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Abstract: The solution for second order differential equation is studied using the two-step implicit hybrid block 

method. In this study, we adopted the interpolation of the approximation and the collocation of its differential 

equation. Using an orthogonal polynomial with respect to the weight function 𝑥2 over an interval [0, 1], this 

yields a linear multistep method with constant step-size. The developed methods are verified to be convergent, in 

addition, numerical examples are presented to demonstrate the accuracy and efficacy of the linear multi step 

method. 
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I. Introduction 
We consider the general second order Ordinary Differential Equations (ODEs) of the form: 

𝑦′′ 𝑥 = 𝑓 𝑥, 𝑦, 𝑦′  1  

Numerous problems such as (1) may not easily be solved analytically, consequently, numerical 

schemes are developed and used to find solutions to these problems. These equations are usually reduced to a 

system of first order ODE and are solved using numerical methods for first order ODEs.Certain studiessuch as 

[2-7], have established the direct solution of (1) without having to reduce (1) to a system of first order ODE and 

they proposed methods with different polynomials as their basis function. This study extendsthe work of 

yakusak et al (2015)in [1] to two-step implicitHybrid Block Method(HBM) via Multistep Collocation technique.  

In succeeding sections, we derive the linear multi-step method using orthogonal polynomials with 

respect to the weight function 𝑥2 over a specified interval. The derived method is analyzed, numerical examples 

are considered and used to validate the method and a resulting conclusion is established. 

 

II. Methodology 
 In this study, we consider an Orthogonal Polynomial over the interval [0, 1], with respect to the weight 

function 𝑥2 of a single variable as our approximate solution, this is written in the form 

𝑦 𝑥 =  𝑎𝑗𝑄(𝑥)𝑗  2 

𝑠+𝑟−1

𝑗 =0

 

𝑦′′  𝑥 =  𝑗

𝑠+𝑟−1

𝑗 =0

 𝑗 − 1 𝑎𝑗𝑄 𝑥 𝑗−2 3  

Putting (4) into (1) yield 

 

𝑓 𝑥, 𝑦, 𝑦′ =  𝑗

𝑠+𝑟−1

𝑗 =0

 𝑗 − 1 𝑎𝑗𝑄 𝑥 𝑗−2 4  

The solution to (1) issolved on the partition: 

𝜋𝑁: 𝑎 = 𝑥0 < 𝑥1 < 𝑥2  … . < 𝑥𝑛 < 𝑥𝑛+1 … . . < 𝑥𝑛+1 = 𝑏  
Witha constant step size given as 

ℎ = 𝑥𝑛+𝑖 − 𝑥𝑛 ,    𝑛 = 0, 1, 2, …𝑁 

Interpolating (2) at 𝑥𝑛+𝑠 , 𝑠 = 1,
3

2
  and collocating (4) at 𝑥𝑛+𝑟 , 𝑟 = 0, 1,

3

2
, 2 gives      

 𝛼𝑗𝑥
𝑗 = 𝑦𝑛+𝑟

𝑠+𝑟−1

𝑗 =0

 5  
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 𝑗

𝑠+𝑟−1

𝑗 =0

 𝑗 − 1 𝛼𝑗𝑄 𝑥 𝑗−2 = 𝑓𝑛+𝑟 6  

Where s is the number of interpolation and r is the number of collocation points. 

Solving (5) and (6) for 𝛼𝑗 ,𝑠 and substituting back in (2) we obtain the continuous LMM of the form 

𝑦 𝑥 =  𝛼𝑗  𝑥 𝑦𝑛+𝑗 + ℎ2  𝛽𝑗  𝑥 𝑓𝑛+𝑗  7 

2

𝑗=0

1

𝑗 =0

 

   Where the coefficient 𝑦𝑛+𝑗 , and 𝑓𝑛+𝑗  are given as 

𝛼1 𝑡 = 3 − 2𝑡𝛼3

2

 𝑡 = −2 + 2𝑡 

𝛽0 𝑡 =
1

12
−

119

360
𝑡 +

1

2
𝑡2 −

13

36
𝑡3 +

1

8
𝑡4 −

1

60
𝑡5 

 

𝛽1 𝑡 =
13

16
−

319

240
𝑡 + 𝑡3 −

7

12
𝑡4 +

1

10
𝑡5 

𝛽3

2

 𝑡 = −
5

24
+

203

360
𝑡 −

8

9
𝑡3 +

2

3
𝑡4 −

2

15
𝑡5 

𝛽2 𝑡 =
1

16
−

37

240
𝑡 +

1

4
𝑡4 +

1

20
𝑡5 

    Where 𝑡 =
𝑥−𝑥𝑛

ℎ
 

Solving for the independent solution 𝑦 𝑥  in (7) gives a continuous block method. Where the coefficient of 𝑓𝑛+𝑗  

is given by 

𝜍0 =
1

2
𝑡2 −

13

36
𝑡3 +

1

8
𝑡4 −

1

60
𝑡5 

𝜍1 𝑡 = 𝑡3 −
7

12
𝑡4 +

1

10
𝑡5 

𝜍3

2

 𝑡 = −
8

9
𝑡3 +

2

3
𝑡4 −

2

15
𝑡5 

𝜍2 𝑡 =
1

4
𝑡4 +

1

20
𝑡5 

Evaluating the continuous block method at 𝑡 = 1,
3

2
, 2 gives the discrete block method as 

𝑦𝑛+1 = 𝑦𝑛 + 𝑦′
𝑛

+ ℎ2  
89

360
𝑓𝑛 +

31

60
𝑓𝑛+1 −

16

45
𝑓

𝑛+
3

2

+
11

120
𝑓𝑛+2  

𝑦
𝑛+

3

2

= 𝑦𝑛 +
3

2
𝑦′

𝑛
+ ℎ2  

33

80
𝑓𝑛 +

189

160
𝑓𝑛+1 −

51

80
𝑓

𝑛+
3

2

+
27

160
𝑓𝑛+2  

𝑦𝑛+2 = 𝑦𝑛 + 2𝑦′
𝑛

+ ℎ2  
26

45
𝑓𝑛 +

28

15
𝑓𝑛+1 −

32

45
𝑓

𝑛+
3

2

+
4

15
𝑓𝑛+2  

𝑦′
𝑛+1

= 𝑦′
𝑛

+ ℎ  
1

3
𝑓𝑛 +

7

6
𝑓𝑛+1 −

2

3
𝑓

𝑛+
3

2

+
1

6
𝑓𝑛+2     (8) 

𝑦′
𝑛+

3

2

= 𝑦′
𝑛

+ ℎ  
21

64
𝑓𝑛 +

45

32
𝑓𝑛+1 −

3

8
𝑓

𝑛+
3

2

+
9

64
𝑓𝑛+2  

𝑦′
𝑛+2

= 𝑦′
𝑛

+ ℎ  
1

2
𝑓𝑛 +

4

3
𝑓𝑛+1 +

1

3
𝑓𝑛+2  

 

III. Analysis of the Method 
Order of the Method 

Let the linear operator 𝐿{𝑦 𝑥 : ℎ} associated with method (8) expanding in Taylor series and comparing the 

coefficient of h gives 

𝐿 𝑦 𝑥 : ℎ = 𝑐0𝑦
0 𝑥 + 𝑐1ℎ

1𝑦1 𝑥 + ⋯ + 𝑐𝑝ℎ
𝑝𝑦𝑝 𝑥 + 𝑐𝑝+1ℎ

𝑝+1𝑦𝑝+1 𝑥 + 𝑐𝑝+2ℎ
𝑝+2𝑦𝑝+2 𝑥  

Definition 1 

 The linear operator L and the associated LMMsare said to be of order P if 

𝑐0 = 𝑐1 = 𝑐2 = ⋯𝑐𝑝 = 𝑐𝑝+1 = 0 and𝑐𝑝+2 ≠ 0 

𝑐𝑝+1is called the error constant and Local truncation error is given by 

𝑡𝑛+𝑘 = 𝑐𝑝+2ℎ
(𝑃+2)𝑦(𝑃+2) 𝑥𝑛 + 0(ℎ𝑝+3) 

Following the above definition our method is of order 4 

𝑐0 = 𝑐1 = 𝑐2 = 𝑐3 = 𝑐4 = 𝑐5 = 0 
and the error constant is given as 
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𝑐6 = (−
1

160
, −

117

10240
, −

1

60
, −

31

2880
, −

51

5120
, −

1

90
) 

Zero – Stability 

Definition 2 
The block method (8) is said to be zero – stable if the characteristic polynomial  

𝜌 𝑧 = 𝑑𝑒𝑡 𝑧𝐴(0) − 𝐸  

Satisfies/𝑧𝑠/≤ 1, gave multiplicity not exceeding the order of differential equation as ℎ → 0 

Following the above definition our method (8) is zero stable. 

 Convergence 
The convergence of the continuous hybrid block method is considered in light of the basic properties discussed 

above in conjunction with the fundamental theorem of Dahlquist[8] for LMM; we state the Dahlquist theorem 

without proof.  

Theorem 3.1 The necessary and sufficient condition for a linear multistep method to be convergent is for it to be 

consistent and zero stable. 

 Following the theorem 3.1 above shows that both methods are convergent 

 

V.Numerical examples 

We implement our method on second order ordinary differential equations of the form. 

Example 1 

𝑦′′ − 𝑦′ = 0,  
𝑦 0 = 0, 𝑦′ 0 = −1,   ℎ = 0.1 

 Exact Solution 𝑦 𝑥 = 1 − 𝑒𝑥  

Example 2 

𝑦′′ + 1001𝑦′ + 100𝑦 = 0, 
𝑦 𝑥 = 1, 𝑦′ 𝑥 = −1, ℎ = 0.55 

            Exact Solution  𝑦 𝑥 = 𝑒−𝑥  

Table 1: Numerical Solution for Example 1 
X   Exact Our Method 

   0.1 -0.105170918 -0.105170925 

   0.2 -0.221402758 -0.221402778 

   0.3 -0.349858807 -0.349858852 

   0.4 -0.491824697 -0.491824775 

   0.5 -0.64872127 -0.648721396 

   0.6 -0.822118800 -0.822118986 

   0.7 -1.013752707 -1.013752977 

   0.8 -1.225540928 -1.225541294 

   0.9 -1.459603111 -1.459603604 

   1.0 -1.718281228 -1.718282473 

 

Table 2: Comparison of Error for Example 1 
X Our Method           [3] 

0.1 7.30 E -09 1.61 E -08 

0.2 2.04 E -08 3.51 E -08 

0.3 4.39 E -08 2.37 E -07 

0.4 7.67 E -08 2.64 E -07 

0.5 1.24 E -07 2.96 E -07 

0.6 1.86 E -07 3.34 E -07 

0.7 2.67 E -07 3.78 E -07 

0.8 3.66 E -07 4.30 E -07 

0.9 4.93 E-07 4.91 E -07 

1.0 6.45 E -07 5.61 E -07 

 

Table 1: Numerical Solution for Example 2 
X            Exact Our Method 

0.1 0.9048374187 0.9048374178 

0.2 0.8187307531 0.8187307527 

0.3 0.7081822070 0.7081822010 

0.4 0.6703200560 0.6703200454 

0.5 0.6065306597 0.6065306590 

0.6 0.5488116361 0.5488116353 

0.7 0.4965853038 0.4965853030 

0.8 0.4493289641 0.4493289633 

0.9 0.4065696597 0.4065696589 

1.0 0.3678794412 0.3678794403 
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Table 2: Comparison of Error for Example 2 
X         Our Method           [3] 

0.1 2.10 E -10 2.35 E -10 

0.2 4.10 E -10 4.77 E -10 

0.3 6.10 E -10  5.81 E -10 

0.4 6.10 E -10 7.35 E -10 

0.5 7.10 E -10 8.26 E -10 

0.6 8.10 E -10 8.95 E -10 

0.7 8.10 E -10 9.14 E -10 

0.8 8.10 E -10 1.01 E -09 

0.9 8.10 E -10 1.04 E -09 

1.0 9.10 E -10 1.07 E-09 

 

IV. Conclusion 
The implementation of the above scheme is done with the aid of maple software. As we can see in the 

above results, the numerical solution behaves like the theoretical solution. We implement the scheme on two 

numerical examples and the method is found to be convergent. Our method is therefore favorable. 
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