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Abstract: Cholera is an acute diarrheal disease caused by vibro-cholerae bacteria and the outbreak can occur 

in a situation where water supply, sanitation, food safety and hygiene are insufficient. We developed an 

epidemic model of SIQR-B, or Susceptible- Infectious-Quarantined-Recovered and Bacteria, type model for 

cholera infection. We incorporate control measures of treatment in quarantine and vaccination. The effective 

reproduction number is computed in terms of model parameters. The existence and stability of disease free and 

endemic steady statesare recognized and the stead states indicated to be locally and globally asymptotically 

stable whenever effective reproduction numberis less than unity and greater than unity respectively. The most 

influential parameter to the reproduction number is obtained by using sensitivity analysisand vaccination rate is 
found to be influential. Furthermore, we carried out numerical simulations to verify and support the impact of 

intervention measures on the reproduction number, which is seen in the analytical results. The findings 

indicates that applying combined control measures vaccination and treatment in quarantine will help to prevent 

and control cholera transmission in the community. 
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I. Introduction 
Cholera is an acute diarrheal disease caused by vibro-cholerae bacteria and the outbreak can occur in a 

situation where water supply, sanitation, food safety and hygiene are insufficient. Since the incubation period of 

cholera is very short (2 hours -5 days), the number of cases can rise rapidly. The modes of transmission of 

cholera are direct from human-to-human (fecal-oral) and indirect from environment-to-human (exposure to the 

environmental reservoir to vibro-cholerae). The severity of the diarrhea and vomiting can lead to rapid 

dehydration and electrolyte imbalance [1-9].There are over 100 vibrio species but only the ‘cholerae’ species are 

responsible for Cholera epidemics. Vibrio cholerae species are divided in to 2 serogroups. These serogroups 01 

and 0139 causes outbreak (Alexander 2008) V. cholerae 01 causes the majority of outbreak, while 0139 first 
identified in India in 1992 is confined to south-East Asia. Non-01 and non-0139 v. cholerae can cause mild 

diarrhea but do not generate epidemics [10-14].The etiological agent, Vibrio cholera 01 and vibrio cholera 0139, 

passesthrough and survives the gastric acid barrier of the stomach and then penetrates the mucus lining that 

coats the intestinal epithelial [15]. Once they colonise the intestinal gut, thenproduce enterotoxin (which 

stimulates water and electrolytesecretion by the endothelial cells of the small intestine) thatleads to copious, 

painless, and watery diarrhea that canquickly lead to severe dehydration and death if treatment isnot properly 

given [16-18]. 

A number of mathematical models have been used to study the transmission dynamicsof cholera. 

Capasso and Serio introduced an incidencerate in the form of 
   

      
(with human(I)-to-human(S) transmission 

model only) in 1973. Codeco proposedan incidence form of 
   

     
(with environment(B)-to 

human(S)transmission model only) in 2001 which, in thefirst time, explicitly incorporated the pathogen 

concentrationinto cholera modeling. Mukandavire et al. included bothtransmission pathways in the form of 
    

     
      [19-25]. The major differences of these models are how the incidence rate is determined and how 

the environmental vibrio concentration is formulated. However, the goal of this paper is to propose cholera 

dynamics incorporating control strategies using only codeco’s incidence form. 
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Experimental studies suggest that it is necessary a heavy inoculum of V. cholerae in order to develop 

cholera. Here, this dependence is represented by a logistic dose response curve      
 

   
, where   is the 

concentration of V. cholerae in water that yields 50% chance of catching cholera and   is the bacteria 

population [26-28]. 

 The world health organization (WHO) recommends focusing on prevention, preparedness and 
response to combat the spread of Cholera. Purification of water used for drinking, washing, cooking and 

sterilizing contaminated material using chlorinated water or other effective anti-microbial agents are crucial in 

combating Cholera epidemic. In general, if good sanitation practices are continuously applied throughout the 

life, it is usually sufficient to stop the epidemic [14]. 

Vaccination has been a commonly used method for diseases control and works by reducing the number 

of susceptible individuals in a population.Since Koch found Vibrio cholera in 1883, the research for cholera 

vaccine had been going on for over one hundred years. People have developed a variety of vaccines. However, 

these vaccines were parenteral (by injection), which have short effective protection and big side effects. In 1973, 

the World Health Organization (WHO) canceled the vaccine inoculation, which attracted a major concern to 

oral vaccines. WHO recommends immunization of high -risk group such as children, people with HIV and in 

countries where this disease is endemic [5,28].  

According to WHO 2010 report, every year there is an estimated 3-5 million Cholera cases 
and100,000-120,000 deaths due to Cholera [13,21]. In the year 2017 the Cholera pandemic recorded was the 

largest ever in history. Explosive country-wide epidemics of Cholera killed thousands of people in Yemen 

(2,261), the Democratic Republic of Congo (1,190) and Somalia (1,007) [29]. In Africa, the number of people 

affected by Cholera rose sharply, with the largest number of cases reported since 2011. In 2017,14 African 

countries reported a total of 179,835 cases and 3,220 deaths [29,30]. 

Mathematical models of epidemiology in particular of infectious disease enable the researchers to 

understand the status of the prevalence of the disease, find the optimal performance, appropriate public health 

intervention strategies and make predictions about the disease, which helps to prevent and control the disease. 

The organization of this paper is as follows: We formulate our model for cholera-infection transmission 

dynamics by analyzing the positivity and boundedness of the solutions of the dynamical systems as basic 

properties of the model, which are essential in the proofs of stability.Existence of disease-free and endemic 
equilibria as well as their local and global stability and analysis of the sensitivity of the parameters of the 

reproduction number are treated. We present the numerical simulation to verify or support the analytical 

findings of the research.The result, discussion, conclusion and recommendation of the research are present 

consecutivelyafter numerical simulation. Finally, the paper ends with limitations of the research. 

 

II. Model formulation 
In this model of cholera infection, public health intervention strategies are incorporated.All the 

recruited individuals are susceptible. The total human population is closed. Total human population is given by   

           .The basic assumptions in developing this model are as follows.There is a positive 
recruitmentinto the susceptible class.Cholera infected individuals are subject to cholera treatment stay in 

quarantine.Cholera infection is caused by indirect (environment-to-human) way of infection i.eingestion of 

contaminated water and food with infective vibrio- cholera.Cholera recovered from Cholera infection loose 

immunity for further infection. The extended model incorporates additional assumptions: Cholera infection is 

caused by indirect (environment-to-human) mode of transmission, intervention strategies vaccination and 

antibiotic therapy for cholera-infected individuals in quarantinewill be taken in to account. 

The variables and parameters of the model are defined as follows: 

The total human population       susceptiblepopulation       infected with cholera     , cholera 

treatment through quarantine      and cholera recovered from cholera infected individuals         is the 

natural mortality rate in all classes at time    for      . Furthermore, a class     that reflects the bacterial 

concentration at time   We assumed that there is a positive recruitment rate  into the susceptible class. 

Susceptible individuals can become infected with cholera at rate      
  

   
  that is dependent on time    Note 

that      is the ingestion rate of the bacteria throughcontaminated sources and   is the half saturation constant 
of the bacteria population (i.e the bacteria population that yields 50% chance of catching cholera).Cholera 

infected are assumed to suffer cholera related mortality at rate  and quarantined individuals suffered cholera 

related deathrate  .The parameter   defines the average contribution of each cholera-infected individual to the 

aquatic population of V. cholerae. The pathogen population is generated or grows at a rate   and the pathogen 

natural death or loss rate is   and thus the net death rate of the vibros is      . Infected individuals are in 

quarantine for treatment at the rate   and quarantined individuals recover from infection by the rate    Cholera 

recovered lose their immunity at the rat   and move to susceptible for further infection. The schematic diagram 
is as follows: 
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The corresponding dynamical systems is: 
  

  
       

  

   
                          1.1 

  

  
 

  

   
                    1.2 

   

  
               1.3            (1) 

   

  
                           1.4 

  

  
      1.5 

 

III. Model analysis 
3.1 Positivity of the solutions 

Theorem 1. The solutions                       and      of model (1) are nonnegative for all      with non-
negative initialconditions. 

Proof:-Since the system of equations (1) represents human populations, all parameters in the model are non-

negative and the total human population is finite at time    , we need to show that, given non-negative initial 

values 

                               and      , the solutions of the system are non-negative. 

Suppose                            
 

 
 

Let us consider the region        where 

                    
 

 
 and         for system (1). 
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From (1.4):
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Therefore, since          for                  

 
        

From (1.5):
  

  
        

  
  

  
  

 

 
    , since   
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   . Therefore, since         as             

 

 
  

Hence,any solution of system (1)                               
  for all        

 

3.2 Boundedness of the solutions 

Theorem 2. The Solutions                            of model (1) are bounded. 

Proof:-The population is grouped into two parts, the human population 

(                     ) and pathogen population     . 

The total human population in our model is denoted by   and divided in to four subclass which are denoted by 

            from this we have  

                           

By differentiating both side with respect to time t we get: 
  

  
 

  

  
 

  

  
 

   

  
 

   

  
      from this we have 

  

  
       .  

If  
  

  
   then         Thus      

 

 
 for      

 

 
 , where at         is initial population.  

Therefore               
 

 
. This shows that      is bounded above and monotonic. Since      is bounded 

above, each other state variable of human population                           is bounded above.  

To show that the state variables of human population are bounded below, we need to show the boundedness of 

each state variable below for      
 

 
 . 

  From equation (1.1) we have: 
  

  
                

 
  

  
    

 

 
            

If      
 

 
             , then 

  

  
   and      is decreasing with time     , 

that is      
   

 

 

       
. This shows that      is bounded below and monotonic. 

Therefore               
   

 

 

       
.  

From equation (1.2) we have: 
  

  
             

If  
 

 
             , 

  

  
   and     is decreasing with time      that is      

 

 
 

 

       
 . This 

shows that      is bounded below and monotonic. 

Therefore,               
 

 
 

 

       
     

From equation (1.3) we have: 
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If  
 

 
                then

   

  
  and      is decreasing with time     , that is      

 

 
 

 

       
 . This shows that       is bounded below and monotonic. 

Therefore                
 

 
 

 

       
  

From equation (1.4) we have: 
   

  
                

 
   

  
  

 

 
  

 

 
             

If       is decreasing with time     , 
   

  
   that is      

 

 
 

   

       
  

Therefore,                 
 

 
 

   

       
 . This shows that      is bounded below. 

From equation (1.5) we have: 
  

  
       

If      is increasing with time     and      
 

 
  , then

  

  
    

          
  

 
 

 

 

 

 
 

Therefore               
  

  
. This shows that      is bounded above.   

If      is decreasing with time      , then
  

  
              

  

  
 

Therefore               
  

  
. This shows that      is bounded below. 

Thus,      is bounded. Hence, all solutions of the system (1) are bounded. 

Theorem3 . The region                  
    

 

 
 is positively invariant for the model (1) with non-

negative initial conditions in   
 . 

Proof: -To proof the positive invariance of   (i.e., all solutions in   remainin   for all  ). 

Let 
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Specifically,if 
  

  
   then     

 

 
   Thus       

 

 
  and this shows that     is increasing and bounded above 

by 
 

 
 and if  

      then
  

  
   .Thus      

 

 
 

  

  
   In particular, if       

 

 
 , then

  

  
    and this shows that 

    is decreasing and bounded below by   because of positivity. Thus, is positive-invariant andattracting. 

Therefore, every solution of the human population dynamical system  with initial conditions in  remains in   

for     Hence, it is sufficient to consider the dynamics of human population for the system (1) in  and thus, 

in the region , the model system of the human population for the system (1) is epidemiologically and 

mathematically well posed. 

From  
  

  
      , we have: 
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 . Thus,      is increasing and bounded above. On the other hand  

  

  
   , when      

  

  
 Thus    is decreasing and bounded below. Therefore      is monotone bounded. This leads us to accept the 

following corollary is also true. 
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3.3 Disease -free equilibrium point   

      The disease -free equilibrium point       of the system (1) can be obtained by setting cholera related 

variables and parameters to zero               then we have            . Therefor the disease-

free equilibrium point of cholera model (1) is 

              
    

      
 

   
          

 

3.4 Effective reproduction number 

Theorem 4. The effective reproduction number     of cholera model (1)is given by 

   
   

              
 

Proof: -In order to compute  , it is important to distinguish new infections from all other changes in the host 

population. We apply the next generation approach in Diekmannet al. 1990 used in [31, 32]. Let       be the 

rate of appearance of new infections in compartment  ,   
     be the transfer rate of individuals into 

compartment   by all other means, and   
    be the rate transfer of individuals out of compartment  . It is 

assumed that each function is continuously differentiable at least twice in each variable. The model (1) of 

cholera dynamics can be formulated as follows and arrange in order from infected to non- infected. 
   

  
                  where       , as there are five classes and                  

        
       

    and the matrices           and     associated with model (2) are given by 
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Where                    and       

Let,                  

Then, we have    
     

  

      

  

     

  

      

  

     

  
 
 

           

The Jacobian matrices of      and      for     and     respectively are 3x3 matrices as there are three 

infected classes             

    
  

   
  

  
      

         

   
   

 and  
  

   
  

    
     
    

  , where             

 and  at the infection-free equilibrium point    are   and   respectively: 

Thus          
   Where       

    denotes the spectral radius of a matrix    
   (that is, the eigenvalue with 

the highest magnitude). To find the eigen values of    
  , we consider         

        , where    s the 
identity matrix. 

Thus,   
   

              
, which represent the average number of new secondary cases generated by a single 

cholera infected individual during his/her entire infectious period in a completely susceptible population, in the 

presence of cholera vaccination and treatment in quarantine intervention strategies. 
 

3.5 Local stability of the disease-free steady state 

Theorem 5. The infection-free equilibrium     point of model (1)is locally asymptotically stable, if     i.e if 

                  and unstable, if      i.e if                   . 

Proof: -The Jacobian matrix       of the system (1) at the disease free equilibrium point is as follows, where 

                 

       

 
 
 
 
 
 
 
         

  

      

           
  

      

            
          
       

 
 
 
 
 
 
 

 

The characteristic polynomial of the matrix      )is given by 
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                                 and in order to find the roots of the  

Polynomial  , we set 

     

 

 
            

  

      

        
  

      

         
         
        

 

 

    

                                                      
   

      
    

That is, either         or                               or                 

e    + =0 

By Routh-Hurwitz stability criterion, if all the coefficients of the quadratic polynomial have the same sign, then 

all the roots of the polynomial have negative real part, and thus the disease-free equilibrium point is locally 

asymptotically stable. The coefficients of the first quadratic polynomial are                     
and            . The coefficients of the second quadratic polynomial are                 

and    
   

      
 Therefore, the infection-free equilibrium point    is locally asymptotically stable, if     

   

      
                                    .   

    
   

      
            

   

              
                 

Therefore, if      then     
   

      
   . This shows that        has at least one eigen value with non-

negative real part. Thus    is unstable for      
Hence, the proof is completed. 

The biological interpretation of locally asymptotically stabile of thedisease-free equilibrium point is that, the 

existence of small number of infectious individuals will not be the cause of the outbreak of the disease 

unless    . Thus, we need to consider the global asymptotic stability of     to control the disease effectively. 

To investigate the global stability, we define a Lyapunov function [12,13]. 

 

 

3.6Global stability of the disease free equilibrium point 

Theorem6. Disease-free equilibrium point      is globally asymptotically stable, if      

Proof:- Define a Lyapunov function by applying Lyapunov theorem. 

                                , where         . Since all variables and parameters in   

are positive                  and           
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   if and only if     

The largest compact invariant subsets in                 is the singleton set      Therefore, by Lasalle’s 
invariant principle (Lasalle 1976)     is global attractor whenever    . 

3.7Endemic equilibrium point  

Theorem 7. The endemic equilibrium point of the system (1) exist, if        
Proof:-The endemic equilibrium point             

    
      of the system (1) can be obtained by setting 
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Where,        ,        ,      ,                           

Therefore,   
   

         

      
       

                          
  

                          

                                  
  

       

          
 

    
       

          
        

     

          
   , 

Since the disease exist       Thus,                    

                                            

                                                  

                                               

    
                 

                
 

           
   

        
   

                  
 

           
   

              
   

                  

 
                

                 
 

It is true that                                   as  

      and     and since            , we have also              and 

                  . This shows that      if      . 

Thus, the dynamical systems (1) has an endemic equilibrium point given by             
    

     . 

Thus, the proof is completed. 

3.8 Local stability of the endemic equilibrium point 

Theorem 8. The endemic equilibrium point      of model (1)is locally asymptotically stable in the region   if 

     

Proof:-The Jacobian matrix       of the system (1) at the endemic equilibrium point is as follows: 

      

 
 
 
 
 
               

        

      
      
       

 
 
 
 

, Where,    
   

       and   
     

        
 ,  

The characteristic polynomial of the matrix     )is given by                    where   is identity 

matrix and in order to find the roots of the polynomial  , we set 

      
 

                 

          

        
        
        

 
 
    

    
     

     
     

           

Where,         ,   
   

       and    
     

        
,     ,            

                           

  =                                    

  =                                            

  =                                   

The endemic steady state is locally asymptotically stable, if the necessary and sufficient conditions that all the 

roots of the polynomial     have negative real parts (to be located in the left half plane) are all the polynomial 
coefficients must have the same sign, nonzero and the first column of the Routh’s array positive should be 

satisfied.This can be check by applying Routh-Hurwitz stability criterion. 
 

3.9Global stability of the endemic equilibrium point  

Theorem 9. Endemic equilibrium point     is globally asymptotically stable,if      

Proof:- By applying Lyapunov theorem. Define a Lyapunov function 
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Let              
 

 
  , then                and for           , thus 
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Hence                .The derivative of   along the solution is 
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Then,
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   if and only if                       

    
       

The largest compact invariant subsets in                 is the singleton set      
Therefore, by Lasalle’s invariant principle (Lasalle 1976)     is global attractor whenever    . 

 

Table 1. Definition and values of parameter values for theSIQR-Bmodel 
Para-meter Description Value 

 

Reference 

 

  Recruitment rate               [16] 

  Death rate of  unrelated cholera                     [31] 

  Bacteria ingestion rate             [31] 

e Human contribution to v. cholerae                            [12] 

  Half saturation constant                [27] 

  Recovery rate             [5] 

  Immunity waning rate                  [12] 

   Disease induced death rate                            [31] 

  Death rate of quarantined               [31] 

  Vaccination rate                    0.2      [2] 

  Quarantine rate for treatment              [31] 

  Bacteria net death rate               [31] 

 
3.10 Sensitivity analysis of the effective reproduction number 

Sensitivity analysis assess the degree of the influence of parameters on the reproductive number. To 

conduct the sensitivity analysis, we adopt the normalized forward sensitivity index.The partial derivative is the 

rate of change of prediction with respect to each parameterusing the approach in (Chitns et.al 2008), (Edward 

and Nyerere 2015),(Numfor 210)[15]. The degree of sensitivity index of the reproduction number with respect 

to a parameter say  ,  measures the relative change in variable when the parameter   changes as   
   

   

  
 

 

  
 . 

The value  
    , shows an increase (decrease) of   results in an increase (decrease) of    and   

       
shows an increase (decrease) of   results in a decrease (increase) of   . The most sensitive or most influential 

parameter positively or negatively is the one with highest in magnitude. We calculate the sensitivity indices of 

the parameters using the values of the parameters from different literatures in TABLE 1, using   
   

   

  
 

 

  
  

for parameter  . 

 

Table 2. Sensitivity indices of the effective reproduction number to model parameters 
parameter Sensitivity index 

  1 

  1 

e 1 

  -1 
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From the values of sensitivity indices in TABLE 2, we can suggest that an increase human recruitment, 

ingestion of bacteria, bacteria shedding may increase the magnitude of reproduction number. On the other hand, 

cholera related mortality, natural human mortality, medical treatment of cholera in quarantineand vaccination 

have negative influence on the magnitude of reproduction number. An increase in medical treatment in 

quarantine and vaccination control strategies have positive impact in controlling cholera transmission. Since the 

sensitivity index of our control measure vaccination is highest in magnitude than treatment in quarantine in 

TABLE 2, the effective reproduction number is more sensitive to parameter   than parameter    
 

3.11 Basic reproduction number 

Theorem 10. The basic reproduction number     of cholera transmission model (1)is given by    
   

        
 

Proof: -We apply the next generation approach in Diekmannet al. 1990 used in [31, 32]. The model (1) of 

cholera dynamics can be formulated as follows and arrange in order from infected to non- infected model by 

setting                   in SIQR-B to get SI-B model. From SI-B model 
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Let,                 , then we have    
     

  

     

  

     

  
 
 

           

The Jacobian matrices of      and      for     and     respectively are 2x2 matrices as there are three 

infected classes          

    
  

   
  

 
      

         

  
 and  

  

   
  

  
   

  , where          

F and V at the infection-free equilibrium point     
 

 
     are   and   respectively: 

Thus          
     Where       

    denotes the spectral radius of a matrix    
   (that is, the eigenvalue 

with the highest magnitude). To find the eigen values of    
  , we consider         

        , where    s 
the identity matrix. 

Thus,   
   

        
, which represent the average number of new secondary cases generated by a single cholera 

infected individual during his/her entire infectious period in a completely susceptible population, in the absence 

of cholera intervention strategy. 

Now let us express the effective reproduction number     in terms of the basic one      and compare their 

magnitude. 

   
   

              
 

   

                     
 

 
   

        
 

 

  
             

      

     
      

                    
  

Since all parameters are positive,                            and thus, 
      

                    
  . From this, we can conclude that     . To verify this, we use the parameter values 

present in TABLE 1, the basic reproduction number     of the dynamics without public health intervention 

strategy is 

   
   

        
 

            

                                
       

Whereas the effective reproduction number   with two control strategiesis given as 
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From the above results, the basic reproduction number tells us a single cholera infected individual can generate 

about      new secondary infections in the community during his/her entire infection period in a completely 

susceptible population. The effective reproduction number tells us       new infections generated by a single 

infected individual in the community where vaccination and therapeutic treatment in quarantine are used as 

intervention strategies.Therefore, we can observe that         

 

IV. Numerical Simulation 
We carried out numerical simulations to verify and support the impact of the model parameters on the 

reproduction number, which is seen in the analytical results by using set of model parameters whose values are 

taken from literature. The model parameter values and respective sources are present in TABLE 1.  

        
  

              
   

        

       
  

    

       
         

 

Figure 1: Effective reproduction number    versus ingestion rate   with interventions 
 

From fig. 1, Since two intervention strategies vaccination and treatment in quarantine are implemented 

simultaneously, the effective reproduction number  to be greater than unity (disease to spread in the community) 

the ingestion rate must exceed a very much huge ingestion rate 769.2, If the ingestion rate is between 0 and 

769.2, the effective reproduction number is less than unity. It also verifies that the ingestion rate   has positive 

impact on the magnitude of effective reproduction number     

        
  

              
   

      

       
 

 

       
          

 

 

Figure 2: Effective reproduction number    versus recruitment rate   with interventions 

 

From fig. 2, Since two intervention strategies vaccination and treatment in quarantine are implemented 

simultaneously, the effective reproduction number  to be greater than unity the recruitment rate must exceed a 

very much huge recruitment rate 526.3, If the recruitment rate is between 0 and 526.3, the effective reproduction 

number is less than unity. It also support the analytical result that the recruitment rate   has positive impact on 

the effective reproduction number     
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Figure 3: Effective reproduction number    versus shedding rate   with interventions 

 

From fig. 3, Since two intervention strategies vaccination and treatment in quarantine are implemented 

simultaneously, the effective reproduction number to be greater than unity the shedding rate (contribution of 

each infected individual to the environment) must exceed the shedding rate 10,000. If the shedding rate is 

between 0 and 10,000, the effective reproduction number is less than unity. It also verifies that the shedding rate 

  has positive impact on the magnitude of effective reproduction number     

      
 

 
 

   

             
  

 

 
 

     

      
  

     

 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4: Effective reproduction number    versus half saturation constant   with interventions 

 

From fig. 4, Since two intervention strategies vaccination and treatment in quarantine are implemented 

simultaneously, the effective reproduction number to be less than unity the half saturation constant (number of 

bacteria causing 50% chance of catching cholera infection) must exceed 1040 amount of bacteria number. If the 

half saturation constant is between 0 and 1040, the effective reproduction number is greater than unity provided 

that the two control strategies are implemented. It also verifies that the half saturation constant   has negative 

impact on the magnitude of effective reproduction number     

      
 

 
 

   

             
  

 

 
 
     

     
  

       

 
 



Modelling and Analysis for the Transmission Dynamics of Cholera with Control Strategies 

DOI: 10.9790/5728-1704031027                            www.iosrjournals.org                                                 22 | Page   

 
Figure 5: Effective reproduction number    versus bacteria net death rate   with interventions 

 

From fig. 5, if the bacteria net death rate is greater than 0.00034, the effective reproduction number is 

less than unity and decreases (the disease dies out) but when the bacteria net death rate is between 0 and 

0.00034, the effective reproduction number is greater than unity provided that the two control strategies are 

implemented. It also verifies that the bacteria net death rate has negative impact on the effective reproduction 

number. 
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    implies that                  , for all    

 
Figure 6: Effective reproduction number    versus human natural mortality rate  . 

 
From fig. 6, when the natural mortality rate increase, the effective reproduction number decreases and 

less than unity. This verifies that human natural mortality rate has negative impact on the effective reproduction 

number, but we cannot reduce the effective reproduction number by killing people as our objective is saving 

life.  
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Figure 7: Effective reproduction number    versus disease induced death rate rate . 

 

From fig. 7, when the cholera induced death rate increase, the effective reproduction number decreases 

and less than unity. This verifies that cholera induced death rate has negative impact on the effective 

reproduction number, but we cannot control the disease by killing people as our objective is preventing people 

from dying of the disease and saving life.  

      
 

   
 

   

         
  

 

   
 

     

                    
 

 
 

             
 

     

              
  

       

             
 

       

             
                 

 

 
Figure 8: Effective reproduction number    versus vaccination rate   with constant treatment intervention in 

quarantine 

 

From fig. 8, if vaccination rate is greater than 00019, the effective reproduction number is less than 

unity and decreases (the disease dies out) but when the vaccination is between 0 and 0.00019, the effective 

reproduction number is greater than unity provided that treatment in quarantine is implemented. It also verifies 

that vaccination has negative impact on the effective reproduction number  
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Figure 9: Effective reproduction number    versus vaccination rate   with no treatment in quarantine 

 

From fig. 9, if vaccination rate is greater than 0009, the effective reproduction number is less than unity 

and decreases (the disease dies out) but when the vaccination is between 0 and 0.0009, the effective 
reproduction number is greater than unity(the disease persist) provided that treatment in quarantine is not 

implemented. Therefore, we can observe that        reduces faster (less effort on vaccination) to become less 

than unity in figure 8(with treatment in quarantine) than figure 9(with no treatment in quarantine). Which means 

if there is no treatment in quarantine, we need more additional vaccination. This shows that combined 

implementation of control strategies is more effective than single intervention to prevent and control the spread 

of cholera transmission. 

      
 

       
 

   

       
  

 

       
 

     

                    
 

 
 

                     
 

     

               
  

 

               
 

     

        
 

 
        

               
 

 

 
Figure 10: Effective reproduction number    versus treatment in quarantine rate   with constant vaccination. 

 

From fig.10, if treatment in quarantine with constant vaccination is implemented, the effective 

reproduction number never be above unity. This shows that combined implementation of control strategies will 

reduce the effective reproduction number and make the effective reproduction number to stay below unity. 

Thus, treatment in quarantine intervention strategy has negative impact on the magnitude of effective 

reproduction number. 
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Figure 11: Effective reproduction number    versus treatment in quarantine rate   with no vaccination. 

 

From fig. 11, if treatment in quarantine rate is greater than 0.585, the effective reproduction number is 

less than unity and decreases but when treatment in quarantine rate is between 0 and 0.585, the effective 
reproduction number is greater than unity provided that vaccination is not implemented. Therefore, we can 

observe that        reduces faster(less effort on vaccination) to become less than unity in figure 9(with no 

treatment in quarantine) than        to become less than unity in figure 11(with no vaccine). Which means 

vaccination control strategy is more preferable than treatment in quarantine to prevent and control the spread of 

cholera transmission. This shows that vaccination control parameter is the most influential parameter.  

Moreover, figure 11 supports that treatment in quarantine has negative impact on the magnitude of effective 

reproduction number. Above all, if there is no economic constrained, combined implementation of the two 

control strategies is advisable to prevent and control the spread of the disease. 

 

V. Conclusion 
Cholera, as atypical endemic disease around the world, brings huge physical psychological harm to 

human beings. Even though there are many potential prevention measures, it still causes a lot of damage in 

many countries specially developing countries [12]. In this paper, we proposed SIQR-B (Susceptible—

Infectious-Quarantined-Recovered-Bacteria) type model by modifying the regular SIR-B cholera 

epidemiological model [28]. We tried to understand the effect of two control measures with one mode of 

transmission pathway (environment-to-human) of cholera, to gain useful strategies to the effective prevention 

and intervention strategies against cholera prevalence. We also incorporated no permanent immunity for the 

recovered group in order to assess the impact of vaccination, therapeutic treatment in quarantine on the 

transmission dynamics of cholera infection. 

The basic reproduction number     and the effectivereproduction number     are determined. The 

disease free       and endemic     equilibria are indicated to be locally and globally asymptotically stable for 

     and      respectively in the mathematical results. This shows that cholera disease dies out in the 

community, if the control strategies bring      less than unity and the disease persist in the community, 

if     . We have shown that     , and       if vaccination rate and treatment in quarantine rate are 

equal to zero       . This mean that vaccination and therapeutic treatment in quarantine will reduce the 

basic reproduction number and thus they are important to control cholera epidemics. However, vaccination does 
not always work well due to the limitation of medical development and financial constrained (some vaccines are 

very expensive and some portion of population cannot afford) [5]. On the other hand, in the absence of these 

two intervention the spread of disease will be high.  

 By evaluating the sensitivity indices of the effective reproduction number with respect to model 

parameters,the influential parameters for the spread of the disease are identified and thus vaccination rate and 

treatment in quarantine rate are influential parameters. The most influential one is vaccination rate.From the 

values of sensitivity indices, an increase human recruitment, ingestion of bacteria, bacteria shedding may 

increase the magnitude of reproduction number. On the other hand, cholera related mortality, natural human 

mortality, medical treatment of cholera in quarantine and vaccination have negative influence on the magnitude 

of reproduction number. However, we cannot control cholera prevalence by disease and natural mortality, since 

our objective is preventing people from dying of the disease and save life. Therefore,We recommend primarily 

giving emphasis on preventionby expanding accessto improvedsources ofdrinking water, improved sanitation 
and hygiene, and working withcommunities to encourage behavioural change to avoid the risk of cholera 

infection.However, once the disease emerge in the community,implementing vaccination campaign is primarily 

advisable during the outbreak of cholera to prevent the spread of the disease. Since both control strategies 

vaccination and treatment in quarantine had negative impact on the spread of the disease,we 
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recommendcombined implementation of both public health intervention strategies. Thus, the stakeholders 

should design policies, planning, budgeting finance and resource allocations primarily focusing on prevention 

and then all possible public health interventions as much as possibleto combat against cholera transmission and 
prevalence. 

This paper work consider only two mechanisms (vaccination and treatment in quarantine) of many 

public health preventive and intervention strategies like education campaign, sanitation and hygiene.The work 

also do not incorporate the climatic impacts on cholera epidemics (such as rainfall, flood, drought and water 

temperature). Combining human hosts and environment (Bacteria population) in the epidemiological model 

makes cholera dynamics different from most other disease dynamics and difficult to understand easily.There are 

two means of transmission of cholera, direct from human-to-human (fecal-oral) and indirect from environment-

to-human. However, this researchfocusonly on indirect means. Therefore,other researchers may extend this 

research by including direct mode of transmission and additional public health intervention strategies. 
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