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Abstract: Jump diffusion is a stochastic process that involves jumps and diffusion. A jump process is a type of 

stochastic process that has discrete movements, called jumps, with random arrival times, rather than continuous 

movement, typically modeled as a simple or compound Poisson process. In this paper we use jump diffusion 

process to model default risk and compare results of the traditional Merton and Moody’s Kealhofer, McQuown, 

and Vasicek (MKMV) models. Results show that, jump diffusion models perform better than both the traditional 

Merton and MKMV models. 
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I. Introduction 
A diffusion process is a continuous-time Markov process with almost surely continuous sample paths 

(Kou and Wang6). Jump diffusion is a stochastic process that involves jumps and diffusion. A jump process is a 

type of stochastic process that has discrete movements, called jumps, with random arrival times, rather than 
continuous movement, typically modeled as a simple or compound Poisson process8. In option pricing, a jump-

diffusion model is a form of mixture model, mixing a jump process and a diffusion process. Jump-diffusion 

models have been introduced by Robert C. Merton in 1976 as an extension of jump models. Due to their 

computational tractability, the special case of a basic affine jump diffusion is popular for credit risk and short-

rate models7. 

 

II. The Diffusion process of a Stock price 
The stock is a European call option and it follows a geometric Brownian motion throughout the life of the option 

(T t ). We assume that the stock price S , pays annual dividend q  and has an expected return   equal to the 

risk free rate r q  and the constant volatility  . Since stock prices do exhibit randomness, the governing 

equation that captures the randomness in stock markets is given by1: 

 

                                                                dS S d t S dW t                                                                             

(1) 
 

where 
t

W  is a Wiener Process and the equation (1) above is in the form of an Ito process. Now, using Ito’s 

Lemma, which states that, if a random variable follows an Ito Process, then another twice differentiable function 

G  described by the stock price S  and time t  also follows an Ito process5: 
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(2) 

 

Using the lognormal property, we let lnG S  to ensure that the stock price is strictly greater than 0 . 

Applying Ito’s Lemma to ln S  and calculate the partial derivatives with respect to S and t , we get: 

 

                                                                      lnG S  
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Plugging the partial derivatives into Ito’s Lemma gives: 
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(4) 

Rearranging equation (4) and taking the exponential on both sides, we obtain the distribution of the stock price 

at expiration: 
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(5) 

Which can also be written as: 
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III. The Jump Diffusion process of a Stock  Price  
The jump diffusion process is a result of the work by Merton (1976). Merton suggested a model where 

jumps are combined with continuous changes. Merton extended the Black-Scholes model to incorporate more 

realistic assumptions and that deal with the fact that empirical studies of market returns, do not follow a constant 

variance log-normal distribution7. Define: 
 

           S   Current Stock Price,  

                 K   Strike Price,  

           T   Time to maturity in years,  

             Annual volatility, 

          m   Mean of jump size, measured as a percentage of the asset price, 

           v   Standard deviation of jump size,  

             Mean number of jumps per year (intensity),  

 d W t   Wiener Process,  

    N t   Compound poison process,  

      
B S

V   Value of option using Black-Scholes Formula, 

    
M J D

V   Value of option using Merton Jump Diffusion Model. 

 

The percentage jump size is assumed to be drawn from a probability distribution in the model. The probability 

of a jump in time t is t . The average growth rate in the asset price from the jumps is therefore k . The 

risk-neutral process for the asset price is given by9: 
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where   is the instantaneous expected return per unit time,  W t  is a standard Brownian motion,  N t  is a 

Poisson process with rate  , and  iQ  is a sequence of independent and identically distributed (i.i.d) 

nonnegative random variables such that  log Q   has a normal distribution denoted as  
2

,
j j

N    with 

the density function3: 
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All the sources of randomness and uncertainty,    ,N t W t  and  s are assumed to be independent. Solving 

(7) we obtain7: 
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where  N t  is a Poisson Process with rate   and probability k  jumps occurring over the life of the option 

equal to8:  
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and 
j

Q  is a log-normally distributed random variable. 

 

1. Simulating the Jumps 

We use Monte Carlo simulation method for to simulate jumps. When jumps are generated by a Poisson process, 

the probability of exactly k  jumps in time t  is given by4: 
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Where   is the average number of jumps per year. Equivalently, t is the average number of jumps in time  t . 

Suppose that on average 0 .5  jumps happen per year. The probability of k  jumps in 2 years is: 
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To simulate this process following jumps over 2 years, we need to determine on each simulation trial: 

i. The number of jumps 

ii. The size of each jump 

 

Table 1 below gives the probability and cumulative probability of  0 , 1, 2 , 3 , 4 , 5 , 6 , 7  a n d  8 jumps in 2 years. 

The probabilities have been calculated using python. 

 

                                  Table 1. Probabilities for number of jumps in 2 years 
Number of jumps,  

              k  

Probability of exactly 

 k  jumps 

Probability of k jumps 

 or less 

0 0.3679 0.3679 

1 0.3679 0.7358 

2 0.1839 0.9197 

3 0.0613 0.9810 

4 0.0153 0.9963 

5 0.0031 0.9994 

6 0.0005 0.9999 

7 0.0001 1.0000 

8 0.0000 1.0000 

                                 Source: (Hull 2003) 

 

To determine the number of jumps, on each simulation trial we sample a random number between 0 

and 1 and use Table 1 as a look-up table. If the random number is between 0 and 0.3679, no jumps occur; if the 

random number is between 0.3679 and  0.7358, one jump occurs; if the random number is between 0.7358 and 

0.9197, two jumps occur; and so on. To determine the size of each jump, it is necessary on each simulation trial 

to sample from the probability distribution for the jump size once for each jump that occurs. Once the number of 

jumps and the jump sizes have been determined, the final value of the variable being simulated is known for the 

simulation trial. 

An important particular case of Merton’s model is where the logarithm of one plus the size of the percentage 

jump is normal (  ln 1Y k  ). We write the jump component as a normal random variable and the resulting 

payoffs will be risk neutral. Merton shows that, the solution to a European price option that follows a jump 

diffusion process is given by2: 
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The variable 
B S

V  is the Black-Scholes option price when the dividend yield is q . The volatility (
k

 ) and the 

risk free rate (
k

r ) from equation (11), conditional on k  jumps occurring is given by: 
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2. Calculation of Distances to Default (DD) under jump process 

The Distance to Default (DD) is the number of standard deviations between the expected asset value at 

maturity T  and the debt threshold K . DD is the basis of credit evaluation. It is a standard index reflecting the 

company's credit quality, which can be compared for different companies and for different periods of time. The 

greater the value of DD, the more likely the company is to repay debts in due time, as a consequence the 

defaults will be less and the credit will be better. The D D  scaled by asset volatility reflects how far a firm's 
asset value is from the value of obligations that would trigger a default3.  
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The DD for the jump process is given by:    
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where 
k

 is the volatility on k  jumps and 
k

r  is the risk-free rate on k  jumps. 

The probability of default ( P D ) defined as the probability of the asset value falling below the debt threshold at 

the end of the time horizon T is given by: 
   

                                                               1P D N D D                                                                       (15) 

3.  Estimation of DD and PD from Federal Reserve Economic Data by Jump diffusion model 

Table 2 shows the data on short term liabilities ( ST L ), long term liabilities ( L T L ), and total asset values 

recorded from Federal Reserve Economic Data. Time (T) is the time in years where these data were recorded. 

We have taken a period of ten years from 2011/10/01 to 2020/10/01.  

  

Table 2. Short and long term liabilities, average debts and total asset values 
Time 

( T ) 

2011/10/

01 

2012/10/

01 

2013/10/

01 

2014/10/

01 

2015/10/

01 

2016/10/

01 

2017/10/

01 

2018/10/

01 

2019/10/

01 

2020/10/

01 

ST L  
3810 3829 3813 4177 5900 4336 3705 3585 4775 6003 

L T L  
16487 16947 19431 22299 30692 32037 29130 29690 28792 29921 

Asset(

S ) 

173063 171211 191450 205093 203037 198507 201953 211339 228884 253764 

Source (Federal Reserve Economic Data,  

                                                           https://fred.stlouisfed.org, https://fredhelp.stlouisfed.org) 

 

Table 3 shows the distances to default (DD) and probabilities of default (PD) calculated from Table 2 using 

mean jump size, 1m  . Averege asset value S and debt (liabilities) are used to calculate the Distance to Default 

(DD) in equation (14). DD is used to calculate the probability of default PD given by equation (15).  

 

Table 3 DD and PD  from Table 1 by Jump diffusion process, 1m  (mean jump size) 
Time (T) 1 2 3 4 5 6 7 8 9 10 

S T L
D D  

1.1051 1.0989 1.0929 1.0869 1.0810 1.0752 1.0695 1.0640 1.0584 1.0530 

S T L
P D  

0.1345 0.1359 0.1372 0.1385 0.1398 0.1411 0.1424 0.1437 0.1449 0.1462 

L T L
D D  

0.1709 0.1699 0.1690 0.1680 0.1671 0.1662 0.1654 0.1645 0.1637 0.1628 

L T L
P D  

0.4322 0.4325 0.4329 0.4332 0.4336 0.4340 0.4343 0.4346 0.4350 0.4353 

 

Table 4 shows the distances to default (DD) and probabilities of default (PD) calculated from Table 2 using 

mean jump size, 2m  .  

 

Table 4 DD and PD  from Table 1 by Jump diffusion process, 2m  (mean jump size) 
Time (T) 1 2 3 4 5 6 7 8 9 10 

S T L
D D  

14.9219 14.3101 13.7068 13.1099 12.5198 11.9365 11.3597 10.7892 10.2250 9.6668 

S T L
P D  

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

L T L
D D  

13.9876 13.3816 12.7829 12.1910 11.6059 11.0275 10.4555 9.8898 9.3302 8.7766 

L T L
P D  

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

Table 5 shows the distances to default (DD) and probabilities of default (PD) calculated from Table 2 using 

mean jump size, 3m  .  

https://fred.stlouisfed.org/
https://fredhelp.stlouisfed.org/
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Table 5 DD and PD  from Table 1 by Jump diffusion process, 3m  (mean jump size) 
Time (T) 1 2 3 4 5 6 7 8 9 10 

S T L
D D  

22.7839 21.6010 20.4319 19.2763 18.1338 17.0040 15.8867 14.7816 13.6883 12.6067 

S T L
P D  

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

L T L
D D  

21.8496 20.6720 19.5080 18.3574 17.2199 16.0950 14.9825 13.8821 12.7935 11.7165 

L T L
P D  

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

Table 6 shows the comparison of distances to default (DD) calculated by the jump process, Merton and MKMV 

approaches.  

 

Table 6. Comparison of  DDs by Jump process, Merton and MKMV approaches 

Time( T ) 
1 2 3 4 5 6 7 8 9 10 

( 1)
S T L

J D D m 

 

1.105

1 

1.0989 1.0929 1.0869 1.0810 1.0752 1.0695 1.0640 1.0584 1.0530 

( 1)
L T L

J D D m 

 

0.170

9 

0.1699 0.1690 0.1680 0.1671 0.1662 0.1654 0.1645 0.1637 0.1628 

( 2 )
S T L

J D D m 

 

14.92

19 

14.3101 13.7068 13.1099 12.5198 11.9365 11.3597 10.7892 10.2250 9.6668 

( 2 )
L T L

J D D m 

 

13.98

76 

13.3816 12.7829 12.1910 11.6059 11.0275 10.4555 9.8898 9.3302 8.7766 

( 3 )
S T L

J D D m 

 

22.78

39 

21.6010 20.4319 19.2763 18.1338 17.0040 15.8867 14.7816 13.6883 12.6067 

( 3 )
L T L

J D D m 

 

21.84

96 

20.6720 19.5080 18.3574 17.2199 16.0950 14.9825 13.8821 12.7935 11.7165 

S T L
D D  

(Merton) 

19.18

60 

13.5666 11.0771 9.5930 8.5803 7.8327 7.2516 6.7833 6.3953 6.0672 

L T L
D D  

(Merton) 

10.38

47 

7.3431 5.9956 5.1923 4.6442 4.2395 3.9250 3.6715 3.4616 3.2839 

0 .3k
D D


 

(MKMV) 

14.13

86 

9.9975 8.1629 7.0693 6.3230 5.7720 5.3439 4.9987 4.7129 4.4710 

 

Table 7 shows the comparison of Probabilities of  (PD) calculated by the jump process, Merton and MKMV 
approaches. 

 

Table 7. Comparison of  PDs by Jump process, Merton and EDFs by MKMV approaches 

Time( T ) 
1 2 3 4 5 6 7 8 9 10 

( 1)
S T L

J P D m 

 

0.134

5 

0.1359 0.1372 0.1385 0.1398 0.1411 0.1424 0.1437 0.1449 0.1462 

( 1)
L T L

J P D m 

 

0.432

2 

0.4325 0.4329 0.4332 0.4336 0.4340 0.4343 0.4346 0.4350 0.4353 

( 2 )
S T L

J P D m 

 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

( 2 )
L T L

J P D m 

 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

( 3 )
S T L

J P D m 

 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

( 3 )
L T L

J P D m 

 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

S T L
P D  

(Merton) 

0.0 0.0 0.0 0.0 0.0 2.4e-15 2.0e-13 5.9e-12 8.0e-11 6.5e-10 
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L T L
P D  

(Merton) 

0.0 1.0e-13 1.0e-

09 

1.0e-07 1.7e-06 1.1e-05 4.3e-05 0.0001 0.0003 0.0005 

0 .3k
E D F


 

(MKMV) 

0.0 0.0 1.1e-

16 

7.8e-13 1.3e-10 3.9e-09 4.5e-08 2.9e-07 1.2e-06 3.9e-06 

 

IV. Discussion of Results 
The data for calculation of DDs, PDs and EDFs was collected from Federal Reserve Economic Data. 

From Table 1, DDs and PDs were calculated using the mean jump size, 1m  . The maximum value for 

S T L
D D  is 1.1051 and 

S T L
P D  is 0.1345. While the maximum value for 

L T L
D D is 0.1709 and 

L T L
P D is 0.4322. 

From Table 2, DDs and PDs were calculated using the mean jump size, 2m  . The maximum value for 

S T L
D D  is 14.9219 and 

S T L
P D  is 0.0. While the maximum value for 

L T L
D D is 13.9876 and 

L T L
P D is 0.0. 

From Table 3, DDs and PDs were calculated using the mean jump size, 3m  . The maximum value for 

S T L
D D  is 22.7839and 

S T L
P D  is 0.0. While the maximum value for 

L T L
D D is 21.8496and 

L T L
P D is 0.0. In 

each case, ST L stands for short term liabilities and L T L  stands for long term liabilities. We see from the three 

tables, improved results were obtained as the number of mean jump size raised from 1. From table one we have 

small values of DDs with greater probabilities of default. While from table 2 and 3, we see greater values of 

DDs and smaller value of PDs. This finding indicate that, firm’s will be tronger to default with mean jump size, 

1m  .  

 

V. Comparison of jump process with Merton and MKMV approaches. 
From Table 6, we see that the DDs generated by the jump process are larger than both generated by the 

traditional Merton and MKMV approaches. Also Table 7 shows smaller values to PDs generated by the jump 
process compared to those generated by the Merton and MKMV approches. This finding indicate that the jump 

diffusion process performs better to credit (default) risk estimation compared to the traditional Merton and 

MKMV approaches. 

 

VI. Conclusion and Suggestion for Future Research 
In this paper we have used the jump diffusion process to model credit risk (default risk). We have used 

the data from Federal Reserve Economic recorded from 2011/10/01 to 2020/10/01. We have calculated the 

distances to defaults (DDs) using both the short term and long term liabilities. In each case, the short term 

liabilities have provided stable results compared to long term liabilities. Firms looks more stable to default using 
short term liabilities than the long term, except only with MKMV approach which has a special case of 

combining both the short and long term liabilities at the same setting when calculating the DDs and Expected 

default frequencies (EDFs). Then we compared our results to the famous two models of credit risk, the 

traditional Merton and MKMV. Results show that, jump diffusion process perform better than both the 

traditional Merton and MKMV models. In future we will extend the jump diffusion process to other stock 

markets like banks and financial institutions. 
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