IOSR Journal of Mathematics (IOSR-JM)
e-1ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 18, Issue 2 Ser. Il (Mar. — Apr. 2022), PP 60-68
www.iosrjournals.org

The Collatz Conjecture: A Case Study In Mathematical
Problem Solving
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ABSTRACT

Most ofthe answers so far have been alongthe general linesof "Why hard problemsareimportant’, rather than "Why
theCollatzconjectureisimportant’; I will try to address the latter.

The Collatz conjecture is the simplest open problem in mathematics. You can

explain it to all your non-mathematical friends, and even to small children who have just learned to divide
by 2. It doesn't require understanding divisibility, just evenness.

The lack of connections between this conjecture and existing mathematical theories (as complained of in
some other answers) is not an inadequacy of this conjecture, but of our theories.

This problem has led directly to theoretical work by Conway showing that very similar questions are formally
undecidable, certainly a surprising result.

Date of Submission: 01-04-2022 Date of Acceptance: 14-04-2022

I.  Introduction :

[13] Mathematical “experiments”: computer visualisations are the best known example. Although in several respects
unreliable,asitofteninvolvesthe reductionofthe (infinite) continuumtoafinite,discreteset, theydoproduce “clues”thatserveasa
guide fora proof.

[14] Probabilistic considerations: although proofs in the genuine sense of the word, what they establish is not that a
mathematical object (say, a natural number) has a certain property (say, being a prime), but has that property with a certain
probability.

[15] Computer proofs: to be distinguished from computer visualisations, these proofs involve the checking of a finite,
though huge amount of separate cases such that human checking is either impossible or too prone to errors and hence a computer
programperformsthetask. Theresultisnotaproofintheclassical sense,sinceunavoidablyahumancannotchecktheproof,one ofthe
basic standardsto callaproofaproof.

[16] Metamathematical considerations: although one has a proof sat- isfying the required standards, the result is seen as
paradoxical, counter-intuitive, in conflict with expectations, and hence itis questioned. It can also involve formal metamathematical
results, e.g., in showing that a partic- ular problem is unsolvable.

Usually givenaspecific case, i.e.,aparticular theoremandits proof history, one will seethatone itemora few oftheabove list
willactuallybeusedintheproof search. Itisratherexceptionaltohaveacasewhere(nearly)alltheseelements arepresent. Thetopicof
thispaperisquitesimplythepresentation (toa certaindepth)ofonesuch casestudy. Allelements,save [11],0fthe listare presentin
oneway oranother. ltcanthusbeconsideredanexemplar (inthe Kuhniansense),and,perhapsmoreimportantly,asfarasiknow,
anew exemplar. As s so often the case, in many philosophical discussions, the same typical example keeps coming back, wrongly
suggesting that no other examples areavailable. Inaddition, the problemisfairly easytostate, althoughthe mathematicsthatareused
in search of a proof reach formidable heights. And, finally, it is also a problem that many mathematicians consider absolutely not
interesting.Aswillbeshownhere,theproblemdefinitelyisinteresting,but then the question is

“Think, e.g., about thought experiments. A tiny set of examples keeps coming back over and over again: Galileo’s thought experiment
about heavy and light masses, Newton’s bucket experiment concerning absolute properties such as acceleration, and Einstein’s
thought experiment about travellingonalightwave. Ithasledsomephilosopherstomistakenly claimthatthereisnoreal problem
aboutthoughtexperimentsastheyareexceptionaland, hence, notimportant.

The Collatz Conjecture 9 why so many think otherwise. In Section 3, I will provide some suggestions, relating to this matter.

This paper is primarily based on the overview article of Jeffrey Lagarias [2004]° that provides anextremely detailed presentationof
the problemand the attemptstodealwithit. Additional sourcesare usedtohighlight detailsofthe mainstory. The contrastbetween
Lagarias’ presentationand mine is that | focusonthe philosophically interesting features, notnecessarily the “pure” mathematical
aspects. However, as should be clear, this paper is heavily indebted to the excellent work done by him.
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Il.  Theproblem

Consider a function from Nqto No, defined as follows: T

®
n/2 if nis even

(3n+1)/2 if n is odd Next define the iterate of T as usual:

®
TO(n) = n TY(n) = T(T'(n))

Thequestionisnowtoshowthatforeveryne No,thereisafinitek,suchthat
M) =1.

Astraightforward example:taken=7,thenwehavethefollowingsequence 7—11—17—26—13—20—10—5—8—4—
2—101234567891011
therefore T™(7) = 1 and k = 11.

2. The origin of the problem

Itiseasy tounderstandwhy, if one has only the above information andis asked whether or notthis isaninteresting problem, the
answerwillmostlikelybe negative. Why?

“This paper available on the Internet is an update of a previous webpaper from 1996, see Lagarias [1996], and itself a further
elaboration of Lagarias [1985]. The most recent paper is an annotated bibliography whereas Lagarias [1996] retraces the history of the
problem, proofs included.

10 Jean Paul VVan Bendegem

Firstly, itisquiteeasy to“invent”similar problems, sowhyshould this particular case attract our attention? As a matter of fact, this
type of argument has been used on several occasions by mathematicians, the most famous case no doubt Gauss’ comment on the
problem that was to become Fermat’s Last Theorem. In 1816 he wrote to Heinrich Olbers (known as the originator of the Olbers’
paradox) that “he could easily lay down a multitude of such propositions, which one could neither prove nordispose of” (see
Ribenboim [1979], p.3).

Secondly, suppose we do manage to show the theorem to be correct, what have we gained? Are there other problems around that
wouldgetsolvedinthe processaswell? Atfirstsight not.

Thirdly,onthelevelofproofmethods,itisnotguaranteedatallthatinteresting thingswillcomeoutofit. Isitlikelythatsomeingenious
new proofmethod couldsolvethisproblem, butisittobeexpected? Theseareall verygood reasonstoconsiderthe problemnot
interesting (astheauthorofthispaper believedforaverylongtime,uptothepointthatheactuallywrotethatbecause the problemhas
no connections with other problems, it was perfectly acceptable to consider it uninteresting; so this paper is at the same time a
correction on one of my former views).

In fact, notwithstanding the observation that not that many mathemati- cians are actually involved with this problem, it is definitely an
interesting problem. Let me say a few words aboutits origin. When one is dealing with number- theoretic functions, say functions f
from Ng to Ny, then one of the particular problems one has to deal with is notation and representation. What | mean is the
following.

SupposethatthefunctionffromNytoNisapermutation. Thenthereare several ways to represent this function:

(@) Oneofthe classical formsisintabular form:

® ®
12345... f(1) (2) 1(3) f(4) 1(5) . . .

Note that this representation supposes to have the necessary knowledge on how to continue the table.
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(b) Obviously,asforanyfunction,wecanhaveanexplicitform:f(n)=some symbolic expression involvingn.
(c) Avariationon(b)isafunctiondefinedimplicitlybysomerecurrence relations:

fin) =g(f(n - 1), fin - 2),.. ., f3), f(2), f(1)),
The Collatz Conjecture 11
wherenotalloff(i),n—1®i®1needoccurandwheregissomespecified function.

(d) Anotherformthatdiffersradicallyfromthethreeabove,butjustlike(a) supposesthatonehassufficientknowledgeonhow
tocontinuethefigure,isa graphical representation.

1-2-34-5-67—... ———— -

whereanarrow representsanapplication of the function f (in this case, the simple function f(n), defined by f(3n+1) = 3n+2, f(3n+2) =
3(n+1) and f(3(n + 1)) = 3n + 1)). Although this example is rather trivial, the importance of a well- chosen representation must be
obvious. The graphical representation shows immediately that f iscomposed of an infinite number of 3-cycles. One could very well
imagine thatif fbecomes more complex, the graph cantell more thingsthananalgebraic of analyticalexpression. (Note atthe same
time the connection with visualisations; although there is no computer involvement here, it does show the importance of an
image).

Note also that different graph representations are possible. Instead of simply listing the natural numbers and drawing the appropriate
arrows, we can start with 1 and list the iterates of 1.

1 — (1) - (1) - (1) - ...

Allofthisshowsthatifwewanttounderstand whatpermutationsareallabout, whattheirpropertiesare, thenitisausefulapproachto
examine the graphs of such functions. In addition, it allows to rephrase some questions into graph- theoretical questions. This is
actually the area that the “creator” of the problem, Lothar Collatz, was working on. Although his examples are different from what is
now known as the Collatz Conjecture (CC), they raise the same problems. His original question was whether, for a particular function f,
the trajectory starting with 8andthe iteratesof 8, contains 1 ornot. (1 use here the term “trajectory” because itneed notbeacycle).One
nowseestherelationtotheCC.Rephrased interms of trajectories, the CCclaims:

For any natural number n, the trajectory starting with n, contains the number 1.

Of course, nomathematician doubts the importance of permutation theory. It is sodeeplyentrenchedinnumbertheoryandbeyond,
thatismustbecon- sideredoneofthecorepartsofmathematics. Althoughonemightperhaps

12 Jean Paul VVan Bendegem

consider the CC asa “spin-off”, it is clear that the general question that is raised by it isan interesting one. What seems to have been at
play is that there are several gaps in the research of the CC. The problem disappears for some years only to reappear at some other
moment in the hands of another mathematician. Thefactthatitwasnoteasytolocatethe“trueoriginsofthe problemsis supported
bythe observationthatthe verysameproblemisknownunder differentnames: Hasse’salgorithm, the Syracuse problem, Kakutani’s
problem, Ulam’s problem, and sometimes it is even referred toas the Hailstone problem. The lastname isareference tothe behaviourof
thesequenceofT'(n). Ittends tomoveupwardsanddownwardsmuchinthewaythathailstoneshitthe ground andbounceback up
again.

3. Mathematicalinduction,numbercrunchingandpictures

Animportantfeature tonotice inthesearch foraproofofthe CCisthat, atfirst sight, it seems notvery useful to invoke mathematical
induction asa proof method. One of the obvious problems is that it does not help to start from the assumption that the CC has been
proven forall cases up toanumberninorder to provethe case forn+1, asthe iterates for n+1 cangowellbeyond n+ 1. Inthe above
exampleforn=7,thehighestvalueonereachesis26. Thiswouldshift the problemto the questionwhether one canshowthat:

For all n, there is a finite number N(n), such that for all i, T%(n) ® N(n).

Inaddition,onewouldneedsomeconnectionbetweenN(n)andN(n+1)tobe abletogettheinductionprocessworking. However, itis
clearthatthisnew tasklookseverybitasdifficultastheoriginaltask. Of course,onemighttryan inductiononsomeotherparameterof
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theproblem,butitbecomessoonclear thateitheronekeepscomingbacktotheoriginalproblemitselforoneendsup worseoff.E.g.,one
mighttryaninductiononk,suchthat T®(n)=1,ifatall.
However,oneneedsawaytoenumeratethensuchthatkformsasequencel,

2,3,...(withorwithoutgaps?).Butthatseemsanevenharderquestionto answer:
Given a natural number k, what are the numbers n such that T%(n) = 1?

Ifwehadananswertothisquestionand, foreveryk,wecouldlistthenumbers n,thenofcourseifwecould provethatsomenumbern
ismissing

The Collatz Conjecture 13

forallk,thenwewouldhaveadisproofofthe CC.Clearly,thisisnotan interesting strategy and so, in short, one does well (initially) to
forget about mathematical induction.

As one might expect with this kind of problem, it is very tempting to collect numerical evidence, corresponding to a mixture of
careerinduction[12]and computerproof (amixof[13]and[15]). TheCChasbeencheckeduptoa staggering 3.24x10". One might
wonderwhatthe relevance of suchevidence could possiblybe.

One argument is rather trivial: one might come up with a counterexam- ple, thereby settling the problem by producing a disproof.
However, oddly enough, in many cases where such evidence is collected, the mathematicians tend to believe that there are no
counterexamples. Sowhydotheydoit?

A possible answer is that mathematicians sometimes do what scientists in general do: you collect evidence hoping that some pattern
appearsthattells yousomethingaboutthe problemyourstudying. Asithappensinthiscase, the onlythingthatappearsiscomplexity
andmorecomplexity. Table 1showsthe maximum value reached of the numbern, (indicated by the variable N)asn ranges from 1 to
100.000. Note, e.g., that between 1.819 and 4.254, the highest value remains 1.276.936 but at 4.255 it jumps straight away to 6.810.136.
Even inthis case, however, itis clear thatthe numerical evidence is interesting for it is shows that we are most likely dealing with a
problemthatisintrinsically complexandthereforeweshouldnotbesurprisedthattheproblemsresists attempts to prove it.

Astothecomputeraspectofthisnumericalsearch, itisclearthatweare dealingherenotwithamereenumerationofcases;thesizeof
the setof checked cases issimply too large to be checked one by one. Hence awhole range of mathematical techniques and computer
engineering is involved and, therefore, it becomes interesting. Note that for the computer checking a dis- tributed network had to be
createdtohavesufficientcomputationalpower.

4, Enterprobabilitiesandstatistics5.1. Aprobabilisticargument
What is more interesting is the fact that there exists a probabilistic heuristic argument, a perfect illustration of [14], that (at least some)
mathematicians seemtofindconvincingenoughtobelievetheCCtobeprovable. Thisisthe argument:

14 Jean Paul Van Bendegem
N Path length [Maximum value

017

16

17

1237 111 !

A7 216521609,232 13,120 39,364 41,524 250,504 1,276,9
15 97 8,153,62027,114,42450,143,264106,358,020121,012,8
131 593,279,152 1,570,824,736

170
272554476397031,8194,255 161
4,5919,66320,89526,62331,911 201
60,975 77,671 170
184
255
307
160
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334
231
Table 1. Sequence of peak values up to N = 100,000 (© Scientific American, see Hayes [1984])

(@) You do not have to worry about even numbers 2n, because in the next step, you will have n, so you go “down”, i.e., the
numbersarebecomingsmaller.

(b) Thereforelookatwhathappenswhenyoustartwithanoddnumber2n+1. Eitherinthenextstepyouwillhaveanoddnumber
oranevennumber.Assume that the probability is 1/2in both cases.

(c) Repeatthe process. This producesthe following picture:
nn/2
(3n+ 1)/2

3(B3n+1)/2+1)/2(3n+1)/4
(eacharrowhasaprobability 1/2and notethat3(3n+1)/2+1)/2 isaneven number, since by construction (3n+1)/2isodd).

(d) Considernowatrajectoryfromoneoddnumbertoanotheroddnumber. SupposethatinbetweenthereareN—21odd
numbers. Intotal

The Collatz Conjecture 15

thisproducesNtransitionsfromanoddnumbertothenext.Whatweexpectis thatN/2 ofthesetransitionswillhappeninonestep,N/4in
twosteps,andso on. This leads toagrowth factor:

(3/2)V% (3/4)V"* (3/8)®... So the average growth factor per transition is: (3/2)2(3/4)"* (3/8)"%..

(e) Asimplecalculationshowsthatthenumeratorisnothingbut3tothepower

1/2+1/4+1/8+- - - =1, therefore 3; and the denominator is 2% 4"/* 8¥%. ..

=2%=4.(Hereasimpleinductivereasoningwil ldothetrick).Hencethe averagegrowthfactorpertransitionis3/4whichissmallerthan1,
soon averagethenumbers*“shrink”, thereforethe CCshouldbecorrect.

Ofcourse,thisbeautifulargumentstandsorfallswiththeassumptionmadein

(b)(initalics). Istherereasontoassumethatthere isjustasmuchchanceto haveanoddoranevennumberinthenextstep? Actuallynot
and,inaddition, therearemanyinterestingproblemsinnumbertheorywhereoneexpects certain probabilities but amazingly enough,
the mathe- matical “facts” show otherwise. A famous example to illustrate this point concerns a conjecture put forward by Georg
Polya. Think about the prime decomposition of natural numbers. Countthe number of primes, that need notbe distinct. Call r(n) =
numberofprimesinn. Theneitherr(n)isevenorodd. Doesitnotseemlikely thatifwepickanarbitrary numbertheprobabilitythatr(n)
isevenoroddis 1/2? Asithappensthisisnotthecase,andthebehaviourofthefunctionr(n) turnsouttobequitecomplex.Inthatsense, it
isquiteunderstandablethatfor some mathematicians these probabilistic considerations carry little weight.

5.2. Gathering statistical evidence
Related to the above are what one might call statistical analyses of the prob- lem. Here the objective is to explore and hopefully to
understand and explain particularfeaturesthatappearinthenumericaltables,notnecessarilyto

16 Jean Paul VVan Bendegem

find arguments for or against the correctness of the conjecture. 8k +4 4k +2 2k + 1

Consider, e.g., the fact that consecutive numbers have trajectories of the same length(andotherproperties). Insomecasesthis
phenomenoncanbeeasily explained. Thediagramshowswhynumbersofthe8k+4end8k+5musthave the same trajectory length.

Although,assaid, itisnotclearinwhatway suchresultscould contributetoa finalanswer, i.e.,aproofsatisfying the usual standards,
thereseemstobea veryclearanalogy tobedrawnwithscientific practice. Ifitismeaningfulto speakofaCollatz-universe,meaning
therebyallthenumericalmaterial related tothe conjecture, thenthese probabilistic and statistical analyses correspondto anexploration
ofthatuniverse.Oneisnotreallyexpectingtofindlawsorthe like,butratherindicationsthatsuggestwhatpossiblelawsonecouldlook
or aimfor.Inasensethemathematicianistryingtogeta“grip”ontheproblemby wandering through the territory.
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5. Digression: generatingconceptstotacklethe problem

Theheadingofthissectionseemstosuggestthatitstopicisofminorim- portance.Suchisdefinitelynotthecase,butthere
aretworeasonswhylwant totreatitseparately:firstly,becauseitisacommonfeature ofthewhole mathematicalenterpriseandin
thatsenseitoccursin[l1]uptoandincluding [16],and,secondly,because thetopicandits related literature istoovastto treathereina
thoroughway. What is this feature? For want of a better notion, | propose to call it generating concepts (GC). Let me firstof all
illustratewhat | mean usingCC.

Takealookatthe original problem.Whatconceptsoccurinthe problem formulation? Wetalkaboutfunctions, naturalnumbers,
about elementary arithmetical operations (addition, multiplication, division) and about iter- ation. Those are roughly the
“ingredients” of the problem. The striking feature whenonegoesthroughthehistoryofCCisthattheconceptsas

3k+2

8k+512k+86k+4

The Collatz Conjecture 17

formulated inthe original problemstatement play hardly any roleatall. Instead, and techniques such as listed in [11]-[16] promote

this process, awhole range of derived concepts isintroduced and in some theorems none of the original conceptsactuallyoccur. For
CC,whatfollowsaresomeofthederived concepts:

1 (a) Thenotionofiterationleadsrathernaturallytotheideaofa trajectory, i.e., the sequence of numbers, starting with n,
andending with the first 1 to occur.

2 (b) Anobviouscorrelateof (a)isthelength of the trajectory.

3 (c) Givenatrajectory, letkbetheleastpositivenumbersuchthat T

®n) <

n, then k is called the stopping time of n, or, o(n) = k.

4 (d) Derivedfrom(c)iso..(n), thisisthe total stopping time, i.e.,thatk suchthat T¥(n)=1, (thisrelatesof course to
(b))

5 (e) Theexpansion factors(n)isdefinedasthedivisionofthelargest

value

(k)
reached in a trajectory by n, i.e., s(n) = ak®0 T (n). n

b (f) Theparity vectorvy(n),basicallycorrespondingtothetrajectory, where all the numbersare reduced modulo2.
Asanillustration, consider once more the example n=7,thenthe properties are:

(@)Trajectoryofn=7:( 7,11,17,26,13,20,10,5,8,4,2,1) ,(b)Lengthofthe trajectory =12,

(©) o(7)=7,(d) 0.(7) = 11,

(e)s(n)=26/7~=3,7
(fvu(7)=(111,0,1,0,0.1,00,0,1)

Ontheonehand,itseemsobviousthatthesenewconceptsshouldemerge,asit iseasytoseehowtheyarerelatedtotheoriginal problem
and, hence, howthey canbe helpful inthe search foraproof. However, this is only part of the story. Besides the concepts mentioned
above, many others could have been proposed, butapparently have notbeen proposed. Asan example, take this personally thought-
up concept:

M;=thesetofalltrajectoriessuchthatthelengthofthetrajectoryisamultiple of 7

and related to that:
N; = those numbers that belong to a trajectory in Ms.
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ItismyestimatedguessthatnomathematicianwillfindthenotionsofM-and N-theleastbitinteresting.Butthenthequestionmustbe:
why?Nodoubtthe answerwillbe:themathematicians’practice,butthatdoesnothelptofillinthe details. Whatisitinthatpracticethat
allowsmathematicianstomakesucha selection?Letmereformulatethatquestioninslightlymoreabstractterms.

Suppose that:

(@) weare givenaset X, and

(b) aproperty corresponds toasubset of X, then,
(©) we haveatotal of 2%!possible properties.

If X is of infinite size, so is 2% . Hence we are faced with a double question:
(Q1)Howisafinitesubsetoftheinterestingpropertieschosen?(Q2)Howare uninteresting propertiesavoided?

Notetheimportanceof (Q1). Computer programssuchasAutomatic Mathe- matician, developed in the eighties by Douglas Lenat,
were indeed capable of generating interesting concepts, but, as time went on, they tended to drown in them. Somehow, real-life
mathematicians seem to avoid this pitfall. Apart from general considerations about concept generation and selection as stud- ied in
cognitive psychology® (involving the study of metaphors, analogies, conceptual blending,andthelike), mathematicsisinthissensea
specialcaseinthat conceptgenerationandproofaretiedtogether.E.g., inthecaseof CC, o(n) is moreinterestingthanc,,(n) because
thefirsttheorems one could prove about CC involved the stopping time function and not the total stopping time function. Thereby the
conceptisreinforcedandallcon-ceptsthatcanbeeasilylinkedto it. Ifaderived conceptdoesnotturnupsomewhere inaproof, thenit
willmost likely disappear. Asthe production of proofsisarather difficultand oftenslow process, it explains why so few derived
concepts survive.

Asafurthersupportofthisthesis—the link between conceptgenerationand proofproduction—itisworthwhile tolook at so-called
“seminal” papersinthe history of mathematics, i.., those contributions that either setin motion a new branch of the mathematical tree
orrelaunchedaresearchthat hadarrived ata standstill. One suchfamousexample isBernhardRiemann’spaper“Uberdie Anzahl der
Primzahlenuntereinergegebenen

*Theliteratureinthisfieldis tooextensiveandtoovariedtobe reported here, but, obviously, for mathematics a fine example (although
many, such as myself, tend to disagree with the authors) is the recent work of Lakoff and Nunez [2000].

The Collatz Conjecture 19

Grosse”[1859],(“OntheNumberofPrimeNumbersLessthanaGiven Quantity”).lwillnotgointodetailshere,butone, ifnotthe
moststriking featureofthepaperisthattherearehardlyanyproofsandifso,theytendtobe “over-summarized”, making itatough jobto
reconstruct what the author might havemeant*. Onthe otherhand, whatthepaperdoesistointroducearangeof new functions that get
connected to existing and well- studied functions, thereby offering a new range to explore. As the paper is generally
acknowledged as a fundamental contribution, it is reasonable to conclude that such concept generation attempts are considered as
important as proofs themselves.

However, letmenowreturntothemainstoryofthispaperandlookintoitem [16] onthe list.

1 Metalevel considerations

In1972JohnConwaypublishedashortpaperwithacuriousandimportant result:ageneralizationofCCisundecidable. Inthatsense, it
isabeautiful illustrationofatype[l6]kindofargument. ltimpliesthatperhaps CCitselfis undecidable,althoughatpresentnosuch
resulthasbeenfound®.

The generalization is the following:

Consider a function g fromintegers to integers (note that this is not an essential extensionastheintegerscanalwaysbemappedone-to-
oneontothenatural numbers®), suchthat

g(n) = ain +b; for n =1 (mod p),
andwherea;andbiarerationalnumberssuchthatg(n)isalwaysaninteger.

‘OneofthebestsourcesaboutRiemann’s paperis Edwards [1974]. Thestatementonthelow proofqualityofthepaperisbasedonthis
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quoteofEdwards: “TherealcontributionofRiemann’s 1859paper laynotinitsresultsbutinitsmethods. The principal resultwas
aformulal...] However, Riemann’s proof of this formulawas inadequate[...]”. (p. 4)

3If CC would turn out to be undecidable, then it would most certainly replace the “busy beaver” as the simplest undecidable problem.
The“busybeaver”concerns Turingmachinesproducinga stringof‘1’-sonanemptytape. SeeBoolosetal.[2002], pp.41-44, for
aclearandconcise exposition of the “busy beaver” problem.

5The reason for the extension from natural numbers to integers has to do with the problem of encoding a problem known to be
undecidable into this generalization of CC. In that sense the construction can be reformulated restricted to natural numbers, however
the result would be definitely ‘ugly’.

20JeanPaulVanBendegem CCthencorrespondstothespecialcase,where: g(n)=(1/2)n+0forn=0(mod2),andg(n)=(3/2)n+1/2
forn=1(mod2).

Soay=1/2,by=0,a,=3/2andb, =1/2.
The undecidability comes down to the fact that, given a function g, and

givenanumbern, thereisnoalgorithmthatdecideswhetherthereisanumber ksuchthatg®(n)=1. Actually, Conwayprovedaneven
strongerresult,viz.all rational numbers bymay be equal to 0.

Obviously,whatthisresultimpliesis,atleast,thatoneshouldnotbeamazedby thecomplexityoftheoriginalproblem,the CC. Thefact
that the statement resisted and continues to resist proof for quite some time now, is perhaps something to be expected, given
Conway’sresult.Inthatsense, itdoeshavean influenceonmathematicians’expectations.However,thestorydoesnotend there. There
are links between CC and ergodic theory (see Lagarias [1985], Section 2.8), thus introducing considerations about
stochasticity and randomness into the proof search. These considerations are clearly not purely mathematical, witness this quote
fromtheconclusionofLagarias[1985]:

Isthe 3x + 1 problemintractably hard? The difficulty of settling the 3x + 1 problem seems connected to the fact that it is a deterministic
process that simulates “random” behaviour. Wefacethisdilemma: Ontheonehand,totheextentthattheproblemhas structure,wecan
analyseit—yetitispreciselythisstructure thatseemstopreventus fromprovingthatitbehaves“randomly.” Ontheotherhand, tothe
extent that the problem is structureless and “random,” we have nothing to analyse and consequently cannot rigorously prove
anything. Of course there remains the possibility that someone will find some hidden regularity inthe 3x + 1 problemthatallows
some of the conjec- tures about it to be settled. The existing general methods in number theory and ergodic theory do notseemtotouch
the 3x +1problem;inthissenseitseems intractable at present. Indeed all the conjectures made inthis paper seem currently to

beoutofreachiftheyaretrue; Ithinkthereismorechanceofdisprovingthosethatare false.

It seems obvious, at least to me, that such statements do not only go beyond mathematics proper, but at the same time contain (a)
philosophical ideas about the structure ofthe mathematical universe, (b) the expectations one might reasonably have concerningthe
likelihoodofprovingatheorem,and(c)the connection(s) betweenthesetwoelements. Inasensethiscould
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be considered a form of philosophy emerging out of mathematical practice itself, and hence, produced by mathematicians
themselves. This explains to a certain extent the contrast with philosophical explanations by philosophers about mathematics, that
tendtofocus on “end-products”, i.e., “finished” proofs. Letmeexplorethisideaabitfurtherintheconclusionofthispaper.

1. Conclusion
Afirstminorremarktomakeisthatthe readersurelywillhave noticedthatan illustrationof[11]ismissing. Thereare indeed,asfaras|
know, no examples of “sketchy proofs” that could possibly be translated or trans- formed into an acceptable proof. On the whole,
occurrencesoffl1]seemtoberatherrare.
However, the presence of all the other elements do show that the Collatz Conjecture deservestobe called an“exemplar”.

Secondly,andmoreimportantly, thereaderwillalso have noticedthat I have givenno“real” proofsofpartial results. After
all,seeLagarias[2004],asone mightexpect,thereisamultitudeofproofsdealingwithbitsandpiecesofthe CC,butldidnotwanttopay
attention to that part of the mathematical process. | did want to focus on all those elements that are at the same time not proofs, but
essential to guide the search for a proof. My claim is that these considerations are part and parcel of mathematical practice and,
by implication, that a philosophy of mathematics that claims to deal with the essential features of what mathematics is all about,
shouldincludetheseelements.
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Thirdly,asaconsequenceoftheobservationabove, itfollowsthatmath- ematics—orthemathematicalbuilding, touse
thebestknown metaphor— neednotbeanintegratedwholeoraunityinsomesense. Afterall, notonly will proofmethodsdifferfrom
mathematical domain to mathemati- cal domain— think, e.g., about the difference between “diagram chasing” in category theory and
mathematicalinduction innumbertheory (see Van Bendegem [2004])— buttheadditionalelements [11] upto [16] will mostcer-
tainly differ from domain to domain—in number theory number crunching is obviously possible but visualisations, equally
obviously, seem more suited to geometrical and topological problems. Note that this form of “disunity’ 1am pleading for, isnot in
contradiction with the existence of the founda- tions of mathematics, suchas settheory.Fromthe foundational pointofview, we lookat
theend-products, i.e., mathematical theories, leave outthe details of the processthathas led to the theory, and then integrate these
theoriesbyconstructingacommon language wherein these theoriescan be

22 Jean Paul Van Bendegem

translated, thus creating a new universe that has a uniformity that the daily practice of mathematicians seems to be lacking. In
terms of languages, foundationalwork correspondstodesigninganartificial language suchas Esperanto. Whereasinthispaperlam
suggestingthatweshouldalsohavea lookatthe languageswedailyspeak.InthesamemannerthatEsperantodid notbecometheworld
language, working mathematicians know that there is this special group of “foundational speakers™ that seem to have trouble to
convince everyone else to speak as they do. In addition, the better we understand our daily languages, the more likely we will
understand what kind ofartificial languageswill haveany rate of success or not.

Asafinalclosingremark, letmejustmentionthatatthemomentofwriting— February 2005—the problem remains unsolved.
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