IOSR Journal of Mathematics (IOSR-JM)
e-1SSN: 2278-5728, p-ISSN: 2319-765X. Volume 17, Issue 5 Ser. Il (Sep. — Oct. 2021), PP 09-15
www.iosrjournals.org

Diophatine Attack on RSA Using More Than One
Decryption Exponent

Ibrahim A. A, Abubakar T. U.2, Shehu S.3, Muhammad A. H.*, Zaid 1.3,
Abdullahi A. W.*

'Department of Mathematics, Faculty of Science, UsmanuDanfodio University, Sokoto, Nigeria.
“Department of Mathematics, ShehuShagari College of Education, Sokoto, Nigeria.
®*Department of Mathematics, Faculty of Science, Sokoto State University, Sokoto, Nigeria.
*Department of Science, Mathematics Unit,State Collage of Basic and Remedial Studies, Sokoto, Nigeria.

Abstract

In this paper, we present anew attack on RSA in the presence of three encryption and decryption exponentse;
andd;fori = 1, 2,3 respectively with thesame modulus N.The attack is an extension of Guo’s attack on RSA
using continued fraction method to find new weaknesses in RSA. In the new attackwe used prime power

difference|p? — 2| < N/2 to show that if% is one of the convergences of the continued fraction expansion of

L

%and the private exponentd;used in the RSApublic-key cryptosystem is less thaniNz/3 fori = 1,2,3 then the

system is more secureand stronger than the previous ones.
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. Introduction

The theory of Diophantine approximations, named after Diophantus of Alexandria, deals withthe
approximation of real numbers by rational numbers which can be achieved by continuedfractions. Continued
fractions have many properties and applications in Number Theory andcryptographic problems. They are used
to find good Diophantine approximations to rationaland irrational numbers, to solve Diophantine equations and
to build attacks on some instancesof RSA, (Nitaj, 2013).1t is well known that most successful attacks on RSA
are not based on factoring the modulusN, ratherthey exploit the mathematical weaknesses of the RSA algorithm
or the improper use of the RSA system, such as lower exponents, common modulus, and knowledge of parts of
the private exponent (Nitaj and Rachidi, 2015).

Takagi (2003) proposes a cryptosystem modulusN = p"q based on theRSA cryptosystem. He chooses
an appropriate modulusN = p"q which resiststwo of the fastest factoring algorithms, namely the number field
sieve and the elliptic curve method, (Shehu and Ariffin, 2017).

May (2003) considered RSA-type schemes with modulusN = p"gforr > 2, and presented two new
attacks for small secret exponentd. Both approachesare applications of Coppersmith's method for solving
modular univariate polynomialequations. From these new attacks they directly derive partial keyexposure
attack, which is attack when the secret exponent is not necessarily small but when a fraction of the secret key
bits is known to the attacker, (Ariffin et al., 2018).

Hinek (2007) showed that it is possible to factor thek modulusN; ifd < N® withs =

& wheree is a small constant depending on the size ofmaxN;.
In 2010, Sarkar and Maitra improved Howgrave-Graham and Seifert bound up tod,, d, < N°*6, (Nitaj,
2016).

k —
2(k+1)

Nitaj (2016) proposed that the boundd; < N'/? obtained by Sarkar and Maitra can be improved using
continued fraction method and the approximation? ofp such that|p — P| < 2N'/* as in Coppersmith theorem.
Shehu and Ariffin, (2017) presented three new attacks on Prime Power modulus N = p"q using good

approximation of ¢ (N)and continued fractions they showed thatgcan be recovered among the convergence ofthe
continued fraction expansion of—————— and that one can factor the modulusN = p”q in polynomial time.
N—2NT+I4+ NT+1
It is in view of this the study is going to present a new a attack to extend the Guo’s work using prime
power moduliN = p?q with three encryption and decryption exponents.
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Our Contribution: In this paper, we propose a new attack on RSA prime power moduliN = p%q using
continued fraction method. In the attack we usedS asan approximation ofp? + g2such that|p? + q% — S| <
%Nm and ift < %N”:" < N/3 with among the convergent ofilead to discoverd; < ~N2/3,
3(p+q9) 3(p°+q9) d; N 4

The rest of this paper is structured as follows: In section 2, we give a brief review of basic facts about the
continued fractions, Euclidean algorithm for computation of Greatest Common Divisor(gcd) and Euler Totient
function as well as Guo’s method of attack on RSA. In section 3, we put forward the new attack. We conclude
this paper in section 4.

Il.  Preliminaries
We start with definitions and important results concerning the continuedfractions,Euclidean algorithm for
computation of Greatest Common Divisor(gcd) and Euler Totient function as well as some useful lemmas
needed for the attack.

2.1 Continued Fraction Expansion
A continued fraction is an expression of the form:
ag + 1
a; + 1
-+ 1 = [ag, a1, ) A,y o]
apt+ -

wherea, is an integer anda,, are positive integers form > 1. Thea,, are called the partial quotients of the
continued fraction, (Ariffin and Shehu, 2016).

That is, continued fraction expansion of a number is formed by subtracting away the integer part of it and
inverting the remainder and then repeating this process till it terminates.

Theorem 2.1 (Legendre): Letx € R andgbe a rational fraction such thatged(p,q) =1 andq < b ifx =

%Withgcd(a, b) = 1. If|x - §| < 2;—Zthensis a convergent of the continued fraction expansion ofx (Nitaj, 2013).

2.2 Euclidean Algorithm
Suppose m and n € Z, with m> 0 there are unique integersq andr such thatn = mqg +rand0 <r <m, qis
called the quotient andr is the remainder whenn is divided bym.
2.3 Greatest Common Divisor (GCD)
Ifm andn are integers we say that a positive integer d is thegcd ofm and n ifd divide both m andn, andd is the
multiple of all the other divisors ofm and n.
2.4 The Euler Totient Function
¢is the Euler’s function for which¢(n) whenn = 2, n € Z is the number of integers in the set{1,2,3,...,n — 1}
which are coprime ton (i.e.GCD (a;,n) = 1,wherea; = 1,2,...,n —1).

- (Hoffstein, et. al., 2008)

2.5 Guo’s attack on RSA
Theorem:
LetN = pq be an RSA modulus. Consider three instances of RSA with a common modulusN and public
exponentse,, e,, e3 satisfying
e;d; = 1(modp(N)), eyd, = 1(mod¢p(N)), ezds; = 1(modp(N)),
1

If all thek; andd; are pairwise relatively prime andd; < N3~¢ fori = 1, 2, 3,withe > 0, then factorN can be
factored in polynomial time (Graham, 1997).

Proof:

Transforming the three congruencee;d; = 1 (mod ¢(N)),i = 1,2, 3 into equations we get:
erd; =1+ kip(N) (2.1)

exd; =14 kyp(N) (2.2)

e3dz =1+ kzp(N) (2.3)

Wherek,, k,, ks are positive integers.
From equation (2.1), we have:
kip(N) =e;d; — 1

eqd; —1

= @(N) = k

(2.4)

From equation (2.2):
kyp(N) = eyd, — 1
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e,d, — 1
=oW)=—— (2:5)
2
And from equation (2.3):
k3p(N) = e3d3 — 1
63d3 -1
Equating (2.4) and (2.5), we have:
e1d1 -1 _ eZdZ -1
kk  k
= eldlkz - kz = eZdzkl - kl
= eldlkz - ezdzkl = kz - k1(27)
Also, equating (2.4) and (2.6), we have:
e1d1 -1 _ 63d3 -1
ki, ks
= €1d1k3 - k3 = e3d3k1 - kl
= €1d1k3 - 33d3k1 = k3 - k1(28)
And equating (2.5) and (2.6), we have:
ezdz - 1 _ e3d3 - 1
ky ks
= €2d2k3 - kz = e3d3k2 - k3
. 32d2k3 - 33d3k2 = kz - k3(29)
Also, equating (2.6) and (2.4), we have:
e3d3 - 1 _ 61d1 - 1
ks kg
= €3d3k1 - eldlkg = kl - k3(210)
Dividing equation (2.7) bye,d, k, yields:
€1d1k2 ezdzkl _ k2 - kl

exdik, eydik; B exdik,

- e3d3k1 - kl = eld1k3 - k3

e; dyk k, — k
e Ok =|2 1|(2.11)
e; diky eydik;
Under the conditionged (d,kq,d1k;) = 1 and using Legendre’s equation
a 1
|x‘ﬂ<zﬁdk
Jer _ dzka 1
We have: . d1k2| TEARE
dyky . . . €
= is a convergent of the continued expansion of the fraction -
112 2
Equation (2.11) becomes:
lky — kil 1

exdiky  2(drk)?
21k; — kel (ds k)2

eydik;
To have:zlkz_:ﬂ <1
d, < e 2.12
f—1 —_— .
1S gtk — k] 212

Similarly, dividing equation (2.8) byesd; k5:
|e1d1k3 _ €3d3k1| ks =kl
esdiky esdiksl  esdik;

e d3k1| k3 =kl

- = 2.1
= e3  diks €3d1k3( 3

dsk e
Tohave —— as one of the convergent of the continued fraction expansion of e—l
1K3 3
Under the conditiongcd (dzkq,d1k3) = 1 and using Legendre’s equation
We have: |- — 431 !
les  diks 2(d1k3)?

Equation (2.13) becomes:
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lks — kil < 1
esdik;  2(dik;)?
21ks — kq|(d;k3)?
- lks — kq|(dyks3) <1

esd k3
2|k3—kqld1k3

€3

To have: <1

€3
2k3|ks — k1l
And also, dividing equation (2.9) byesd, k5 gives:
eydyks  esdsky| lkz — k|
|e3d2k3 B e3d2k3| T eydyks
e_2_d3k2| ks — ksl

= 2.15
= e3 dyks e3dyks3 ( )
dsk,

=d, < (2.14)

4k, as one of the convergent of the continued fraction expansion of Z—z
Under the conditionged (dsk;, dyks) = 1 and using Legendre’s equation
Equation (2.15) becomes:
lks — k| < 1
e3dyks 2(d;ks3)?
2|k3 — ky|(d1k3)?

e3dyks3

2|k3—kzld2k3

€3

To have

<1
% (2.16)

o 2kslks — k|

If all thek;s andd;’s are pair wise relatively prime, thend; = gcd(d,k,, dik;) andk; = gcd(d,kq, dskq),

which leads to @(N) = 22 and finally to the factorization ofN. And also ifk; < d; < N° for a positive

k1
.- ko—kq] 1
constant§, ande; < N, then the condltlonezdlk2 TEAY

equivalently § = %— &€, wheree > 0 is a small constant depending onN.

To have:

=d, <

. 1
can be written asN3% < SN = N1=3¢0r

2.6. Some Useful Lemmas

Lemma 2.1

LetN = p?q be an RSA prime power modulus withg < p < 2q. Then
2—2/3N1/3 < q < N1/3 < p < 21/3N1/3

Proof:

For N 5 N N< <2<N)
or = , = — = — —_
p-q.9 pz 7 p2 p P2

= N <p?<2N
= N3 < p < 213N13(2.17)
Taking reciprocal of the above equation:
1 1 1
T 2ANTE S p SNIB
Square both sides:
1 1 1
~ 2NEE S 2 SNER
Multiply byN:
N N N
Z2IBNIE S pZ SN
N N
> 2N S9SN
= 2723N3 < g < N'/3(2.18)
Combining equation (2.17) and (2.18):

2-2/3N7 < q<NY3<p<2/3N1/3
This terminates the proof.
Lemma 2.2
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Let N = p%>q be an RSA prime power modulus with q< p < 2q. Let|p? — q?| < N'/2. Suppose thatS isan

P 2, 2 2 ?=a?l | 1/3 _
approximation ofp? + g?such that|p? + g% — S| < - ——- 37 1q N theng = Luv]
Proof:

LetS = p? + ¢2, where 0< J* =] | Nl/3 < N173

3(p2+
We have:(p? — ¢%)? = (p* — qz)(P - g
=p* — 2p?q% + ¢*
= (p“ +q4) — 2Nq
= (p* +q* + 2p° q 2 —2p*q*) — 2Nq

= [(p? +q)2 p*q®] — 2Ngq
= [(p* + q%)* —2Nq] —2Nq
= (p? + q*)?> — 4Nq (2.19)

Such that
S2 —4Nq = (p*® + q*)? — 4Nq
= (p* + ¢*)(p* + q*) — 4Nq
= p* +2p%¢° + q* — 4p?q?
= p* +q* — 2p%q?
= §2 —4Nq = (p? — q?)?(2.20)
Suppose|p? — g%| < N'/2 and0 < 2L i BV ISRV

3(p%+q?)
Then equation (2.20) becomes:
|S2 —4Ng| < (NY¥)?2 < N
2
Dividing both sides of the above by4Nwe have: |— - q| < — < -= g < :—N - i

Hence, g = IWJ as required.
Lemma 2.3

Let N = p?q be an RSA prime power modulus with g < p < 2¢. Supposes is a positive integer such that|p? +
g2—=S<p2—qlp2+g2/N13, S2—4Ngisan approximation ofp2—g2then p2—g2—D<N13, whereD2=52—4Ng

Proof:
sz2_q2:D2z(p2_q2)2
=p*—2p°¢* +q*
= (p* +q*) — 2Ngq
[(»* + ¢*)* — 2p*q*] — 2Nq
= (p* + q*)* — 4Nq
= S2 — 4Ngq
hence, D =,/S%2 —4Nq(2.21)
Such that:|(p® — ¢*)* — D?| = |(p? — ¢*)* — (S* — 4Nq))|
= |(p* — ¢*)* — S* + 4Nq|
Ip* — 2p%q* + q* — S* + 4p°q?|
= |p* +q* + 2p°q* — S|
=1(p* +q*)* - 5|
Thus,|(p? — ¢®)* — D?| = |(p® + ¢*)* — S%|(2.22)
|(p? — q%)? — D?|can also be written as:
|(p* = ¢*)* — D?| = |[(p* — ¢*) = D1[(»* — ¢*) + D]
= |p? — q* — D|[p* — ¢* + D]
Dividing both sides by[p? — q* + D]
|(p* — ¢*)* — D?|
[p? — q* + D]
Substituting (2.22) into the above:
|(p* + ¢*)* = 52|
[p? — q* + D]
|(p* + q*)* - 52|
lp* — ¢
Similarly,|(p? + q%)? — 52| can be written as:
|(p* + ¢*)* = S?| = [[(®* + ¢*) = S1[(p* + ¢*) + S|

= |p* - q¢*—D| =

= |p* —q* - D| =

(2.23)
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= |p® + q* = S|[p* + ¢* + S]
Such that equation (2.23) becomes:

2+q*-Sllp*+q*+S
Z—qZ—D|s|p qlpzﬂp”q |

Using the fact that|p? + ¢% — S| < 3'? quZ')Nl/3

lp (2.24)

[p®~a?|
3(p2+q?)
Adding(p? + q?) to both sides of the above inequality gives:
Ip* - ¢°|
S+@*+d) <@ +a)+ @ +4)+ /3
®*+4q°) <(@*+q°)+ (" +4q°) 32+ q0)
<2(p*+q*)+ 3|f 5 l)N1/3. v % = ¢?| < Ip* + ¢?|
=S+ @’ +q%) <3(p +q°)
Substituting back into equation (2.24):
Ip* + q* = Sllp* + ¢* + S]

=S<@*+q¢>)+

|2_ 2—D|S
p°—q p2—q2
Ip? + ¢* —SI>
<|—=———3®*+ 4%
( p? —q*
But|p? + g2 —S|<73(p2+qq2|)N1/3
) 3’ +4°) Ip* — ¢
= |p? — ¢*

—D| <
p? — g2l 3(%+q%)
Hence,|p? — g% — D| < N/3, which terminate the proof

I11.  Our New Attack
LetN = p?q be an RSA prime power modulus withg < p < 2q. Lete; be public key satisfying the

equatione;d; — k;N = p? + q* + t withgcd (d;, k;) = 1. If% is among the convergent of % andt <

i VR N/3thend, <iN2/3'

3(p2+q?)
Proof:

lp?—a?| \1/3 1/3 lp?—q?|
Fort < 3074 2)N =t < N*/” since 30710D)

And dividinge;d; — k;N = p? + q% + t byNd;we have:
ed;  kiN| _ p2 +q%+t

" Nd;l T N4,
__& P +q* +¢l _ Ip* +q| + 1l
Nd; - Nd,
Butt < Nl/3
_ PPN
=i - v
Applying Legendre S theorem that 1s|x - | <5z
We have 2d2

k; e
= d—l is among the convergent of the continued expansion of the fraction Nl

L
P?+q* |+ N2 1

Nd, " 2d?
2a2 |1 4 21+ 017
= Nd, <1
2d,; ||p2 + q?| +N1/3|
N <1
N

=d

i

2[Ip? + q*| + N1/3|
For whichp? + g> > N1/3
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= N < N = lNl—(1/3) - 1N2/3
2||p2 +q%| + N1/3| 4N1/3 4 4
hence,d; < %N2/3.
The following algorithm is designed to recover the prime factorsp, q for primepower modulusN = p?q in
polynomial time.

Proposed Algorithm 1:

Input: an RSA prime power modulusN = p?qwithq < p < 2gq, and public key (e;,N), i=1,2,3
Output: The prime factorsp andgq
1: Compute the continued fraction expansion of%1

2: Compute the continued fraction expansion of%2

3: Compute the continued fraction expansion of%3

4: For every convergent%of%, compute S = e;d; — k;N
52 l

5: Computelmj
52

6.q = ng(lﬁJ’N)

7.1fl<q <N, thenp? =—

8. End

IV.  Conclusion
In this paper, we have shown that our developed attack on RSA prime power moduliN = p?q andN = p"q
using continued fraction method can be used efficiently The use of S asan approximation ofp? + g2such
that|p? + g2 — S| < 3'? 2+q 2|)N1/3 and ift < 3'? o 1 | Nl/3 N1/3 With% among the convergents of ~thend; <
1N2/3
Z .
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