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Abstract: The extended f-divergence between two functions of probability distributions is defined for a given
convex function fand an increasing function g. A universal portfolio is generated from the zero gradient set of
an objective function involving the estimated daily rate of wealth increase and the extended f-divergence. For
specific convex functions f and increasing functions g the form of the universal portfolio is derived. There exists
a convex function such that the Bregman universal portfolio generated by this convex function is similar to the
universal portfolio generated by the extended f-divergence.
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l. INTRODUCTION

Universal portfolios generated by different methods are of recent interest. One of early methods of
generating a universal portfolio is that due to Cover and Ordentlich [1] using the moments of the Dirichlet
distribution. Subsequently, Helmbold et al. [2] proposed a method of generating a time-cum-memory efficient
method of generating a universal portfolio using an objective function containing the Kullback-Leibler
divergence of two portfolio vectors. This method is extended by Tan and Kuang [4] to cover an objective
function containing the for Bregman divergence of two portfolio vectors.

A modification of the Cover-Ordentlich universal portfolio using only a finite number of recent price-
relatives is time-cum-memory efficient [3]. Matrix-generated divergences (for example, the Mahalanobis
squared-divergence) can also be applied to generate a universal portfolio [7]. Partially convex functions have
been used to generate universal portfolios in [5]. The method of using inequality ratios to generate universal
portfolios is discussed in [6]. In this paper, the Uchida and Shioya [8] extended f-divergence between two
functions of probability distributions is proposed to generate a universal portfolio.

1. SOME PRELIMINARIES
The notation on portfolio vectors, price-relative vectors and wealth functions is similar to that in [4]. In
particular, b, is the investment portfolio on trading day nand x,, is the corresponding price-relative vector.
Let f(t) be a convex function on 0 < t < ocosatisfying f(1) = Oand is strictly convex at t = 1(i.e.
(1) # 0). Let g(t) be a strictly increasing function of t for 0 <t < o and p = (p;) and q = (g;)be two
probability functions. The f-divergence between p and q with respect to g(t), denoted as Dy , (p||q)is defined
as:
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0 < a < o. For the given f(.) and g(.), from (1),
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DOI: 10.9790/5728-1603022528 www.iosrjournals.org 25 | Page



Universal Portfolios Generated by the Extended f-Divergence

Dy @ll@) = ig(qj)f @EZ@)

g f2fote) (g@,))lh i [g(p,-)_l]

& @lg(q;) \9(q) a|g(q;)
O
& o elgi ™ \g 1+a|\g

m
1 1
D R B AR ]

= i {%p]— [pf —af] - - i - [p1+ q]1+a]}‘ )

where 0 < a < .
Forp=b,,,andq = b,,

m
1 1
D¢ 4 (b, 1111b,) = Z {E bn+1,j [br‘f+1,j - b,‘f}] 1+%a [b‘l}.ii(] - brlz;ra]}
j=1

is known as the discrete density power divergence.
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1. MAIN RESULTS
With reference to the extended f-divergence (3), the following result is obtained.

1
Proposition 3.1:Let the convex function f,(t) = é[t - tm] - ﬁ [t —1] and the increasing function
g(t) = t'* be given for & > 0. For the objective function
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where Dy ; (b, 41]|by,) is given by (3), § > 0 and 4 is the Lagrange multiplier, the universal portfolio generated
is given by

1
b1, = {0“7 +by; + af[ - 1]}[1
’ b} x,
fori =1,2,---,m where 7 is a real parameter.
Proof: The objective function (4) can be written as:
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fori=1,2,---,m
Multiplying (5) by b,,; and sum over i to get
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The solution to (8) is of the form

Any y; of the form (9) satisfies Eqn (8). Multiply (9) by b,; and sum over i to get
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Replacing 7 in (9) by n in (10),

which is Egn (8).
The general solutionto (8) isy; = =by,;; =7 +- b +¢ [bf’” - 1] fori =1,2,--,mand any real 1.
(11)

b1, = {0”7 + by + ag [b;; - 1]}0,' fori=1,2,---,m
The universal portfolio generated by the extended f-divergence of two probability distribution where
1
f.(t) = é[t — t1+_a] - ﬁ[t —1] and g,(t) = t'** for 0 < a is given (11). The extended f-divergence

Dy 4(Bns1l1by) is given (3).
Note:
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Remark. The convex function £, (t) in Proposition 3.1 can be written as:
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Proposition 3.2. The universal portfolio generated by Dy, . (b,1||b,,) With respect to the convex function

1 -
fao1(®) = alj[—ﬁ + ét + “71] and g(t) =t for « = 1 is similar to the universal portfolio generated by the

Bregman divergence B/« (b, ||b,) with respect to the convex function £, (t) = t* — at for a > 1.
Proof. The Bregman divergence with respect to the convex function f is given by
m
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Differentiating (13) and (14),
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The derivative (15) and (16) are the same, except for the coeff|C|ents. Hence the universal portfolios generated
by (15) and (16) are similar.
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