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Abstract:

The convection-diffusion equation is a very important branch of partial differential equations, with wide
applications in many fields such as fluid mechanics and gas dynamics. Since it is difficult to obtain analytical
solutions for the convection-diffusion equation, solving the equation and its eigenvalue problems using various
numerical methods has great value in numerical analysis and is currently a hot topic in computational
mathematics. This paper studies the local discontinuous Galerkin (LDG) method for convection-diffusion
eigenvalue problems, provides both a priori and a posteriori error estimates, analyzes the reliability of
eigenvalue estimates, and conducts adaptive experiments. Combining theoretical analysis, it is demonstrated
that our method achieves optimal convergence rates.
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I.  Introduction

The application of convection-diffusion eigenvalue problems in multiple fields such as fluid mechanics,
environmental science, energy development, and electronics has provided it with various physical backgrounds,
leading to increasing attention from scholars for solving convection-diffusion eigenvalue problems. Reference
[1] discusses the formulation of the convection-diffusion equation and estimates its solutions. Reference [2]
discusses the hp-local discontinuous Galerkin finite element method. Reference [3] discusses a posteriori error
estimation and adaptive algorithms. The idea of using a posteriori error estimation and adaptive finite element
algorithms was first proposed by Babuska Rheinbolt in 1978 in reference [4]. Reference [5] discusses the
Crouzeix-Raviart element bimodal mesh discretization method for convection-diffusion eigenvalue problems.
Reference [6] discusses the two-level correction method for convection-diffusion eigenvalue problems.
Reference [7] discusses the function value recovery algorithm. Reference [8] discusses the adaptive continuation
scheme, and so on. Adaptive finite element methods are the mainstream of scientific computing, and in recent
years, this method has been extensively studied and applied to many problems.The local discontinuous Galerkin
method was proposed by Cockburn and Shu for solving convection-diffusion equations. The idea is to introduce
auxiliary variables to transform high-order equations into a system of first-order equations, and then apply the
discontinuous finite element method to the first-order equations, which facilitates h-p adaptivity. This method
has been applied to the numerical solution of convection-diffusion equations, traditional KdV equations, and
other equations with high-order derivative terms, achieving good results. This paper first uses the local
discontinuous Galerkin method to compute convection-diffusion eigenvalue problems, establishes a posteriori
error estimation, and verifies the reliability and effectiveness of the local discontinuous Galerkin method's
eigenfunction a posteriori error estimation through adaptive calculations.

Il. Basic Theory Preparation
Let O cR? be a bounded domain with a Lipshitz boundary 09, and let n be the unit outward normal
vector to dQ. Consider the eigenvalue problem with Dirichlet boundary conditions: Find 2 € € and u € H3 (Q),
such that
{—Au+r-Vu+cu—/1u, in Q 2.1)
u=0, on 09,
Denote
(u,v): = [, uvdx,

and define a continuous bilinear form
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a(u,v):= (Vu,Vv) + (r - Vu, v) + (cu, v), vu,v € H}(Q).

Assume that r and ¢ are bounded functions on the Q, V - r exists and satisfies

—V-r+c>0, in Q
Under these assumptions, there are two positive numbers A and B independent of u, v such that the bilinear
form
a(,-) satisfies

la(u, ‘U)l < Allu”l‘gllvlll‘g, Yu,v € H& Q)

a(v,v) > Bllvliig, Vv € H} (Q)
The weak form of (2.1) is to find(A, u) € C X H}(Q), u # 0,s0 that the following equation holds

a(u,v) = A(u,v), Vv € H}(Q). (2.3)

Let 7;, = {x} be a shape-regular mesh of Q, where the diameter of an element « is denoted by h,.. An
interior edge of 7}, is a non-empty interior dx™ N dx~where k* and k™ are two adjacent elements of the 7;, and
do not necessarily match, and one of the outer edges of the 7;, is a non-empty interior ox*™ N 9. Let £:= & U
Ep, Where &, denotes the set of interior edges, and £, denotes the set of edges on the boundary 9Q.

The degree of polynomials in the element x € 7}, is denoted by p, >1, and the LDG finite element
space is now defined as:

(2.2)

SM(T) = {u € L*(Q):ul, € SP<(k), VK €T},
where SPx (k) denotes the polynomial space pPk(K) of degree p, on k.
Introduce the space of piecewise functions over the mesh 7;,:
H5(T) = {v € L?(Q):v|, € HS(k), VK €T,}.
Introduce the auxiliary variable q = Vu, then the equation (2.1) can be rewritten as:
{—V-q+r-Vu+cu=/1u, in Q,

(2.4)
u=0, on 0dQ,
Using V, = S"(T;,) and Q, = S"(T,)? to represent the LDG finite element spaces, the LDG
formulation of the approximation problem (2.5) is: Find (1, uy,) € C x V}, forall k € 7},
J.Qn-Vvdx — [ @y -myvds + [ (0 Vu, + cup)vdx = [ Aupvdx, Vv €V, (2.5)

J.Qn-tdx— [, @ -metds+ [ u,V-tdx =0, VteEQ, (2.6)

where v € V},, n,is the unit outward normal vector of dxk, U, and q,, are the numerical fluxes, which are the
trace of u and q, respectively.

Define the average and the jump of v on e:

{v}}= %(UJ' +v7),[vl] =vint +vn7,
where e = dk* N dk~, vt = v|,+, v~ = V|-, nm, nis the unit outward normal vector from k* to k™. If e € &p,
define the average and the jump of v on e:
{{v}} =, [[v]] = vn.
With the above definition, it can be obtained that
Yeer Jo, va-nds = [, {3} [[v]]ds + [, [[a]]{{v}}ds.

Define numerical fluxes:
{{{u}} +b-[[u]] ec& dl, = {{{q}} —n[[u]] =b[[q]] ec&

0 ecé& e q—nun ecé&p’
The parameters 1 and b should be selected appropriately.

In order to define the parameter i, the function h is introduced in the relevant local mesh size and
approximation in L*(€) , we have:

il =

min{h,, h,}, x € e,
h=h(x) =
h, X € exq,
Define the discontinuous stability parameter n € L* (&) asn = ah™1, and select the parameter b so that
I bllee,< B, where a > 0and g > 0 are constants independent of the grid size.
Define the lifting operator W(v) € Qy, for v € V(h): = V,, + H}(Q), such that
Jo Y@ -tax = [ ({{t}} - b[[t]]) - [[v]]ds + [ vt-nds, VteQ,. 2.7)

Since q = Vu, then
Jo a-tdx= [, (Vou—-¥(W)- tdx, VteQ, (2.8)
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using (2.6) and (2.8), we obtain:
Jo Wpu—¥@) - Vvdx — [, ({{a}} — nl[u]]] - bllql]) - [[v]]ds

— st (@—nu-n)-nvds + [, (r-Vu+ cu)vdx = [, Auvdx. (2.9

Because
J, Y- (Viu —¥Y(w))dx = J, Y() - qdx,

= I, (W] - {ta3} = b - [W][[a]])ds + [, vn-aqds, (2.10)

using (2.9) and (2.10), we obtain
a,(u,v) = fQ (Viu—¥@W)) - (Vv — ¥ (v))dx + sz n(lul] - [[v]]ds + ng nuvds

+ [y (0 Vu+ cu)vdx = [ Auvdx. (2.12)
The finite element approximation of (2.3) is to find (4, u) € C X V3, u;, # 0, such that
ah(uh, Uh) = /‘lh(uh, Uh), Vvh € Vh. (212)
The source problem for (2.3) is to find w € H}(Q) such as
alw,v) = (f,v), VveEHQ). (2.13)
Its local discontinuous finite element approximation is to find wy, € V;,, such that
ah(Wh,Uh) = (f, vh), Vv, € Vh' (214)

Define the linear bounded operator T: L2(Q) - H}(Q) and T,: L?>(Q) — V, satisfying Tf :== w and
Thf = Wp.

The equivalent operator form of (2.3) is given by:
1

Tu = T U (2.15)
The equivalent operator form of (2.12) is given by:
Thup, = iuh. (2.16)
The duality problem of (2.3) is: Find (A*,u*) € C x H}(Q), u* # 0, such that
a(v,u*) = A*(v,u*), Vv € HL(Q). (2.17)
(2.17) is the source problem for w* € H3 (), such that
atv,w*) = (v,g9), Vv € H} Q). (2.18)
Define the linear bounded operator T*: L2(Q) - H}(Q) satisfies
alw,T*g) = (v,g), vEHIQ), (2.19)
The equivalent operator form of (2.17) is given by:
Tu* = %u (2.20)
The LDG approximation of (2.17) is to find (43, uy,) € C XV}, u;, # 0,such that
an(p, up) = 4, (p,up), Yo, €V (2.21)
The LDG approximation of (2.18) is to find w;; € V" such that
ap(wp,wi) = (v, g), Vv, EVy. (2.22)
We introduce the direct sum space V (h) = V,, + H3 (Q) equipped with the DG norm
- 2 _ 2
vl = IVol3 o + Il o + allh VG, + allh ™ 2ol g, (2.23)
From lemma 3.2 and (2.5) in Ref. [9] it holds the Galerkin orthogonality
ah(W - Wh, Uh) = 0, Vvh € Vh' (224)
ap(vp,w* —wp) =0, Vv, EV,. (2.25)
From lemma 6.1 and (2.7) in Ref. [10] it holds the continuity and coercivity properties
lap (up, v)l s lupll llvell,, Yup, v, € V(R), (2.26)
lupl? < ap(up,up),  Vuy € V. (2.27)

Let wand w* be the solution of the equations (2.13) and (2.20), respectively. Assume the following regularity

estimate holds:
1

Wlyer S Ifllg, (3

2

<rg 1), (2.28)
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W Ny < gl (% <rg 1). (2.29)
Lemma 2.1 Letk € 7;, and v € H%<(k), s, > % then there is a polynomial IT"<v € S"«, satisfying
v = T0 lly S A " Il (0 <M< S,) (2.30)
hy Sk _5
v =T oS e 2l (2.31)

Now we introduce the global interpolation operator IT*: H} () — V,,, such that 1" (w)|, = "¢ (u|,), for the
vector-value function r = (rq,15), define " ()|, = (IM"rq],, 15 ],0).

Theorem 2.1 Let w and w* be solutions to the (2.13) and (2.14) respectively, w satisfies w|,, € H®¢(k) and for
all k € 7, and s, > % the following inequality holds

lIw —wyll, S V;Tel{:h"W — vl (2.32)
1
Iw = will, S Cres, (R Wl P2, (2:33)

Proof. First, we prove (2.32) by utilizing equations (2.24), (2.26), and (2.27):
vy, — Wh"fl S lap(vy — wp, v — wy)|

S ap(vy — w, v —wy) + ap(W — wy, v — W)
S vy — wll, llvy — wyll,. (2.34)

Using the triangle inequality we reach at
lw = wyll, S Ilw = wvull, + lvy — wall,. (2.35)

Next, we prove the estimate (2.33) via (2.23). Let E,(w) = w — [T"w we have

1
”Eh(W)”fl S ZKETh (”VhEh(W)”ak + "Eh(W)”(Z),K) + aZKETh (Zecak h_E"Eh(W)”(Z)’e)
= 11 + 12 (236)

I, is estimated from (2.26):

(IVRER W2+ IE,WIZ ) S (h liwll, )2 (2.37)
I, is estimated from (2.27):
1
h2lEy WL, S (X Il (2.38)
By using (2.37) and (2.38), we obtain
1
Iw —T"W lIxS (Tren, (B IWlls,0)? (2.39)
and the interpolation error estimation
inf Ilw—vy IpSlw—T"w (2.40)
VREVR

From (2.32), (2.39), (2.40) and (2.33), the proof is complete.

Theorem 2.2 Let w and w* be the solutions to the equations (2.13) and (2.14), respectively. Assume that w
satisfies w|,, € H%¢(k) and for all k € 7}, and s, > E, then the following inequalities hold
lw — WhIIOﬂ S ' llw — wyll,, (2.41)

1
w = willoq S Ceen, (™ T liwllg, )2, (2.42)

Proof. First, we prove (2.41) by considering the source problem of the dual problem of (2.3), denoted as
a(v,w*) = (v,9),Vv € H}(Q). We derive using the Galerkin orthogonality (2 25) and equation (2.26):
W —wp, g) = ap(w —wy,w") = ap(w — wp, w* — wy)

S w = wyll, lw™ = wyll,) (2.43)

By utilizing (2.33) and the regularity (2.29),
Iw* —wpll, S A" Iw lli1r0 S R lIgHG (2.44)

By using (2.43) and (2.44), we obtain:
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| W — Wy, |
lw—wy llgg= sup W =W Dy = w1
gELZ(Q) Il g "()_Q
Thus, we can obtain (2.41).
Next, we prove (2.42) by using (2.33) and (2.41):
1

lw —=wy oS BT lIw = will, S Crer, ™ Iwlls, 10?2,
Thus, we can obtain (2.42).
Takings, =1+r (% <rg 1) from (2.33) and (2.28) we have the stability estimation:

ITfll, S WTof = TFl, + ITFN, S Uflly o (2.45)
Let A be the j-th eigenvalue of (2.3), with the algebraic multiple g and the ascent a, where A; =
Ajs1 == Ajsq-1. When ITp = Tll; o = 0, the q eigenvalues of (2.12) will converge to A. Let M(2) be the

generalized eigenvector space of (2.3) related to A, and My (A) is the direct sum of the generalized eigenvector
space of (2.12) related to A,, that converges to 4.
The following theorem can be proved using a similar argument as that of Theorem 3.1 in [3].

Theorem 2.3 LetM(1) c H*"(Q)(1 >r > %), then the following inequality holds

A=A < ha. (2.46)
Let uy € M,(A) then there is the eigenfunction u of (2.3) such that
e —wupllyq S ha, (2.47)
lu —upll, S he + b, (2.48)
If « = 1, then
lu — upll, < BT (2.49)
lu —uplly o S A" llu — upll, (2.50)

I11. A-posteriori error estimation
i. Estimators of eigenfunctions and their reliability

Let (A5, up) be the eigenpair of (2.12). We define the element residuals and the edge residuals on each element
K € 7, and e € &, respectively, as follows,
RK = Auh + (/‘lh - C)uh —-r- Vuh

Jr1 = [[Vuh]]: Ve€ &y Jpo= [[uh]]' Ve €& Jps=up Ve €&

Define the local error indicators on k € T},
2 2
Me = helldu, + (Ay — up — 1 Vupllg . + Leee he||]F,1||0_e

_ 2 _ 2
+ Yees, ahe 1||]F,2”0‘e + Yeeep ahe 1"]F,3”0‘e-

The global error indicator is

(3.1)

N(n) = Cren, 1Y% (3.2)
Next, we will prove that this error estimator is reliable.

Theorem 3.1  Let (4, u) and (4;,uy) be the eigenpairs of (2.3) and (2.12), respectively, then for any v €
H}(Q), the following formula holds

Anun)—an (i, .
=y S sup “CHnDZCRCRVN Ly ey — . (3.3)
vend(Q) win vend(Q)

Proof. Note that on H3(Q) x H}(Q),a = a;. Letw € H}(Q), which can be deduced from the coercivity and
continuity of the bilinear form
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lu—wlz s |lapy(u —w,u —w)| S |lay(u,u—w) — a,(w,u —w)|
S |Au,u—w) —ap(w,u —w)|
S|(Au,u —w) —a,(w +up —up,u —w)| (3.4)
S |QAu,u —w) — ap(up,u —w)| + |lay(uy, —w,u —w)|
S |Apup u —w) — ap(up, u —w)| + lluy, — wil llu — wil,
Take v = u — w, we have:

|Auu—w)—apupu-w)|

lu—-wl, s sup

+ llup — wil
h
veH(}(ﬂ) vl

_ 3.5)
< sup |(Au,v)—ap (upv)| + Iy, — W”h
veHE (@) Win
By the triangle inequality, we have:
lu —upll, = llu —wlly + llup —wll,
< sup |Qun)—annol 4 — (3.6)
) Ivlp

From the arbitrariness of w, the proof concludes.

Lemma 3.10121231 For arbitrary ¢ € Hg (), there exists a piecewise linear interpolation I"¢ € V, such that:
lp = 1"0ll,, + hellV(p = I"ll, . S RellVoll,, . VK ET, 3.7)

1
lp = I"0ll,, S R2IVQl,,, Ve€E, (3.8)

where U, is the union of all elements that share at least one node with k, and U, is the union of all edges that
share at least one node with edge e.

Theorem 3.2 Let (4, u) and (4, uy) be the eigenpairs of (2.3) and (2.12), respectively. It holds for any v €
HY(Q).
lu = upll, S nCup) + 4w = Apuplly 4 (3.9)

Proof . From the interpolation property, we get [[v — I"v]] = 0. Using Green's formula, we have
B =A(u,v —I"v) — a,(uy, v — I"v)
= Yen, [, Qup — 1 Vuy, — cup)(v — I"v)dx + [ Au(v — "v)dx

(3.10)
~ e, [, Y@ V(W = "v)dx — Teee [, [[Vunl](v — I"v)ds
=B, +B,+B;+B,
By using the Cauchy-Schwarz inequality, (3.7) and (3.8), we have:
1/2
IBy| + |B,| < (errh R2[lAw, + (4 — Oy — 1 - Yy, + Au — Ahuhugk) v, (3.11)
s AL 1
B3| = <(Zees, h‘lll[[uh]]llo,e)z + (Beees h‘llluhllﬁ,ey) vl (3.12)
, 2
1Bsl S (Zeee hell[[Vunl]l] )7 10l (3.13)
By (2.3) we have
(A, v) — ap(up, v) = (Au, v — ") — a, (up, v — ") (3.14)

From Ref. [14,15], it can be seen that for arbitrary v € V,,, there is a rich operator E,:V,, = V,, n H} () such
that

— _ 2
Seer (helv = Eyvl, + 190 — Egn)IZ,) S Sece, A2 I[IVI]I1,. (3.15)

For the second term to the right-hand side of (3.3), using the formulas (2.23) and (3.15), and noting that
[[Enun]] = 0, we have:

. 2 2
inf lu, — vl s IEpup — uplly,
veH1(Q)
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= Yket, (”v(Ehuh - uh)“ﬁ_,{ + 1 (Epupn — uh)“;x)
_ 2 _
+Zee£1 ah 1"[[Ehuh - uh]]”o‘e + ZeeSD ah™MEpuy — uh"é_e

— 2 -
S Zees, ahelll[[uh]]llo‘e + ZeESD ahe 1”uh”(2),e- (316)

Substituting (3.10) and (3.16) into (3.3), we obtain (3.9). The proof is completed.

By Theorem 2.3, we know that when the ascent a« = 1, both [[Au — Anunlly g and flu — uplly o are
higher-order terms of [lu — uyll,. Therefore, (3.9) tells us that the error estimator n(u;) is one of the upper
bounds of [lu — uyll,, indicating that the error estimator is reliable.

ii. The effectiveness of the eigenfunction estimator

In order to ensure the effectiveness of the estimator for practical adaptive refinement, our next goal is
to prove that the local error estimator 7, provides a local lower bound for the error on k. Let b, € Hi (k) be the
standard unit bubble function and b, € H (U,) be the bubble function on the face, where U, is the union of the
two elements k™ and x~ sharing e. By utilizing the bubble function technique developed by Verfirthl2€l, we
introduce the following.

Lemma 3.2 For all polynomial functions v € P, (k),
1

Ivllg, < ||b2v (3.17)
0,k
For all polynomial functions w € P, (e), we have
1
Iwlly s |[bZw (3.18)
0,e
For each b,w, there is an extended W, satisfying W, |, = bow, W, € H} (U,)
1
Wplly,,, S hellwlloe, (3.19)
VWl S b Iwllo. (3.20)

Based on the above lemma and standard arguments (see Lemma 3.13 in Ref. [17]), we can prove the
efficiency of the local error estimator as follows.

Lemma 3.3 Let (4,u) and (4, u;,) be the eigenpairs of (2.3) and (2.12), respectively. We have the following:
(a) For arbitrary x € Ty,
hiclldup, + (A — Aup — 1 - Vuplly o S IV —up)lly, + hiellu —upll

+hKII/1u - lhuhllo'x

(b) Lete €&,
B Weally, S Seev, (19G = wllgye + Pl — gl + il — Ayl )

With U, = {k*,k™}
(c) Foreach edge e€ &,

_ _ 2 _ 2
he Weal?, = ha Nlaad]l, = he Il — uallI,

(d) For each edge e€ &,

he ' Wrslly, = hellunly, = he'llu = unll3
Proof . (a) Letv, = Auy, + (A, — c)u, —r - Vu, and v, = b,vy,. Noting that Au + (A —c)u —r-Vu =0in
L?(x), v, = 0 on dxk, by utilizing integration by parts, we have:
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2
||b;/2vh||oyx = [ V(u—up)Vvydx + [ 1 V(u—upvydx + [ (A, — Au)v,dx
+ [ c(u—up)vydx (3.21)

By utilizing (3.17) and the Cauchy-Schwarz inequality, we obtain:
hicllvally, S IV —uplly  + hillu — uplly . + hielldpun — Aully

then (a) is proved.
(b) For any e € &, letw, = [[Vu,]], w}, = bowy,. Let W, € Hj(U,) be an extension of W, satisfying
(3.22) and (3.23). Note that [[Vu]] = 0, by using Green's formula, we have:
1/2 2 _
||be Wh”O,e = fe [[Vuh]]wbds = fe [[Vuh - u]]Wde
= Yeu, (fk (A uy —AuwW,dx + fk V(up —u) - VW,dx)
S Yev, (IBup + (Ap — Qup =1 Vuylly MWyl + 1V (wp — Wl VWl
+lr - V(up =Wl MWplly o + lup —ully JWilly o + 12w = Apuplly MWl
(3.22)
From (3.18), (3.19), (3.20), it can be deduced that
1 1

1/2 2 2
hylwply , < h2 |[b2w,

S Yev, (Relldup + (A — up — 1+ Vuplly . + IV(uy, — u)IIO'K
e

0, (3.23)

thellr - V(up =)l + helluy, — ully  + helldu = yuglly -

Combining the bound of [|[Au;, + (A4, — c)u, — 1 - Vuplly in (a) and the shape-regularity of the mesh yields

RNVl , S Seeve (19Ge = wllg,e + il = uply , + Al = Al )
Which gives (b).
(c) For any e € &, we have[[u]] = 0. Then (c) is proved.
(d) For any e € &, we have u = 0. Then (d) is proved.

Theorem 3.3  Under theorem 3.1, the following estimate holds:
e S Tocew, (IIV(u —ully + bl = uplly , + Rl du — /'lhuhllo’K)

-1 -1 (324)
+Zee£g he "[[u - uh]]llo‘e + ZeEED he "u - uh”o,e’

n(up) S llu—upll, + hlldu = Apuglly o (3.25)

Proof . Through the definition of ,. and lemma 3.3, (3.24) can be obtained, and by using the definition of the
energy norm |-Il,, (3.25) can be obtained.
Theorem 3.3 shows that the error estimator n(uy,) is efficient.

iii. The reliability of the indicator with respect to eigenvalue errors

Lemma 3.4 (Lemma 4.6 in Ref. [3]) Let (4, u) and (4, u,) be the feature pairs of (2.3) and (2.12),
respectively, let (1*,u*) and (4, uy,) be the feature pairs of (2.17) and (2.21), respectively, (u,, u;) # 0, then
_ _ (u—upu*—up) _ ap(u—upu*-up)
A=An=4 (upup) (unup) (3.26)

Proof. By (2.28) and (2.29), we can obtain:
a(u,v) = A(u,v), VveV, (3.27)

a(v,u*) = A(v,u*), Vv eV, (3.28)

From (2.3), (2.12), (3.27), and (3.28), we can obtain:
Alu —up,u" —up) —ap(u —up, u* —uy)
= A(u,u") — A(u, up) — A(up, u*) + A(uy, up)
—ap(u,u) + ap(w,up) + ap(up, u) — ap(up, uy)
= Aup, up) — ap(up, up) = (4 — A5) (up, up)

(3.29)
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Dividing (uy, up,) on both sides of the above equation leads to (3.26).

Theorem 3.4 Under the condition of Lemma 3.4 , we have:

2= 2] < n(up)? +n(up)? (3.30)

Proof . Theorem 3.1 shows that |[u — uplly g is of higher order than flu — uyll,, and Jlu" — uz"o,n is also of
higher order than |lu” — wyll, . Therefore, from (3.26),(3.9) and the estimator of u;, we can obtain

12— 2] S = upll, llu = wpll, S n(up)® + n(up)?
This completes the proof.

From Theorem 3.2 and Theorem 3.3, it can be concluded that the error indicator n(uy)? + n(uy,)? for
the characteristic function error ||u—uh||fl + lu” —u;‘lllfl is reliable and efficient. Therefore, the adaptive
algorithm based on this error indicator can generate a well-refined grid. The approximate characteristic function
achieves optimal convergence rate of O(dof~™) in the norm ||-II2. From equation (3.30), we have |1 — 4,| <
dof™™. Thus, n(up)? + n(u;;)? can be considered as an error indicator for A,. The numerical experiments in
Section 4 demonstrate that n(u,)? + n(u;,)? serves as a reliable and efficient error indicator for A,,.

IV. Numerical experiments

In this section, we will report some numerical experiments to demonstrate the effectiveness of our
method. We consider problem (2.1), where r = (0,0)7, (1,1)7,(2,0)" and ¢ = 0. Our program is compiled
under the iFEM software package, and we use the LDG method with parameters b = (0,0)” and « = 400. We
consider the following two test domains: the L-shaped domain Q; = (—1,1)%\ ([0,1) x (—1,0]) and the crack
domain Qg = (—1,1D2\{0<x<1,y=0} . We take the reference eigenvalue A =rl?/4 +
9.63972384472 in the L-shaped domain, and the reference eigenvalue 1, = |r|?/4 + 8.3713297112 in the
crack domain Qg; .

Table 1: Numerical results using quadratic LDG method for Q;,0Qg, with an initial grid of h=1/8
when r = (0,0)

Domain l dof A Error
1 2304 9.663013953 0.02329011
Q, 5 2640 9.643980310 0.00425647
15 21408 9.639770483 4.6638E-05
20 71124 9.639728536 4.6917E-06

Domain l dof A Error
1 3072 8.469827928 0.09849822
Qg 5 3252 8.397502155 0.02617244
15 9396 8.372217175 0.00088746
20 24336 8.371487145 0.00015743

Table 2: Numerical results using quadratic LDG method for Q,,Qg; with an initial grid of h=1/8
whenr = (1,1)T

Domain l dof A Error
1 2304 10.16275287 0.02302903
Q, 5 2652 10.14372296 0.00399912
15 22566 10.13977018 4.6335E-05
20 75030 10.13972894 5.0953E-06

Domain l dof A Error
1 3072 8.969524856 0.09819514
Qg 5 3252 8.897240431 0.02591072
15 9432 8.872201806 0.00087209
20 24354 8.871486251 0.00015654

Table 3: Numerical results using quadratic LDG method for Q;,Qg, with an initial grid of h=1/8

whenr = (2,0)7

Domain l dof A Error
1 2304 10.66272197 0.02299813
Q, 4 2412 10.64604925 0.00632541
15 21198 10.63977213 4.8285E-05
18 43170 10.63973735 1.3505E-05

Domain l dof A Error
1 3072 9.469498641 0.09816893
Qg 5 3252 9.397205004 0.02587529
15 9492 9.372176457 0.00084675
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Figure.1. Adaptive meshes and error curves using the quadratic LDG method for r = (0,0)7
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Figure.2. Adaptive meshes and error curves using the quadratic LDG method for r = (1,1)T
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Figure.3. Adaptive meshes and error curves using the quadratic LDG method for r = (2,0)T
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We present the numerical results of the computed eigenvalues obtained through adaptive computations
in Tables 1 to 3, and illustrate the adaptive grids and error curves in Figures 1 to 3. From Figures 1 to 3, we
observe that the error curves of the quadratic LDG method are approximately parallel to a line with a slope of -2
when r = (0,0)7,(1,1)7,(2,0)7. The results indicate that the adaptive algorithm achieves the optimal
convergence rate. Additionally, from the error curves, it can be observed that, using the same degree of freedom
(dof), the approximation obtained by the adaptive algorithm is more accurate compared to the approximation
computed on uniform grids.
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