
IOSR Journal of Mathematics (IOSR-JM) 

e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 16, Issue 6 Ser. II (Nov. – Dec. 2020), PP 50-57 

www.iosrjournals.org 

DOI: 10.9790/5728-1606025057                               www.iosrjournals.org                                             50 | Page 

 

Discrete-Time Linear Stochastic Model for the Analysis of 

Production Systems Functioning in an Unstable External 

Environment 
 

V. G. Skobelev
1
, V. V. Skobelev

2
 

1
Leading Researcher, Full Professor, 

2
Senior Researcher, Dr. Phys.-Math. Sci. 

Department of Digital Automata Theory 

V.M.Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine 

 

Abstract:In the given paper some linear discrete-time stochastic model intended for simulation the behavior of 

an analyzed production system functioning in an unstable external environment is proposed.In this model 

destabilizing effects on the inventory and on the external supplies of the analyzed production system are 

presented explicitly.The average and the second order behaviors of the proposed model is analyzed.Some two-

dimensional time-invariant production system is provided, as an example.The step-by-step adaptive approach 

for correction the planned standard behavior of the production system functioning in the unstable external 

environment is proposed.This approach is based on the assumption that the estimates of the returned or non-

conforming inventory and of unforeseen changes in the deliveries of the inventory are true. 
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I. Introduction 
It is well-known, that efficient production planning is one of the key problems for production systems 

surviving.To solve this problem, various models, both deterministic [1,2] and stochastic [3-5] have been used. 

The stochastic Markov model
11 ( )

kk kX f X   ( )k Z , where 
1k  ( )k Z are independent drawings 

from a given probability distribution  , and{ : | }n nf  R R is a given set of mappingshad been 

investigated in detail in [6].Unfortunately, it is difficult to use these results for solving specific applied 

problems.Possibly, this wasthe main reason why considerable attention has been focused on the study of linear 

stochastic models [7, 8].There have been thoroughly investigated the models 
1k k k kX A X B   ( )k Z [9-12] 

and 
1( )k k k kX A X B   ( )k Z  [13], where 

kX ( )k Z are n -dimensional real-valued random vectors and 

kA , 
kB ( )k Z are real-valued (in general case, random) n n -matrices.Common to both models is that they 

do not represent explicitly the external deliveries to the production system.This drawback has been eliminated in 

the following model [13, 14]. 

Let n -dimensional random variable 
0x , m -dimensional deterministic time sequence 

ku ( )k Z , and 

l -dimensional stochastic process 
kw ( )k Z be given.A linear discrete-time stochastic model of production 

planning is defined by the recurrence relation 

1     ( )k k k k k k kx A x B u G w k    Z ,                                                         (1) 

where 
kA , 

kB and 
kG are given matrices of dimensions n n , n m  and n l , respectively,for all ( )k Z . 

Remark 1.The model (1) can be interpreted as follows. Let 
kx be the store inventory level at the 

beginning of the day k , 
ku be the inventory ordered and delivered at the beginning of the day k , and 

kw  be the 

random amount of inventory sold during the day k .Then 
1kx 
is the store inventory level at the beginning of the 

day 1k  . 

It is natural to assume that the model (1) represents the planned standard behavior of the analyzed 

production system.However, there is the problem to design this model when the analyzed production system is 

functioning in an unstable external environment.In the given paper the following adaptive approach to solve this 

problem is proposed.Some generalization of the model (1) that presents in the explicit form the destabilizing 

actions of the external environment is defined and analyzed.Based on the simulation of the current version of the 



Discrete-Time Linear Stochastic Model for an Unstable External Environment 

DOI: 10.9790/5728-1606025057                               www.iosrjournals.org                                             51 | Page 

model (1) and the proposed model, deviations in their behavior can be calculated. If these deviations exceed the 

given threshold, then the model (1) is corrected. 

The rest of the paper is organized as follows.In Section 2 the well-known approach for analysis of the 

model (1) is presented briefly.In Section 3 proposed generalization of the model (1) intended for simulation the 

behavior of the analyzed production system in the unstable external environment is defined.In Section4 the 

behavior of the proposed model is investigated.In Section 5 the step-by-step adaptive approach intended to 

correct the model (1) when the analyzed production system is functioning in an unstable external environment is 

proposed. Section 6 contains concluding remarks. 

 

II. Brief analysis of the model (1) 
Usually, the analysis of the model (1) is carried as follows (see \cite{15}, for example). 

Firstly, the solution of the recurrence relation (1) is found: 
1

0

0

( ,0) ( , 1)( )     ( )
k

k j j j j

j

x k x k j B u G w k






       Z ,                                          (2) 

where for all j k  

1 ,   0,1, , 1
( , )     ( )

,                            

k j

n

A A if j k
k j k

I if j k





 
  



 
Z , 

and
nI is the identity n n -matrix. 

When analyzing the average behavior of the model (1), usually it is assumed that 
kw ( )k Z  is an 

independent sequence, it is also independent of 
0x , and ( ) 0k lw  ( )k Z , where 0l

is the zero l -

dimensional vector. 

Hence, 
kx is a Markov process. 

It follows from (1) and (2) that, respectively 

1( ) ( )      ( )k k k k kx A x B u k     Z ,                                                         (3) 

and 
1

0

0

( ) ( ,0) ( ) ( , 1)      ( )
k

k j j

j

x k x k j B u k






        Z .                         (4) 

To analyze the second order properties of the model (1), it is assumed additionally that 

( )T

k j k kjw w Q   ( , )k j Z , where 
kj is the Kronecker delta function (and, thus,

kw ( )k Z is the wide-sense 

white noise), and 0 ,( )T

j n lx w O  , where 
,n lO isthe zero n l -matrix. 

Let ( )k k kx x x  ( )k Z . It follows from (1), (3) and (2), (4) that, respectively 

1     ( )k k k k kx A x G w k     Z ,                                                              (5) 

and 
1

0

0

( ,0) ( , 1)      ( )
k

k j j

j

x k x k j G w k






       Z .                                               (6) 

Remark 2.Since 
kx ( )k Z depends linearly on 

0x and 
0 1, , kw w  , then ,( )T

k k n lx w O   

The covariance matrix ( )
k

T

x k kx x     ( )k Z can be computed from (5) and (6), as follows: 

1
     ( )

k k

T T

x k x k k k kA A G Q G k
     Z , 

and 

0

1

0

( ,0) ( ,0) ( , 1) ( , 1)     ( )
k

k
T T T

x x j j j

j

k k k j G Q G k j k






           Z .                             (7) 

To analyze the asymptotic behavior of ( )kx and 
kx (i.e. the behavior when k  ), it is assumed additionally 

that ( ,0) kk c  ( )k Z for some positive constants c  and 1  .Therefore, it follows from (4) and (7) 

that, respectively 
1

0

lim ( ) lim ( , 1)
k

k j j
k k

j

x k j B u


 


    ,                                                         (8) 

and 
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1

0

lim lim ( , 1) ( , 1)
k

k
T T

x j j j
k k

j

k j G Q G k j


 


      .                                   (9) 

The following two theorems directly follow from the equalities (8) and (9). 

Theorem 1.If ( ,0) kk c  ( )k Z  for some positive constants c and 1  ,  then the influence of the 

mean of the random initial condition 
0x  vanishes, when k  . 

Theorem 2.Let ( , ) k jk j c   ( 0,1, , )j k  , kG c , kQ c , kB c and ku c for all k Z , 

where c  and 1   are some positive constants.Then lim ( )k
k

x


  and lim
kx

k
 are finite limits both. 

As a rule, the behavior of the model (1) is characterized by the equalities (2), (4) and (7)-(9). 

Let us illustrate the application of the above technique by the following example. 

Example 1.Let us consider the 2 -dimensional time-invariant model (1), such that
2k kG Q I  , 

1

2

0

0
k

e
A

e

 
  
 

, and 
3

4

0

0
k

e
B

e

 
  
 

for all k Z , where 1ie  ( 1, ,4)i   are some positive constants, under 

assumption that (1)

0x  and (2)

0x  are independent random variables. 

From (2), (4), and (7)-(9) we get, respectively, 
1

(1) (1) 1 (1) (1)

1 0 1 3

0

1
(2) (2) 1 (2) (2)

2 0 2 4

0

( )

     ( )

( )

k
k k j

k j j

j

k
k k j

k j j

j

x e x e e u w

k

x e x e e u w


 




 




  




   






Z , 

1
(1) (1) 1 (1)

1 0 3 1

0

1
(2) (2) 1 (2)

2 0 4 2

0

( ) ( )

     ( )

( ) ( )

k
k k j

k j

j

k
k k j

k j

j

x e x e e u

k

x e x e e u


 




 




   




   






Z , 

2

2 2 (1) 1

1 0 2

1

2

2 2 (2) 2

2 0 2

2

1
( ) 0

1
     ( )

1
0 ( )

1

k

k

k

x k

k

e
e x

e
k

e
e x

e







 
 

   
 
 

  

Z , 

1
(1) 1 (1)

3 1

0

1
(2) 1 (2)

4 2

0

lim ( ) lim

lim ( ) lim

k
k j

k j
k k

j

k
k j

k j
k k

j

x e e u

x e e u


 

 



 

 



 



  






, 

2

1

2

1

2

2

2

2

1
0

1
lim

1
0

1

k

k

x kk

e

e

e

e



 
 

  
 
 

  

. 

In what follows, the model (1) is interpreted as the planned standard behavior of the analyzed production 

system. 

 

III. Proposed model of a production system 
A natural generalization of the model (1) intended for simulation the behavior of the analyzed production 

system in the unstable external environment can be defined by the recurrence relation 

1     ( )k k k k k k k k ky A y B u G w k     Z ,                                                     (10) 

where
k ( )k Z  and 

k ( )k Z are given 1 -dimensional stochastic processes, such that ( )k a  ( )k Z  

and ( )k b  ( )k Z for some given positive numbers a  and b , and 
0 0y x . 
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It is evident that the recurrence relation (10) is transformed into the recurrence relation (1), if 1k k   for all

k Z , i.e. if the external environment is stable. 

Remark 3.In the context of Remark 1, the process 
k ( )k Z  characterizes the amount of returned or non-

conforming inventory during the day k , while the process 
k ( )k Z characterizes unforeseen changes in the 

deliveries of the inventory at the beginning of the day k . 

Solving the recurrence relation (10), we obtain that its solution has the following form: 
1 11

0

00 1

( ,0) ( , 1)( )     ( )
k kk

k i i j j j j j

ji h j

y k x k j B u G w k  
 



  

  
        
   

  Z .                       (11) 

Let 
k k kz y x  ( )k Z . From (1), (10) and (2), (11) we get, respectively, 

1 ( 1) ( 1)      ( )k k k k k k k k k kz A z A x B u k        Z ,                                           (12) 

and 

1 1 11

0

00 1 1

1 ( ,0) 1 ( , 1) 1 ( , 1)      ( )
k k kk

k i j h j j h j j

ji h j h j

z k x k j B u k j G w k   
  



    

     
                        

   Z .  

(13) 

Remark 4. The random variable 
k k kz y x  ( )k Z characterizes deviation of the analyzed production 

system behavior in the unstable environment from its planed standard behavior in the day k . 

 

IV. Analysis of the proposed modelof a production system 
To analyze the average behavior of the model (10), it is assumed that all assumptions of the previous 

Sections hold.Besides, it is assumed that each of the sequences 
k ( )k Z  and 

k ( )k Z  is independent, 

the stochastic processes 
k ( )k Z  and 

k ( )k Z are independent, and each of them is independent of the 

stochastic process 
kw ( )k Z and of 

0x both.From (10) and (11), we get, respectively 

1( ) ( )     ( )k k k k ky aA y bB u k     Z ,                                                        (14) 

and 
1

1

0

0

( ) ( ,0) ( ) ( , 1)      ( )
k

k k j

k j j

j

y a k x b a k j B u k


 





        Z .                                   (15) 

Similarly, from (12) and (13) we get, respectively 

1( ) ( ) ( 1) ( ) ( 1)      ( )k k k k k k kz aA z a A x b B u k         Z ,                                      (16) 

and 
1

1

0

0

( ) ( 1) ( ,0) ( ) ( 1) ( , 1)      ( )
k

k k j

k j j

j

z a k x ba k j B u k


 





          Z .  (17) 

Definition.The model (10) is an exact in average representation of the model (1) if the equalities ( ) 0k nz 

( )k Z hold for any 
0x and 

ku ( )k Z . 

The following lemma directly follows from the equality (16). 

Lemma.The equalities ( ) 0k nz  ( )k Z  hold for any 
0x  and 

ku ( )k Z  if and only if the equalities 

1a b   hold. 

In what follows, it is assumed that the model (10) is an exact in average representation of the model (1). 

Due to this assumption, we get 
1

0

0

( ) ( ) ( ,0) ( ) ( , 1)      ( )
k

k k j j

j

y x k x k j B u k






          Z ,                                    (18) 

and 
1

0

lim ( ) lim ( ) lim ( , 1)
k

k k j j
k k k

j

y x k j B u


  


      .                                                    (19) 

Now we analyze the second order properties of the model (10). 

Let ( )k k ky y y  ( )k Z . From (10), (14) and (11), (15) we get, respectively, 

1     ( )k k k k k k ky A y G w k       Z ,                                                           (20) 
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where 

( 1) ( ) ( 1)      ( )k k k k k k kA x B u k        Z ,                                                   (21) 

and 
1 11

0

00 1

( ,0) 1 ( , 1)
k kk

k i j h j j

ji h j

y k x k j B u  
 

  

  
        
   

    

1 11

0

0 1 0

( , 1) 1 ( ,0) ( )     ( )
k kk

h j j i

j h j i

k j G w k x k 
 



   

   
          

  
   Z . (22) 

From (20) and (21) we get 

1

2 2 2( ) ( ) ( ) ( ) ( )      ( )
k k

T T T T T T

y k k y k k k k k k k k k k k k k kA A G Q G A x x A B u u B k    
          Z . 

Similarly, from (22) we get 

0

1 1 1
2

0 00

( ,0) ( ,0) ( ) ( , 1) ( , 1)
k

k k k
T T T T

y i x jr j j r r

j ri

k k k j B u u B k r 
  

 

 
             

 
  

1

0 0

0

( )( ( , 1) ( ) ( ,0) ( ,0) ( ) ( , 1))
k

T T T T T

j j j j j

j

k j B u x k k x u B k j




            

1 11
2 2

0 0

0 1 0

( , 1) ( , 1) ( 1) ( ,0) ( ) ( ) ( ,0)     ( )
k kk

T T T T

h j k j i

j h j i

k j G Q G k j k x x k k 
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

   

   
                

  
   Z ,  (23) 

where 
1 1

1 1

( 1)( 1)     ( , 1, , 1)
k k

jr j h r s

h j s r

j r k    
 

   

       , 

and 
1 1

1 0

( 1)( 1)     ( 1, , 1)
k k

j j h i

h j i

j k   
 

  

       . 

To analyze the asymptotic behavior of 
ky , it is assumed that ( ,0) kk c  ( )k Z  and 

1
2 2

0

k
k

i

i

c 






 
  
 
 ( )k Z for some positive constants c ,  ( 1)  and  ( )  .From (23) we get 

1 1 1

0

0 0 0

lim lim ( ) ( , 1) ( , 1) lim ( )( ( , 1) ( ) ( ,0)
k

k k k
T T T T

y jr j j r r j j j
k k k

j r j

k j B u u B k r k j B u x k 
  

  
  

                

11
2

0

0 1

( ,0) ( ) ( , 1)) lim ( , 1) ( , 1)
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From (19), Theorem 1 and (23) we get the following theorem. 

Theorem 3.Let ( ,0) kk c   and 
1

2 2

0

k
k

i

i

c 






 
  
 
  for all k Z , where c ( 0)c  ,  ( 1)   and 

( )   are some constants. Then the influence of the mean of the random initial condition 
0x  vanishes, when

k  . 

Besides, from (19) and (24) we get the following theorem. 

Theorem 4.Let for all k Z  hold the inequalities ( , ) k jk j c   ( 0,1, , )j k  , kG c , kQ c , 

kB c , ku c ,
1

2 2
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





 
  
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 , (2 )| ( ) | k j r

jr c      ( , 1, , 1)j r k  , (2 )| ( ) | k j

j c    

( 1, , 1)j k  , and 
1

2 2( )

1

k
k j

h

h j

c 


 

 

 
  
 
 ( 0,1, , 1)j k  , where c ( 0)c  ,  ( 1)   and  ( )   are 

some constants. Then lim ( )k
k

y


  and lim
ky

k
 are finite limits both. 

Example 2.Let us consider the 2 -dimensional model (10) under the assumptions of Example 1.From (11), 

(18), (19), (23) and (24) we get: 
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V. Correction of the model (1) in the unstable external environment 
It is assumed that the estimates of the returned or non-conforming inventory and of unforeseen changes 

in the deliveries of the inventory used in the model (10) are true, the planned standard behavior of the analyzed 

production system behavior must be designed for 
0k 0( 0)k  days, and the admissible threshold  ( 0)  for 

deviation of the analyzed production system behavior in the unstable external environment from its planed 

standard behavior is given.Since the random variable 
kz ( )k Z characterizes deviation of the analyzed 

production system behavior in the unstable environment from its planed standard behavior in the day k , then to 

ensure the consistency of the model (1) with the model (10) the following step-by-step adaptive approach can be 

used. 

Applying the Monte Carlo Simulation [16] to the models (1) and (10), some set of sequences

0

( ) ( )

1 , ,j j

kz z ( 1, , )j l  can be generated.If 
( )j

kz  for all 
01, ,k k  and 1, ,j l  , then the model (1) is 

consistent with the model (10). Therefore, no correction of the model (1) is needed. 

Suppose that there exists some integer 
1k 1 0(1 )k k  such that 

( )j

kz  for all 
11, ,k k  and 

1, ,j l  , but 
1

( )

1

j

kz   for some {1, , }j l  . Then the model (1) is consistent with the model (10) within the 

first 
1k days.But the model (1) must be corrected starting from the day 

1 1k  . 

The easiest way to correct the model (1) is to adjust the subsequence 
1 01, ,k ku u   so, that the inequality

( )j

kz  becomes true for all 1, ,j l  and
1 21, ,k k k   , where 

2k is some maximal integer such that 
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1 2 0k k k  . If these actions do not lead to the desired result, then the subsequences of the matrices 

1 01, ,k kA A  and 
1 01, ,k kB B  can be adjusted so, that the inequality 

( )j

kz  becomes true for all 1, ,j l  and

1 21, ,k k k   , where 
2k is some maximal integer such that 

1 2 0k k k  . 

Remark 5.The sequence of matrices 
kG ( )k Z cannot be corrected when planning the behavior of the 

analyzed production system, since this sequence is determined by the external environment. For this reason the 

same sequence of matrices 
kG ( )k Z is used in the models (1) and (10). 

If 
2 0k k , the described above procedure is performed for the integer 

2 1k   and so on, until the 

inequality 
( )j

kz  becomes true for all 
01, ,k k  and 1, ,j l  . 

When using the proposed procedure for correcting the model (1), at least the following two problems 

arise. 

The first problem relates to the complexity associated with the use of the entire set of sequences 

0

( ) ( )

1 , ,j j

kz z ( 1, , )j l  obtained via the Monte Carlo Simulation, since this set can be large enough.This 

complexity can be reduced as follows.Applying bounded reachability analysis [17, 18], we can determine some 

foreseeable subset of the most significant sequences in the entire set of sequences 
0

( ) ( )

1 , ,j j

kz z ( 1, , )j l  . 

Thereafter, the above proposed procedure is applied to this subset of sequences. 

The second problem relates to minimizing the costs associated with adjusting the subsequences of 

ordered delivery and the subsequences of matrices.This is a complex optimization problem, since any adjusting 

the subsequences of the matrices 
kA and 

kB results in changing the structure of the analyzed production 

system.The exact solution to this problem can be obtained using the Branch-and-Bound Method.If it is 

infeasible to compute the exact solution for problem of minimizing the costs associated with adjusting the 

subsequences of ordered delivery and the subsequences of matrices, then the Branch-and-Bound Method can be 

applied for computing some approximate solution of this problem. 

 

VI. Conclusion 

The main aim of the given paper was to define and investigate some analytical linear discrete-time 

stochastic model intended for simulation the behavior of the analyzed production system in the unstable external 

environment.An essential feature of this model is that it explicitly presentsdestabilizing effects on both the 

inventory and the external supplies of the analyzed production system.Theoretical analysis of the proposed 

model was carried out by investigation its average and the second order behaviors, as well as the asymptotic of 

these behaviors. 

One of the most important problems for practice is adaptive correction of the planned standard 

behavior of the analyzed production system, when this system is functioning in the unstable external 

environment.To solve this problem, the step-by-step adaptive procedure is proposed.Some methods for reducing 

complexity when applying this procedure, as well as some methodsof minimization the costs for the analyzed 

production system related to using the results of this procedure are proposed.Detailed algorithmic analysis and 

software implementation of the proposed approach is one of the possible areas for future research. 
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