𝑖

[0]
(𝛼)]} = 𝑓𝑖(𝑡, 𝑦(𝑡, 𝛼)), 

and 

𝑦𝑖  (0, 𝛼) = 𝑦𝑖
[0](𝛼), 𝑦𝑖  (0, 𝛼) = 𝑦𝑖

[0]
(𝛼), 
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then 𝒚 = (𝑦1, . . . , 𝑦𝑛)
𝑡 on interval 𝐼 is a fuzzy solution of equation (2). 

 

For a given 𝛼, a system of differential equations with fuzzy initial value on 𝑅2𝑛 can be obtained. To get 

the solution, it is necessary to verify that a fuzzy number 𝑦𝑖(𝑡) ∈ 𝑅𝑓 is defined on the interval [𝑦𝑗(𝑡, 𝛼), 𝑦𝑗(𝑡, 𝛼)]. 

Given 𝑦[0](𝛼) = (𝑦1
[0](𝛼), . . . , 𝑦𝑛

[0](𝛼))
𝑡

 and 𝑦
[0]
(𝛼) = (𝑦1

[0]
(𝛼), . . . , 𝑦𝑛

[0]
(𝛼))

𝑡

, based on the existing 

indicators, the system of equations (3) can be written by assuming 

{
𝒚′(𝑡) = 𝑭(𝑡, 𝒚(𝑡)),

𝒚(0) = 𝒚[0] ∈ 𝑅𝑓
𝑛 .

 
(3) 

 

By taking 𝒚(𝑡, 𝛼) = [𝒚(𝑡, 𝛼), 𝒚(𝑡, 𝛼)] dan 𝒚′(𝑡, 𝛼) = [𝒚′(𝑡, 𝛼), 𝒚′(𝑡, 𝛼)] where 

𝒚(𝑡, 𝛼) = (𝑦1(𝑡, 𝛼), … , 𝑦𝑛(𝑡, 𝛼))
𝑡

, 

𝒚(𝑡, 𝛼) = (𝑦1(𝑡, 𝛼), … , 𝑦𝑛(𝑡, 𝛼))
𝑡
, 

𝒚′(𝑡, 𝛼) = (𝑦1′(𝑡, 𝛼), … , 𝑦𝑛′(𝑡, 𝛼))
𝑡

, 

𝒚′(𝑡, 𝛼) = (𝑦1′(𝑡, 𝛼), … , 𝑦𝑛′(𝑡, 𝛼))
𝑡

, 

and assuming 𝑭(𝑡, 𝒚(𝑡, 𝛼)) = [ 𝑭(𝑡, 𝒚(𝑡, 𝛼)), 𝑭(𝑡, 𝒚(𝑡, 𝛼))] with 

𝑭(𝑡, 𝒚(𝑡, 𝛼)) = (𝑓1(𝑡, 𝒚(𝑡, 𝛼)), … , 𝑓𝑛(𝑡, 𝒚(𝑡, 𝛼)))
𝑡

, 

𝑭(𝑡, 𝒚(𝑡, 𝛼)) = (𝑓1(𝑡, 𝒚(𝑡, 𝛼)), … , 𝑓𝑛(𝑡, 𝒚(𝑡, 𝛼)))
𝑡

, 

the fuzzy solution of equation (2) on interval 𝐼 for all 𝛼 ∈ (0,1] can be written as 

{
 

 
𝒚′(𝑡, 𝛼) = 𝑭(𝑡, 𝒚(𝑡, 𝛼)),

𝒚′(𝑡, 𝛼) = 𝑭(𝑡, 𝒚(𝑡, 𝛼)),

𝒚(0, 𝛼) = 𝒚[0](𝛼), 𝒚(0, 𝛼) = 𝒚
[0]
(𝛼),

 (4) 

or 

{
𝒚′(𝑡, 𝛼) = 𝑭(𝑡, 𝒚(𝑡, 𝛼)),

𝒚(0, 𝛼) = 𝒚[0](𝛼).
 

 

(5) 

To find the numerical solution of equation (2) by the fourth-order Runge-Kutta method [2], we first 

define 

𝑘𝑖1(𝑡, 𝒚(𝑡, 𝛼)) = min {𝑓𝑖(𝑡, 𝑠1, … , 𝑠𝑛); 𝑠𝑗𝜖 [𝑦𝑖(𝛼), 𝑦𝑖(𝛼)]}, 

𝑘𝑖1(𝑡, 𝒚(𝑡, 𝛼)) = max {𝑓𝑖(𝑡, 𝑠1, … , 𝑠𝑛); 𝑠𝑗𝜖 [𝑦𝑖(𝛼), 𝑦𝑖(𝛼)]}, 

𝑘𝑖2(𝑡, 𝒚(𝑡, 𝛼)) = min {𝑓𝑖 (𝑡 +
ℎ

2
, 𝑠1, … , 𝑠𝑛) ; 𝑠𝑗𝜖 = [𝑧𝑗1(𝑡, 𝒚(𝑡, 𝛼), ℎ), 𝑧𝑗1(𝑡, 𝒚(𝑡, 𝛼), ℎ)]}, 

𝑘𝑖2(𝑡, 𝒚(𝑡, 𝛼)) = max {𝑓𝑖 (𝑡 +
ℎ

2
, 𝑠1, … , 𝑠𝑛) ; 𝑠𝑗𝜖 = [𝑧𝑗1(𝑡, 𝒚(𝑡, 𝛼), ℎ), 𝑧𝑗1(𝑡, 𝒚(𝑡, 𝛼), ℎ)]}, 

𝑘𝑖3(𝑡, 𝒚(𝑡, 𝛼)) = min {𝑓𝑖 (𝑡 +
ℎ

2
, 𝑠1, … , 𝑠𝑛) ; 𝑠𝑗𝜖 = [𝑧𝑗2(𝑡, 𝒚(𝑡, 𝛼), ℎ), 𝑧𝑗2(𝑡, 𝒚(𝑡, 𝛼), ℎ)]}, 

𝑘𝑖3(𝑡, 𝒚(𝑡, 𝛼)) = max {𝑓𝑖 (𝑡 +
ℎ

2
, 𝑠1, … , 𝑠𝑛) ; 𝑠𝑗𝜖 = [𝑧𝑗2(𝑡, 𝒚(𝑡, 𝛼), ℎ), 𝑧𝑗2(𝑡, 𝒚(𝑡, 𝛼), ℎ)]}, 

𝑘𝑖4(𝑡, 𝒚(𝑡, 𝛼)) = min {𝑓𝑖(𝑡, 𝑠1, … , 𝑠𝑛); 𝑠𝑗𝜖 = [𝑧𝑗3(𝑡, 𝒚(𝑡, 𝛼), ℎ), 𝑧𝑗3(𝑡, 𝒚(𝑡, 𝛼), ℎ)]}, 

𝑘𝑖4(𝑡, 𝒚(𝑡, 𝛼)) = max {𝑓𝑖(𝑡, 𝑠1, … , 𝑠𝑛); 𝑠𝑗𝜖 = [𝑧𝑗3(𝑡, 𝒚(𝑡, 𝛼), ℎ), 𝑧𝑗3(𝑡, 𝒚(𝑡, 𝛼), ℎ)]}, 

 

1 ≤ 𝑖, 𝑗 ≤ 𝑛, such that 

𝑧𝑗1(𝑡, 𝒚(𝑡, 𝛼), ℎ) = 𝑦𝑗(𝑡, 𝛼) +
ℎ

2
𝑘𝑗1(𝑡, 𝒚(𝑡, 𝛼)), 

𝑧𝑗1(𝑡, 𝒚(𝑡, 𝛼), ℎ) = 𝑦𝑗(𝑡, 𝛼) +
ℎ

2
𝑘𝑗1(𝑡, 𝒚(𝑡, 𝛼)), 

 𝑧𝑗2(𝑡, 𝒚(𝑡, 𝛼), ℎ) = 𝑦𝑗(𝑡, 𝛼) +
ℎ

2
𝑘𝑗2(𝑡, 𝒚(𝑡, 𝛼), ℎ), 

𝑧𝑗2(𝑡, 𝒚(𝑡, 𝛼), ℎ) = 𝑦𝑗(𝑡, 𝛼) +
ℎ

2
𝑘𝑗2(𝑡, 𝒚(𝑡, 𝛼), ℎ), 
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𝑧𝑗3(𝑡, 𝒚(𝑡, 𝛼), ℎ) = 𝑦𝑗(𝑡, 𝛼) +
ℎ

2
𝑘𝑗3(𝑡, 𝒚(𝑡, 𝛼), ℎ), 

𝑧𝑗3(𝑡, 𝒚(𝑡, 𝛼), ℎ) = 𝑦𝑗(𝑡, 𝛼) +
ℎ

2
𝑘𝑗3(𝑡, 𝒚(𝑡, 𝛼), ℎ). 

 

Taking into account the following relation 

𝐹𝑖(𝑡, 𝒚(𝑡, 𝛼), h) = 𝑘𝑖1(𝑡, 𝒚(𝑡, 𝛼)) + 2𝑘𝑖2(𝑡, 𝒚(𝑡, 𝛼), ℎ) + 2𝑘𝑖3(𝑡, 𝒚(𝑡, 𝛼), ℎ) + 𝑘𝑖4(𝑡, 𝒚(𝑡, 𝛼), ℎ), 

𝐺𝑖(𝑡, 𝒚(𝑡, 𝛼), h) = 𝑘𝑖1̅̅ ̅̅ (𝑡, 𝒚(𝑡, 𝛼)) + 2𝑘𝑖2̅̅ ̅̅ (𝑡, 𝒚(𝑡, 𝛼), ℎ) + 2𝑘𝑖3̅̅ ̅̅ (𝑡, 𝒚(𝑡, 𝛼), ℎ) + 𝑘𝑖4̅̅ ̅̅ (𝑡, 𝒚(𝑡, 𝛼), ℎ), 

and partitioning the interval [0, 𝑇] into 𝑁 sub intervals with equally spaced discrete points {𝑡0 =
0, 𝑡1, . . . , 𝑡𝑁 = 𝑇}. If the exact and approximation solutions of the 𝑖-th piece 𝛼 at 𝑡𝑚, 0 ≤ 𝑚 ≤ 𝑁 are denoted by 

[𝑦𝑖
[𝑚](𝛼), 𝑦𝑖

[𝑚]
(𝛼)] and [𝑤𝑖

[𝑚](𝛼), 𝑤𝑖
[𝑚]
(𝛼)], then the numerical solution at the 𝑖-th coordinate of the piece 𝛼, 

by the Runge-Kutta method is 

𝑤𝑖
[𝑚+1](𝛼) = 𝑤𝑖

[𝑚](𝛼) +
ℎ

6
𝐹𝑖(𝑡𝑚, 𝒘

𝑚(𝑡, 𝛼), h), 
𝑤𝑖

[0](𝛼) = 𝑦𝑖
[0](𝛼), 

𝑤𝑖
[𝑚+1](𝛼) = 𝑤𝑖

[𝑚](𝛼) +
ℎ

6
𝐺𝑖(𝑡𝑚, 𝒘

𝑚(𝑡, 𝛼), h), 𝑤𝑖
[0](𝛼) = 𝑦𝑖

[0]
(𝛼), 

with 

[𝑤𝑖(𝑡)]𝛼 = [𝑤𝑖(𝑡, 𝛼), 𝑤𝑖(𝑡, 𝛼)] , 

𝒘[𝑚](𝛼) = [𝒘[𝑚](𝛼), 𝒘
[𝑚]
(𝛼)] , 

𝒘[𝑚](𝛼) = (𝑤𝑖(𝑡, 𝛼), . . . , 𝑤𝑛(𝑡, 𝛼))
𝑡 , 

𝒘
[𝑚]
(𝛼) = (𝑤𝑖(𝑡, 𝛼), . . . ,  𝑤𝑛(𝑡, 𝛼))

𝑡 . 
Given 

𝑭∗(𝑡, 𝒘[𝑚](𝛼), h) =
1

6
(𝐹1(𝑡, 𝒘

[𝑚](𝛼), h), . . . , 𝐹𝑛(𝑡, 𝒘
[𝑚](𝛼), h, ))𝑡 

𝑮∗(𝑡, 𝒘[𝑚](𝛼), h) =
1

6
(𝐺1(𝑡, 𝒘

[𝑚](𝛼), h), . . . , 𝐺𝑛(𝑡, 𝒘
[𝑚](𝛼), h, ))𝑡  . 

The approximation of α-cuts solution of equation (5) by the Runge-Kutta method is 

𝑤[𝑚+1](𝛼) = 𝑤[𝑚](𝛼) + ℎ𝐻(𝑡𝑚, 𝑤
𝑚(𝑡, 𝛼), h), 𝑤[0](𝛼) = 𝑦[0](𝛼) 

where 

𝐻(𝑡𝑚, 𝑤
𝑚(𝑡, 𝛼), h) = [𝑭∗(𝑡, 𝒘[𝑚](𝛼), h), 𝑮∗(𝑡, 𝒘[𝑚](𝛼), h)], 

and 

𝑭∗(𝑡, 𝒘[𝑚](𝛼), h) =
1

6
[𝒌𝟏(𝑡,𝒘

[𝑚](𝛼), h) + 2𝒌𝟐(𝑡, 𝒘
[𝑚](𝛼), h)  + 2𝒌𝟑(𝑡, 𝒘

[𝑚](𝛼), h)  + 𝒌𝟒(𝑡, 𝒘
[𝑚](𝛼), h)], 

𝑮∗(𝑡, 𝒘[𝑚](𝛼), h) =
1

6
[𝒌𝟏(𝑡, 𝒘

[𝑚](𝛼), h) + 2𝒌𝟐(𝑡, 𝒘
[𝑚](𝛼), h)  + 2𝒌𝟑(𝑡, 𝒘

[𝑚](𝛼), h)  + 𝒌𝟒(𝑡, 𝒘
[𝑚](𝛼), h)] 

and also 

𝒌𝒋(𝑡, 𝒘
[𝑚](𝛼), h) = (𝑘1𝑗(𝑡, 𝒘

[𝑚](𝛼), h) , … , 𝑘𝑛𝑗(𝑡, 𝒘
[𝑚](𝛼), h))𝑡 

𝒌𝒋(𝑡, 𝒘
[𝑚](𝛼), h) = (𝑘1𝑗(𝑡, 𝒘

[𝑚](𝛼), h), … , 𝑘𝑛𝑗(𝑡, 𝒘
[𝑚](𝛼), h))𝑡 . 

 

IV. Numerical Results and Analysis 
We now implement the Runge-Kutta method to solve model (1) with fuzzy initial value. In the case of 

crisp initial value problem, we consider initial value and values of parameter as in Table 1. 

 

Table 1 Parameters and their value [1]. 
Symbol Description Value 

𝑆(0) Initial value of suspectible tilapia population 50 

𝐼(0) Initial value of infected tilapia population 15 

𝑌(0) Initial value of pelicans population 1400 

𝑟 The species growth rate of tilapia at subpopulation 3 

𝑘 Carrying capacity 75 

𝜆 The disease transmission coefficient 0.006 

𝑝 The search rate of pelicans towards suspectible tilapia 0 

𝑚 A strictly positive constant 5.0 

ℎ A constant related to density that dependent mortality of predator 

population 

0.04 

𝑐 The search rate of pelicans towards infected tilapia 0.05 

𝛿 The per capita growth rate of the pelicans 0.09 
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𝛾 The per capita death rate of infected prey 0.24 

 

By introducing a fuzzy initial value and using the notion of the Hukuhara derivative, we have eight 

different type of fuzzy initial value problems as shown in Table 2. The initial value considered in this article are 

𝑢(0) = 49 + 𝛼, 𝑣(0) = 51 − 𝛼, 𝑟(0) = 14 + 𝛼, 𝑠(0) = 16 − 𝛼, 𝑓(0) = 1399 + 𝛼, 𝑔(0) = 1401 − 𝛼. All cases 

of fuzzy initial problems have been solved using the fourth-order Runge-Kutta method. Our numerical solutions 

for all cases with 𝛼 = 0 and 𝛼 = 0.5 have no biological meaning since the solutions are convergent to ±∞ or 

there is no fuzzy solution on some intervals because 𝑢(𝑡) > 𝑣(𝑡) or 𝑓(𝑡) > 𝑔(𝑡). However, for 𝛼 = 1, all cases 

have fuzzy solutions, where in these cases all solutions in the scale of Figure 2 – 5 are the same as the solutions 

of the classical fourth-order Runge-Kutta method. For illustration, we plot our numerical solution for the case of 

(1,1,1)-differentiable¸ (2,2,1)-differentiable, (2,1,2)-differentiable¸ and (2,2,2)-differentiable in Figure 2, 3, 4, and 

5. 

 

Table 2. System (1) in every cases of Hukuhara differentiable. 
 𝑢′(𝑡) 𝑣′(𝑡) 𝑟′(𝑡) 𝑠′(𝑡) 𝑓′(𝑡) 𝑔′(𝑡) 

(1,1,1)-

differentiable 
𝑟𝑢 (1

−
𝑣 + 𝑠

𝑘
)

− 𝜆𝑣𝑠

−
𝑝𝑔𝑣

𝑚𝑓 + 𝑢
 

𝑟𝑣 (1 −
𝑢 + 𝑟

𝑘
)

− 𝜆𝑢𝑟

−
𝑝𝑓𝑢

𝑚𝑔 + 𝑣
 

𝜆𝑢𝑟 −
𝑐𝑔𝑠

𝑚𝑓 + 𝑟
− 𝛾𝑠 

𝜆𝑣𝑠 −
𝑐𝑓𝑟

𝑚𝑓 + 𝑟
− 𝛾𝑟 

𝛿𝑓 (1

−
ℎ𝑔

𝑟 + 𝑢
) 

𝛿𝑔 (1

−
ℎ𝑓

𝑠 + 𝑣
) 

(1,1,2)-

differentiable 
𝑟𝑢 (1

−
𝑣 + 𝑠

𝑘
)

− 𝜆𝑣𝑠

−
𝑝𝑔𝑣

𝑚𝑓 + 𝑢
 

𝑟𝑣 (1 −
𝑢 + 𝑟

𝑘
)

− 𝜆𝑢𝑟

−
𝑝𝑓𝑢

𝑚𝑔 + 𝑣
 

𝜆𝑢𝑟 −
𝑐𝑔𝑠

𝑚𝑓 + 𝑟
− 𝛾𝑠 

𝜆𝑣𝑠 −
𝑐𝑓𝑟

𝑚𝑓 + 𝑟
− 𝛾𝑟 

𝛿𝑔 (1

−
ℎ𝑓

𝑠 + 𝑣
) 

𝛿𝑓 (1

−
ℎ𝑔

𝑟 + 𝑢
) 

(1,2,1)-

differentiable 
𝑟𝑢 (1

−
𝑣 + 𝑠

𝑘
)

− 𝜆𝑣𝑠

−
𝑝𝑔𝑣

𝑚𝑓 + 𝑢
 

𝑟𝑣 (1 −
𝑢 + 𝑟

𝑘
)

− 𝜆𝑢𝑟

−
𝑝𝑓𝑢

𝑚𝑔 + 𝑣
 

𝜆𝑣𝑠 −
𝑐𝑓𝑟

𝑚𝑓 + 𝑟
− 𝛾𝑟 

𝜆𝑢𝑟 −
𝑐𝑔𝑠

𝑚𝑓 + 𝑟
− 𝛾𝑠 

𝛿𝑓 (1

−
ℎ𝑔

𝑟 + 𝑢
) 

𝛿𝑔 (1

−
ℎ𝑓

𝑠 + 𝑣
) 

(2,1,1)-

differentiable 
𝑟𝑣 (1

−
𝑢 + 𝑟

𝑘
)

− 𝜆𝑢𝑟

−
𝑝𝑓𝑢

𝑚𝑔 + 𝑣
 

𝑟𝑢 (1 −
𝑣 + 𝑠

𝑘
)

− 𝜆𝑣𝑠

−
𝑝𝑔𝑣

𝑚𝑓 + 𝑢
 

𝜆𝑢𝑟 −
𝑐𝑔𝑠

𝑚𝑓 + 𝑟
− 𝛾𝑠 

𝜆𝑣𝑠 −
𝑐𝑓𝑟

𝑚𝑓 + 𝑟
− 𝛾𝑟 

𝛿𝑓 (1

−
ℎ𝑔

𝑟 + 𝑢
) 

𝛿𝑔 (1

−
ℎ𝑓

𝑠 + 𝑣
) 

(2,2,1)-

differentiable 
𝑟𝑣 (1

−
𝑢 + 𝑟

𝑘
)

− 𝜆𝑢𝑟

−
𝑝𝑓𝑢

𝑚𝑔 + 𝑣
 

𝑟𝑢 (1 −
𝑣 + 𝑠

𝑘
)

− 𝜆𝑣𝑠

−
𝑝𝑔𝑣

𝑚𝑓 + 𝑢
 

𝜆𝑣𝑠 −
𝑐𝑓𝑟

𝑚𝑓 + 𝑟
− 𝛾𝑟 

𝜆𝑢𝑟 −
𝑐𝑔𝑠

𝑚𝑓 + 𝑟
− 𝛾𝑠 

𝛿𝑓 (1

−
ℎ𝑔

𝑟 + 𝑢
) 

𝛿𝑔 (1

−
ℎ𝑓

𝑠 + 𝑣
) 

(2,1,2)-

differentiable 
𝑟𝑣 (1

−
𝑢 + 𝑟

𝑘
)

− 𝜆𝑢𝑟

−
𝑝𝑓𝑢

𝑚𝑔 + 𝑣
 

𝑟𝑢 (1 −
𝑣 + 𝑠

𝑘
)

− 𝜆𝑣𝑠

−
𝑝𝑔𝑣

𝑚𝑓 + 𝑢
 

𝜆𝑢𝑟 −
𝑐𝑔𝑠

𝑚𝑓 + 𝑟
− 𝛾𝑠 

𝜆𝑣𝑠 −
𝑐𝑓𝑟

𝑚𝑓 + 𝑟
− 𝛾𝑟 

𝛿𝑔 (1

−
ℎ𝑓

𝑠 + 𝑣
) 

𝛿𝑓 (1

−
ℎ𝑔

𝑟 + 𝑢
) 

(1,2,2)-

differentiable 
𝑟𝑢 (1

−
𝑣 + 𝑠

𝑘
)

− 𝜆𝑣𝑠

−
𝑝𝑔𝑣

𝑚𝑓 + 𝑢
 

𝑟𝑣 (1 −
𝑢 + 𝑟

𝑘
)

− 𝜆𝑢𝑟

−
𝑝𝑓𝑢

𝑚𝑔 + 𝑣
 

𝜆𝑣𝑠 −
𝑐𝑓𝑟

𝑚𝑓 + 𝑟
− 𝛾𝑟 

𝜆𝑢𝑟 −
𝑐𝑔𝑠

𝑚𝑓 + 𝑟
− 𝛾𝑠 

𝛿𝑔 (1

−
ℎ𝑓

𝑠 + 𝑣
) 

𝛿𝑓 (1

−
ℎ𝑔

𝑟 + 𝑢
) 

(2,2,2)-

differentiable 
𝑟𝑣 (1

−
𝑢 + 𝑟

𝑘
)

− 𝜆𝑢𝑟

−
𝑝𝑓𝑢

𝑚𝑔 + 𝑣
 

𝑟𝑢 (1 −
𝑣 + 𝑠

𝑘
)

− 𝜆𝑣𝑠

−
𝑝𝑔𝑣

𝑚𝑓 + 𝑢
 

𝜆𝑣𝑠 −
𝑐𝑓𝑟

𝑚𝑓 + 𝑟
− 𝛾𝑟 

𝜆𝑢𝑟 −
𝑐𝑔𝑠

𝑚𝑓 + 𝑟
− 𝛾𝑠 

𝛿𝑔 (1

−
ℎ𝑓

𝑠 + 𝑣
) 

𝛿𝑓 (1

−
ℎ𝑔

𝑟 + 𝑢
) 
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(a) (b) 

 
(c) (d) 

Figure 2. Numerical solution of (1,1,1)-differentiable for (a) 𝛼 = 0, (b) 𝛼 = 0.5, and (c-d) 𝛼 = 1. 

 

 
(a) (b) 
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(c) (d) 

 
(e) (f) 

Figure 3. Numerical solution of (2,2,1)-differentiable for (a-b) 𝛼 = 0, (c-d) 𝛼 = 0.5, and (e-f) 𝛼 = 1. 

 

 
(a) (b) 
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(c) (d) 

Figure 4. Numerical solution of (2,1,2)-differentiable for (a) 𝛼 = 0, (b) 𝛼 = 0.5, and (c-d) 𝛼 = 1. 

 

 
(a) (b) 

 
(c) (d) 

 
(e)  (f) 

Figure 5. Numerical solution of (2,2,2)-differentiable for (a-b) 𝛼 = 0, (c-d) 𝛼 = 0.5, and (e-f) 𝛼 = 1. 
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Figures 2, 3, 4, and 5 show the numerical solution of 𝑢, 𝑣, 𝑟, 𝑠, 𝑓 and 𝑔 such that [𝑆𝑔ℎ
′ (𝑡)]

𝛼
=

[𝑢′(𝑡), 𝑣′(𝑡)], [𝐼𝑔ℎ
′ (𝑡)]

𝛼
= [𝑟′(𝑡), 𝑠′(𝑡)], and [𝑌𝑔ℎ

′ (𝑡)]
𝛼
= [𝑓′(𝑡), 𝑔(𝑡)]. As observed, when 𝛼 < 1, the solutions 

are not convergent, and thus there is no biological compatible condition. Otherwise, At some interval, there’s no 

fuzzy solution, like at figure (5.2)  𝑢(𝑡) > 𝑣(𝑡). Figure (5.4) represent the best and the closest numerical solution 

with the Runge-Kutta fourth order method. When 𝛼 = 1, Figures (5.1), (5.2), (5.3) and (5.4) the solution is 

equivalent with Runge-Kutta fourth order method. 

 

V. Conclusion 
In this work, we have presented a fuzzy initial value problem of eco-epidemiological model to take into 

account the uncertainty. There are eight cases of Hukuhara differentiable initial value problems. However, there 

is only one case, namely the (2,2,2)-differentiable case, which produces fuzzy solution and at the same time the 

solution is reasonable biological feasible. 
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