Almost b[#] continuous mappings in intuitionistic fuzzy topological spaces

S. Dhivya¹ and D. Jayanthi²

Department of Mathematics, Avinashilingam (Deemed to be) university, India.

Abstract: In this chapter we have introduced two types of $b^{\#}$ continuous mappings namely intuitionistic fuzzy almost $b^{\#}$ continuous mappings and intuitionistic fuzzy almost contra $b^{\#}$ continuous mappings. Also we have provided some interesting results based on these continuous mappings.

Keywords: Intuitionistic fuzzy sets, intuitionistic fuzzy topology, intuitionistic fuzzy almost $b^{\#}$ continuous mapping.

Date of Submission: 28-07-2019 Date of acceptance: 13-08-2019

I. Introduction

Intuitionistic fuzzy set is introduced by Atanassov in 1986. Using the notion of intuitionistic fuzzy sets, Coker [1997] has constructed the basic concepts of intuitionistic fuzzy topological spaces. The concept of b[#] closed sets and b[#] continuous mappings in intuitionistic fuzzy topological spaces are introduced by Gomathi and Jayanthi (2018). In this chapter we have introduced two types of b[#] continuous mappings namely intuitionistic fuzzy almost b[#] continuous mappings and intuitionistic fuzzy almost contra b[#] continuous mappings. Also we have provided some interesting results based on these continuous mappings.

II. Preliminaries

Definition 2.1: [Atanassov 1986] An intuitionistic fuzzy set(IFS) A is an object having the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle: x \in X \}$, where the functions $\mu_A : X \to [0, 1]$ and $\nu_A : X \to [0, 1]$ denote the degree of membership and the degree of non-membership of each element $x \in X$ to the set A respectively , and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$. Denote by IFS(X) , the set of all intuitionistic fuzzy sets in X. An IFS of A in X is simply denoted by $A = \langle x, \mu_A, \nu_A \rangle$ instead of denoting $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle: x \in X \}$.

Definition 2.2: [Atanassov 1986] Let A and B be two IFSs of the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \}$ and $B = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \}$. Then the following properties hold:

- i. $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$ for all $x \in X$,
- ii. A=B if and only if $A \subseteq B$ and $A \supseteq B$,
- iii. $A^c = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in X\},$
- iv. A \cup B = { $\langle x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) \rangle : x \in X$ },
- v. $A \cap B = \{\langle x, \mu_A(x) \wedge \mu_B(x), \nu_A(x) \vee \nu_B(x) \rangle : x \in X \}.$

The IFSs 0 = (x, 0, 1) and 1 = (x, 1, 0) are respectively the empty set and whole set of X.

Definition 2.3: [Coker, 1997] An intuitionistic fuzzy topology (IFT) on X is a family τ of IFSs in X satisfying the following axioms:

- i. $0_{\sim}, 1_{\sim} \in \tau$
- ii. $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$
- iii. $\bigcup G_i \in \tau$ for any $\{G_i : i \in J\} \subseteq \tau$.

In this case the pair (X, τ) is called the intuitionistic fuzzy topological space (IFTS) and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS) in X. Then the complement A^c of an IFOS A in an IFTS (X, τ) is called an intuitionistic fuzzy closed set (IFCS) in X.

Definition 2.4: [Coker, 1997] Let (X, τ) be an IFTS and $A = \langle x, \mu_A, \nu_A \rangle$ be an IFS in X. Then the intuitionistic fuzzy interior and intuitionistic fuzzy closure are defined by

 $int(A) = \bigcup \{G/G \text{ is an IFOS in } X \text{ and } G \subseteq A\},\$

 $cl(A) = \bigcap \{K/K \text{ is an IFCS in } X \text{ and } A \subseteq K\}.$

Definition 2.5: [Gurcay, Coker and Hayder, 1997] An IFS $A = \langle x, \mu_A, \nu_A \rangle$ in an IFTS (X, τ) is said to be an

- i) intuitionistic fuzzy semi closed set if $int(cl(A)) \subseteq A$
- ii) intuitionistic fuzzy pre closed set if $cl(int(A)) \subseteq A$

- iii) intuitionistic fuzzy regular closed set if cl(int(A)) = A
- iv) intuitionistic fuzzy α closed set if $cl(int(cl(A))) \subseteq A$
- V) intuitionistic fuzzy β closed set if int(cl(int(A))) \subseteq A

Definition 2.6: [Hanafy, 2009] An IFS A= $\langle x, \mu_A, \nu_A \rangle$ in an IFTS (X, τ) is said to be an intuitionistic fuzzy γ closed set if $int(cl(A)) \cap cl(int(A)) \subseteq A$.

Definition 2.7: [Gomathi and Jayanthi, 2018] An IFS $A = \langle x, \mu_A, \nu_A \rangle$ in an IFTS (X, τ) is said to be an intuitionistic fuzzy $b^{\#}$ closed set (IFb $^{\#}$ CS) if int(cl(A)) \cap cl(int(A)) = A.

Definition 2.8: [Coker, 1997] Let X and Y be two non empty sets and f: $X \to Y$ be a mapping. If $B = \{\langle y, \mu_B(y), \nu_B(y) \mid y \in Y \rangle \}$ is an IFS in Y, then the preimage of B under f is denoted and defined by $f^1(B) = \{\langle x, f^1(\mu_B)(x), f^1(\nu_B)(x) \mid x \in X \rangle \}$, Where $f^1(\mu_B)(x) = \mu_B(f(x))$ for every $x \in X$.

Definition 2.9: [Gurcay, Coker and Hayder, 1997] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f said to be an intuitionistic fuzzy continuous mapping if $f^{-1}(V)$ is an IFCS in (X, τ) for every IFCS V of (Y, σ) .

Definition 2.10: [Gomathi and Jayanthi, 2018] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be an

- i) intuitionistic fuzzy $b^{\#}$ continuous mapping if $f^{-1}(V)$ is an IFb $^{\#}$ CS in (X, τ) for every IFCS V of (Y, σ) .
- ii) intuitionistic fuzzy contra $b^{\#}$ continuous mapping if $f^{-1}(V)$ is an IFb $^{\#}$ CS in (X, τ) for every IFOS V of (Y, σ) .

Definition 2.11: [Coker and Demirci, 1995] Intuitionistic fuzzy point (IFP), written as $p_{(\alpha, \beta)}$, is defined to be an IFS of X given by $p_{(\alpha, \beta)}(x) = \begin{cases} (\alpha, \beta) & \text{if } x = p \\ (0, 1) & \text{otherwise} \end{cases}$. An IFP $p_{(\alpha, \beta)}$ is said to belong to a set A if $\alpha \le \mu_A$ and $\beta \ge \nu_A$.

Definition 2.12: [Thakur and Rekha Chaturvedi, 2008] Two IFSs A and B are said to be q-coincident (A $_q$ B) if and only if there exist an element $x \in X$ such that $\mu_A(x) > \nu_B(x)$ or $\nu_A(x) < \mu_B(x)$.

Definition 2.13: [Seok Jong Lee and Eun Pyo Lee, 2000] Let $p_{(\alpha, \beta)}$ be an IFP in (X, τ) . An IFS A of X is called an intuitionistic fuzzy neighbourhood of $p_{(\alpha, \beta)}$ if there exist an IFOS B in X such that $p_{(\alpha, \beta)} \in B \subseteq A$.

III. Almost b[#] continuous mappings in intuitionistic fuzzy topological spaces

In this chapter we have introduced and investigated intuitionistic fuzzy almost $b^{\#}$ continuous mappings, intuitionistic fuzzy almost contra $b^{\#}$ continuous mappings, intuitionistic fuzzy $T_{cb^{\#}}$ space and intuitionistic fuzzy $T_{b^{\#}}$ space. We have provided many interesting results using these spaces.

Definition 3.1: If every IFb[#]CS is an IFCS in (X, τ) , then the space is called as an intuitionistic fuzzy $T_{cb^{\#}}$ space (IFT_{cb}[#] space).

Example 3.2: Let X={a, b} and then $\tau = \{0_{\sim}, G_1, G_2 \ 1_{\sim}\}$ is an IFT on X, where, $G_1 = \langle x, (0.2_a, 0.3_b), (0.7_a, 0.6_b) \rangle$ and $G_2 = \langle x, (0.7_a, 0.6_b), (0.2_a, 0.3_b) \rangle$. Then (X, τ) is an IFT $_{cb}^{\#}$ space.

Definition 3.3: If every IFCS is an IFb[#]CS in (X, τ) , then the space is called as an intuitionistic fuzzy $T_{b^{\#}}$ space (IFT $_{b^{\#}}$ space).

Example 3.4: Let $X = \{a, b\}$ and then $\tau = \{0_{\sim}, G_1, G_2 1_{\sim}\}$ is an IFT on X, where, $G_1 = \langle x, (0.2_{a_1}, 0.3_{b}), (0.7_{a_2}, 0.6_{b}) \rangle$ and $G_2 = \langle x, (0.7_{a_1}, 0.6_{b}), (0.2_{a_2}, 0.3_{b}) \rangle$. Then (X, τ) is an IFT $_{b^\#}$ space.

Definition 3.5: A mapping $f: (X, \tau) \to (Y, \sigma)$ is called an intuitionistic fuzzy almost $b^{\#}$ continuous mapping if $f^{-1}(V)$ is an IFb $^{\#}$ CS in (X, τ) for every IFRCS V of (Y, σ) .

Example 3.6: Let $X = \{a, b\}$, $Y = \{u, v\}$. Then $\tau = \{0_{\sim}, G_1, G_2, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, G_3, G_4, 1_{\sim}\}$ are IFT on X and Y respectively, where, $G_1 = \langle x, (0.2_a, 0.3_b), (0.7_a, 0.6_b) \rangle$, $G_2 = \langle x, (0.7_a, 0.6_b), (0.2_a, 0.3_b) \rangle$, $G_3 = \langle y, (0.7_u, 0.6_v), (0.2_u, 0.3_v) \rangle$ and $G_4 = \langle y, (0.2_u, 0.3_v), (0.7_u, 0.6_v) \rangle$. Define a mapping $f: (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an intuitionistic fuzzy $b^{\#}$ continuous mapping.

Proposition 3.7: A mapping $f:(X, \tau) \to (Y, \sigma)$ is an intuitionistic fuzzy almost $b^{\#}$ continuous mapping if and only if the inverse image of each IFROS in Y is an IFb $^{\#}$ OS in X.

Proof: Straight forward.

Proposition 3.8: If $f: (X, \tau) \to (Y, \sigma)$ is an intuitionistic fuzzy almost $b^{\#}$ continuous mapping, then for each IFP $p_{(\alpha, \beta)}$ of X and each $A \in \sigma$ such that $f(p_{(\alpha, \beta)}) \in A$, there exists an IFb $^{\#}$ OS B of X such that $p_{(\alpha, \beta)} \in B$ and $f(B) \subseteq A$.

Proof: Let $p_{(\alpha, \beta)}$ be an IFP of X and $A \in \sigma$ such that $f(p_{(\alpha, \beta)}) \in A$, then $p_{(\alpha, \beta)} \in f^{-1}(A)$. Put $B = f^{-1}(A)$. Then by hypothesis, B is an IFb[#]OS in X such that $p_{(\alpha, \beta)} \in B$ and $f(B) = f(f^{-1}(A)) \subseteq A$.

Proposition 3.9: If $f: (X, \tau) \to (Y, \sigma)$ is an intuitionistic fuzzy almost $b^{\#}$ continuous mapping then for each IFP $p_{(\alpha, \beta)}$ of X and each $A \in \sigma$ such that $f(p_{(\alpha, \beta)})_q A$, there exists an IFb $^{\#}$ OS B of X such that $(p_{(\alpha, \beta)})_q B$ and $f(B) \subset A$.

Proof: Let $p_{(\alpha, \beta)}$ be an IFP of X and $A \in \sigma$ such that $f(p_{(\alpha, \beta)})_q A$. Then $p_{(\alpha, \beta)q} f^{-1}(A)$ put $B = f^{-1}(A)$. Then by hypothesis, B is an IFb[#]OS in X such that $p_{(\alpha, \beta)q} B$ and $f(B) = f(f^{-1}(A)) \subseteq A$.

Proposition 3.10: Let $f: (X, \tau) \to (Y, \sigma)$ be an intuitionistic fuzzy almost $b^{\#}$ continuous mapping, then $f^{-1}(\operatorname{int}(\operatorname{cl}(B))) \subseteq \operatorname{cl}(\operatorname{int}(f^{-1}(\operatorname{cl}(B)))) \cup \operatorname{int}(\operatorname{cl}((f^{-1}(\operatorname{cl}(B)))))$ for every IFS B in Y.

Proof: Let B be any IFS in Y. Then int(cl(B)) is an IFROS in Y. By hypothesis $f^{-1}(int(cl(B)))$ is an IFb[#]OS in X. Since every IFb[#]OS is an IFbOS, $f^{-1}(int(cl(B)))$ is an IFb OS in X. Therefore $f^{-1}(int(cl(B))) \subseteq cl(int(f^{-1}(int(cl(B))))) \subseteq cl(int(f^{-1}(cl(B)))) \cup int(cl(f^{-1}(int(cl(B))))$.

Proposition 3.11: Let $f: (X, \tau) \to (Y, \sigma)$ be an intuitionistic fuzzy almost $b^{\#}$ continuous mapping, then $cl(int(f^{-1}(int(B)))) \cap int(cl(f^{-1}(int(B)))) \subseteq f^{-1}(cl(int(B)))$ for each IFRCS B of Y.

Proof: Let B be any IFS in Y. Then cl(int(B)) is an IFRCS in Y. By hypothesis $f^{-1}(cl(int(B)))$ is an IFb[#]CS in X. Since every IFb[#] CS is an IFbCS, $f^{-1}(cl(int(B)))$ is an IFbCS in X. Therefore $cl(int(f^{-1}(int(B))))\cap int(cl(f^{-1}(int(B))))) \subseteq cl(int(f^{-1}(cl(int(B))))) \cap int(cl(f^{-1}(cl(int(B))))) \subseteq f^{-1}(cl(int(B)))$.

Proposition 3.12: Let $f: (X, \tau) \to (Y, \sigma)$ be an mapping, where X is an IFT $_{cb^{\#}}$ space. If f is an intuitionistic fuzzy almost $b^{\#}$ continuous mapping, then $(\operatorname{int}(\operatorname{cl}(f^{-1}(B))) \cap \operatorname{cl}(\operatorname{int}(f^{-1}(B))) \subseteq f^{-1}(\operatorname{cl}(B))$ for every IFRCS B in Y.

Proof: Let $B \subseteq Y$ be an IFRCS. By hypothesis, $f^1(B)$ is an IFb[#]CS in X. Since every IFb[#]CS is an IFCS in X as X is an IFT $_{cb^\#}$ space, $f^1(B)$ is an IFCS in X. Therefore $cl(f^1(B) = f^1(B)$. Now $(int(cl(f^1(B))) \cap cl(int(f^1(B))) \subseteq f^1(B) \cup (int(cl(f^1(B))) \cap cl(int(f^1(B))) \subseteq f^1(cl(B))$. Hence $(int(cl(f^1(B))) \cap cl(int(f^1(B))) \subseteq f^1(cl(B))$.

Proposition 3.13: Let $f: (X, \tau) \to (Y, \sigma)$ be an intuitionistic fuzzy almost $b^{\#}$ continuous mapping, where X is an IFT $_{cb^{\#}}$ space, then for each IFP $p_{(\alpha, \beta)}$ in X and each IFROS A in Y such that $f(p_{(\alpha, \beta)}) \in A$, $int(f^{-1}(cl(A)))$ is an intuitionistic fuzzy neighbourhood of $p_{(\alpha, \beta)}$ in X.

Proof: Let $p_{(\alpha, \beta)} \in X$ and let A be an IFROS in Y such that $f(p_{(\alpha, \beta)}) \in A$, $p_{(\alpha, \beta)} \in f^1(A)$. By hypothesis $f^1(A)$ is an IFb[#] OS in X. Since X is an IFT $_{cb^{\#}}$ space, $f^1(A)$ is an IFOS in X. Now $p_{(\alpha, \beta)} \in f^1(A) = \inf(f^{-1}(A))$ $\subseteq \inf(f^1(cl(A)))$. Hence $\inf^{-1}(cl(A))$ is an intuitionistic fuzzy neighbourhood of $p_{(\alpha, \beta)}$ in X.

Proposition 3.14: Let $f: (X, \tau) \to (Y, \sigma)$ be an intuitionistic fuzzy almost $b^{\#}$ continuous mapping, where X is an IFT $_{ab^{\#}}$ space. Then $cl(f^{1}(A)) \subseteq f^{1}(cl(A))$ for every IFSOS A in Y.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be an intuitionistic fuzzy almost $b^{\#}$ continuous mapping and let A be an IFSOS in Y. Then $A \subseteq cl(int(A))$. Now, $cl(A) \subseteq cl(cl(int(A))) \subseteq cl(int(cl(A))) \subseteq cl(cl(A)) \subseteq cl(A)$. Therefore cl(A) = cl(int(cl(A))). This implies cl(A) is an IFRCS in Y. By hypothesis, $f^1(cl(A))$ is an IFb $^{\#}$ CS in X. Since every IFb $^{\#}$ CS is an IFCS in X as X is an IFT $_{cb^{\#}}$ space, $f^1(cl(A))$ is an IFCS in X. Therefore $cl(f^1(cl(A))) = f^1(cl(A))$. Now, $cl(f^1(A)) \subseteq cl(f^1(cl(A))) = f^1(cl(A))$. Thus $cl(f^1(A)) \subseteq f^1(cl(A))$.

Proposition 3.15: Let $f: (X, \tau) \to (Y, \sigma)$ be an intuitionistic fuzzy almost $b^{\#}$ continuous mapping, where X is an IFT $_{cb^{\#}}$ space. Then $f^{-1}(A) \subseteq int(f^{-1}(int(cl(A))))$ for every IFPOS A in Y.

Proof: Let $f:(X,\tau)\to (Y,\sigma)$ be an intuitionistic fuzzy almost $b^\#$ continuous mapping and let A be an IFPOS in Y. Then $A\subseteq \operatorname{int}(\operatorname{cl}(A))$. Since $\operatorname{int}(\operatorname{cl}(A))$ is an IFROS in Y, by hypothesis, $f^1(\operatorname{int}(\operatorname{cl}(A)))$ is an IFb $^\#$ OS in X. Since every IFb $^\#$ OS is an IFOS in X as X is an IFT $_{cb^\#}$ space, $f^1(\operatorname{int}(\operatorname{cl}(A)))$ is an IFOS in X. Therefore $f^1(A)\subseteq f^1(\operatorname{int}(\operatorname{cl}(A)))=\operatorname{int}(f^1(\operatorname{int}(\operatorname{cl}(A))))$.

Proposition 3.16: Let $f: (X, \tau) \to (Y, \sigma)$ be an intuitionistic fuzzy almost $b^{\#}$ continuous mapping then $f^{-1}(int(B)) \subseteq int(f^{-1}(B))$ for every IFS B in Y where X is an IFT $_{\sigma b^{\#}}$ space.

Proof: Let f be an intuitionistic fuzzy almost $b^{\#}$ continuous mapping. Let B be an IFROS in Y. By hypothesis $f^{-1}(B)$ is an IFb $^{\#}$ OS in X. Since every IFb $^{\#}$ OS is an IFOS in X as X is an IFT $_{cb^{\#}}$ space, $f^{-1}(B)$ is an IFOS in X. Therefore $f^{-1}(int(B)) \subseteq f^{-1}(B) = int(f^{-1}(B))$.

Proposition 3.17: Let $f: (X, \tau) \to (Y, \sigma)$ be a mapping where X is an IFT $_{b^\#}$ space. If $f^{-1}(\text{int}(B)) \subseteq \text{int}(f^{-1}(B))$ for every IFS B in Y, then f is an intuitionistic fuzzy almost $b^\#$ continuous mapping.

Proof: Let B be an IFROS. By hypothesis, $f^1(\text{int}(B)) \subseteq \text{int}(f^1(B))$. Since B is an IFROS, it is an IFOS in Y. Therefore int(B) = B. Hence $f^1(B) = f^1(\text{int}(B)) \subseteq \text{int}(f^1(B)) \subseteq f^1(B)$. This implies $f^1(B)$ is an IFOS in X and

hence $f^1(B)$ is an IFb[#]OS in X as X is an IFT b^* space. Thus f is an intuitionistic fuzzy almost b^* continuous mapping.

Proposition 3.18: Let $f: (X, \tau) \to (Y, \sigma)$ be a mapping where X is an IFT $_{b^{\#}}$ space. If $cl(f^{1}(B)) \subseteq (f^{1}(cl(B)))$ for every IFS B in Y, then f is an intuitionistic fuzzy almost $b^{\#}$ continuous mapping.

Proof: Let B be an IFRCS. By hypothesis, $cl(f^1(B)) \subseteq f^1(cl(B))$. Since B is an IFRCS, it is an IFCS in Y. Therefore cl(B) = B. Hence $f^1(B) = f^1(cl(B)) \supseteq cl(f^1(B)) \supseteq f^1(B)$. This implies $f^1(B)$ is an IFCS in X and hence $f^1(B)$ is an IFb CS in X as X is an IFT space. Thus f is an intuitionistic fuzzy almost $b^\#$ continuous mapping.

Definition 3.19: A mapping f: $(X, \tau) \to (Y, \sigma)$ is called an intuitionistic fuzzy almost contra $b^{\#}$ continuous mapping if $f^{-1}(V)$ is an IFb $^{\#}$ CS in (X, τ) for every IFROS V of (Y, σ) .

Example 3.20: Let $X = \{a, b\}$, $Y = \{u, v\}$. Then $\tau = \{0_{-}, G_1, G_2 1_{-}\}$ and $\sigma = \{0_{-}, G_3, G_4 1_{-}\}$ are IFTs on X and Y respectively, where, $G_1 = \langle x, (0.7_a, 0.6_b), (0.2_a, 0.3_b) \rangle$, $G_2 = \langle x, (0.2_a, 0.3_b), (0.7_a, 0.6_b) \rangle$, $G_3 = \langle y, (0.7_u, 0.6_v), (0.2_u, 0.3_v) \rangle$ and $G_4 = \langle y, (0.2_u, 0.3_v), (0.7_u, 0.6_v) \rangle$. Define a mapping $f: (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an intuitionistic fuzzy almost contra $b^{\#}$ continuous mapping.

Proposition 3.21: Let $f: (X, \tau) \to (Y, \sigma)$ be an intuitionistic fuzzy almost contra $b^{\#}$ continuous mapping. Then for every IFRCS A in Y and for every IFP $p_{(\alpha, \beta)} \in X$, if $f(p_{(\alpha, \beta)})_q$ A then $p_{(\alpha, \beta)}$ bint($f^{-1}(A)$).

Proof: Let f be an intuitionistic fuzzy almost contra $b^{\#}$ continuous mapping. Let $A \subseteq Y$ be an IFRCS and let $p_{(\alpha, \beta)} \in X$. Also let $f(p_{(\alpha, \beta)})_q A$, then $p_{(\alpha, \beta)_q} f^1(A)$. By hypothesis, $f^1(A)$ is an IFb $^{\#}$ OS in X. Since every IFb $^{\#}$ OS is an IFbOS, $f^{-1}(A)$ is an IFbOS in X. Hence bint($f^1(A)$) = $f^1(A)$ and $p_{(\alpha, \beta)_q}$ bint($f^1(A)$).

Proposition 3.22: If $f: (X, \tau) \to (Y, \sigma)$ is an intuitionistic fuzzy almost contra $b^{\#}$ continuous mapping $f^{-1}(bcl(int(B))) \subseteq bint(f^{-1}(cl(int(B))))$ for every IFS B in Y.

Proof: Let $B \subseteq Y$ be an IFS. Then cl(int(B)) is an IFRCS in Y. By hypothesis, $f^1(cl(int(B)))$ is an IFb[#]OS in X. Since every IFb[#]OS is an IFbOS, $f^1(cl(int(B)))$ is an IFb OS in X. Therefore $f^1(bcl(int(B))) \subseteq f^1(cl(int(B))) = bint(f^1(cl(int(B)))$.

Proposition 3.23: If $f:(X, \tau) \to (Y, \sigma)$ be an intuitionistic fuzzy almost contra $b^{\#}$ continuous mapping, then for each IFP $p_{(\alpha, \beta)} \in X$ and for each IFRCS B containing $f(p_{(\alpha, \beta)})$, there exists an IFbOS $A \subseteq X$ and $p_{(\alpha, \beta)} \in A$ such that $A \subseteq f^{-1}(B)$.

Proof: Let B be an IFRCS in Y. Let $p_{(\alpha, \beta)}$ be an IFP in X such that $f(p_{(\alpha, \beta)}) \in B$. Then $p_{(\alpha, \beta)} \in f^1(f(p_{(\alpha, \beta)})) \in f^1(g(g_{(\alpha, \beta)})) \in f^1(g(g_{(\alpha, \beta)})) \in f^1(g(g_{(\alpha, \beta)})) = f^1(g(g_{(\alpha, \beta)})) \subseteq f^1(g(g_{(\alpha, \beta)}) \subseteq f^1(g(g_{(\alpha, \beta)})) \subseteq f^1(g(g_{(\alpha, \beta)})) \subseteq f^1(g(g_{(\alpha, \beta)}) \subseteq f^1(g(g_{(\alpha, \beta)})) \subseteq f^1(g_{(\alpha, \beta)})$

Proposition 3.24: Let $f:(X, \tau) \to (Y, \sigma)$ be an intuitionistic fuzzy almost contra $b^{\#}$ continuous mapping, then $f^{-1}(\operatorname{cl}(\operatorname{int}(B))) \supseteq \operatorname{cl}(\operatorname{int}(f^{-1}(\operatorname{int}(B)))) \cup \operatorname{int}(\operatorname{cl}((f^{-1}(\operatorname{int}(B)))))$ for every IFS B in Y.

Proof: Let B be any IFS in Y. Then cl(int(B)) is an IFRCS in Y. By hypothesis $f^{-1}(cl(int(B)))$ is an IFbOS in X. Since every IFb[#]OS is an IFbOS, $f^{-1}(cl(int(B)))$ is an IFbOS in X. Therefore $f^{-1}(cl(int(B))) \supseteq cl(int(f^{-1}(int(B)))) \cup int(cl(f^{-1}(int(B))))$.

Proposition 3.25: Let $f:(X, \tau) \to (Y, \sigma)$ be an intuitionistic fuzzy almost contra $b^{\#}$ continuous mapping, then $cl(int(f^{-1}(cl(B)))) \cap int(cl(f^{-1}(cl(B)))) \subseteq f^{-1}(int(cl(B)))$ for each IFS B of Y.

Proof: Let B be any IFS in Y. Then int(cl(B)) is an IFROS in Y. By hypothesis $f^{-1}(int(cl(B)))$ is an IFb[#]CS in X. Since every IFb[#]CS is an IFbCS, $f^{-1}(int(cl(B)))$ is an IFbCS in X. Therefore $cl(int(f^{-1}(cl(B))))\cap int(cl(f^{-1}(int(cl(B))))) \subseteq cl(int(f^{-1}(int(cl(B))))) \cap int(cl(f^{-1}(int(cl(B))))) \subseteq f^{-1}(int(cl(B)))$.

Proposition 3.26: If $f:(X, \tau) \to (Y, \sigma)$ is an intuitionistic fuzzy almost contra $b^{\#}$ continuous mapping, where X is an IFT $_{ab^{\#}}$ space, then the following conditions hold:

- i) $cl(f^{-1}(B)) \subseteq f^{-1}(\operatorname{int}(cl(B)))$ for every IFROS in Y.
- ii) $f^{-1}(cl(\text{int}(B))) \subseteq \text{int}(f^{-1}(B))$ for every IFRCS in Y.

Proof: (i) Let $B \subseteq Y$ be an IFROS. By, hypothesis $f^1(B)$ is an IFb[#]CS in X. Since every IFb[#]CS is an IFCS in X as X is an IFT $_{cb^{\#}}$ space, $f^1(B)$ is an IFCS in X. This implies $cl(f^{-1}(B)) = f^{-1}(B) = f^{-1}(int(B)) \subseteq f^{-1}(int(cl(B)))$.

(ii) Let $B \subseteq Y$ be an IFRCS. By hypothesis, $f^1(B)$ is an IFb[#]OS in X. Since every IFb[#]OS is an IFOS in X as X is an IFT $_{cb^{\#}}$ space, $f^1(B)$ is an IFOS in X. This implies $\operatorname{int}(f^{-1}(B)) = f^{-1}(B) = f^{-1}(cl(B)) \supseteq f^{-1}cl(\operatorname{int}(B))$.

References

- Atanassov, K., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, 1986, 87-96. [1].
- [2]. [3].
- **Coker, D.** An introduction to intuitionistic fuzzy points, Notes on Intuitionistic Fuzzy Sets, 1, 1995, 79-84.
- Gomathi, G., and Jayanthi, D., Intuitionistic fuzzy b# continuous mapping, Advances in Fuzzy Mathematics, 13, 2018, 39 47. [4].
- Gomathi, G., and Jayanthi, D., b# Closed sets in Intuitionistic Fuzzy Topological Spaces, International Journal of Mathematical Trends and technology, 65, 2019, 22-26.
- Gurcay, H., Coker, D. and Hayder, Es, A., On fuzzy continuity in intuitionistic fuzzy topological spaces, The Journal of Fuzzy [6]. Mathematics, 5, 1997, 365-378.
- [7].
- Hanafy, I. M., Intuitionistic fuzzy γ continuity, Canad, Math. Bull, 52, 2009, 1-11. Seok Jong Lee., and EunPyo Lee., The Category of intuitionistic fuzzy topological spaces, Bull. Korean Math. Soc., 37, 2000, 63-[8].
- [9]. Thakur, S. S., and Dhavaseelan, R., Nowhere dense sets in intuitionistic fuzzy topological spaces, Proceedings of National Seminar on Recent Developments in Topology, 2015, 17-21.

S. Dhivya. " Almost b# continuous mappings in intuitionistic fuzzy topological spaces." IOSR Journal of Mathematics (IOSR-JM) 15.4 (2019): 46-50.