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I. Introduction 
It is already known that Goldbach’s conjecture in number theory is: Every even integer greater than 2 

can be expressed as the sum of two primes. If n be an integer, where n>1; then 2n is an even integer, where 

2n>2. Thus the mathematical formulation of above conjecture is 2n=p1+p2; where p1 & p2 are two prime 

numbers. Again from the other way the conjecture states that: Every even integer greater than 4 can be 

expressed as the sum of two odd primes. These even numbers (>4) are called Goldbach’s numbers. 

 

II. Notes of Proof 
Bertrand’s postulate (Chebyshev’s theorem) states that: 

(i) There exists at least a prime number (p) between n and 2n for any integer n>1. Such that n<p<2n. Let it 

be considered that n1 and n2 are two integers; where n1 & n2 both are greater than 1. Now 2n1 & 2n2 are the twice 

of n1 & n2 respectively. Suppose p1 be at least a prime in between n1 & 2n1 and p2 be at least a prime in between 

n2 & 2n2.  Hence from the above postulate it is written that n1<p1<2n1 and n2<p2<2n2. So from these relations it 

can be determined that n1+n2<p1+p2<2n1+2n2 or n1+n2<p1+p2<2(n1+n2). As n1>1 & n2>1, so if n1=u=constant i.e. 

any fixed value of n1=2, 3, 4, … (any integer greater than 1) & n2=m, where m=2, 3, 4, … (any integer greater 

than 1); then u+m< p1+p2<2(u+m) or m+u< p1+p2<2(m+u). After addition of -u, it is obtained that m+u-u< 

p1+p2-u<2(m+u)-u or m< p1+p2-u<2m+u. Now the above relation shows that p1+p2-u<2m+u, so there is at least 

the possibility either p1+p2-u+r=2m+u or p1+p2-u=2m+u-r; where r be an integer>0. Hence p1+p2=2(m+u)-r. As 

p1+p2-u<2m+u, so r=u+x; where x=0, 1, 2, 3, … (any integer). Again every even number (2n) is the twice of a 

natural number (n). Thus 2(m+u) is even for any value of m and u. Now to consider Goldbach’s number for 

even numbers except 4, p1 & p2 both are always odd (because of all primes are odd in natural numbers series 

except 2), as a result p1+p2 is always even as (odd+odd)=even. That means r is always even as (even-

even)=even. Hence r is even when x=0, 2, 4, 6, … (any even integer) if u is an even & x=1, 3, 5, 7, … (any odd 

integer) if u is an odd because of (even+even)=even & (odd+odd)=even.  Suppose u=2, x=0 & m=2, 3, 4, …; 

then p1+p2=6, 8, 10, … etc (all even integers>4). In this way by choosing the proper values of m, u & r from the 

above bounding condition it can be determined that every even integer greater than 4 can be expressed as the 

sum of at least two primes. This is nothing but a specific situation of Goldbach’s conjecture. 

However the above proof shows that p1+p2≥6 (according to consideration the lowest values of m, u & x are 2, 2 

& 0 respectively). Thus 2(m+u)-r≥6. Hence 2(m+u)-(u+x)≥6 or 2m+u-x≥6 or 2m+u-6≥x. i.e. x≤(2m+u)-6.    

(ii) There exists at least one prime number (p) for integer n>3 with n<p<2n-2. Let it be considered that n1 

and n2 are two integers; where n1 & n2 both are greater than 3 and p1 & p2 are the at least prime numbers with 

n1<p1<2n1-2 and n2<p2<2n2-2 respectively . In the above way it can be drawn that n1+n2<p1+p2<2(n1+n2)-4. Here 

as n1>3 & n2>3, so if n1=u=constant i.e. any fixed value of n1=4, 5, 6, … (any integer greater than 3) & n2=m, 

where m= 4, 5, 6, …(any integer greater than 3); then u+m< p1+p2<2(u+m)-4 or m+u< p1+p2<2(m+u)-4. After 

addition of -u, it is obtained that m< p1+p2-u<2m+u-4. Now the above relation shows that p1+p2-u<2m+u-4, so 

there is at least the possibility either p1+p2-u+r=2m+u-4 or p1+p2-u=2m+u-4-r; where r be an integer>0. Hence 

p1+p2=2(m+u)-4-r. As p1+p2-u<2m+u-4, so r=u+x; where x=0, 1, 2, 3, … (any integer). Again every even 

number (2n) is the twice of a natural number (n). Thus 2(m+u) is even for any value of m and u.  Now to 

consider Goldbach’s number for even numbers except 4,  p1 & p2 both are always odd (because of all primes are 

odd in natural numbers series except 2), as a result p1+p2 is always even as (odd+odd)=even. That means r is 

always even as (even-even)=even and 4 is even number. Hence r is even when x=0, 2, 4, 6, … (any even 

integer) if u is an even & x=1, 3, 5, 7, … (any odd integer) if u is an odd because of( even+even)=even & 
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(odd+odd)=even. Suppose u=4, x=0 & m=4, 5, 6, …; then p1+p2=8, 10, 12, … etc (all even integers>6). In this 

way by choosing the proper values of m, u & r from the above bounding condition it can be determined that 

every even integer greater than 6 can be expressed as the sum of at least two primes. Here it is also nothing but a 

specific situation of Goldbach’s conjecture. 

However the above proof shows that p1+p2≥8 (according to consideration the lowest values of m, u & x are 4, 4 

& 0 respectively). Thus 2(m+u)-4-r≥8. Hence 2(m+u)-4-(u+x)≥8 or 2m+u-4-x≥8 or 2m+u-12≥x. i.e. x≤(2m+u)-

12.    

  

III. Conclusion 
Thus Goldbach’s conjecture can be proved from Bertrand’s postulate or Chebyshev’s theorem with 

applying a special bounding condition for even integers n>4 (Goldbach’s numbers). However the proof cannot 

be applicable for even number 4. Because 4=2+2; where 2 is only the even prime.   
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