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. Introduction

The notion of statistical convergence was introduced first by Fast ([3]). Subsequently Kostyrko et
al.([10]) extended this idea to the concept of I-convergence of sequences in a metric space with the notion of an
ideal of the set of positive integers . Infact the notion of I-convergence is a generalization of statistical
convergence and it also provides a general outline to study the properties in respect of various types of
convergence.Taking into consideration of such notion of I-convergence much work had been done in different
forms of convergences via I-cluster points, I-limit superior, I-limit inferior(see [1],[2],[5],[6].[11])in different
topological structured spaces. Based on the concept of 2-metric spaces and 2-normed linear space introduced by
S.Géhler (see [12]-[13]) a study on n-norm theory led by Gunawan and Mashadi (see [4]) gave into the
development of a n-normed space which is a generalization of 2-normed space. Further the investigations on
ideal convergence and 1% - convergence of a sequence in a 2-normed linear space was done by M.Giirdal (see [7])
and Madjid Eshaghi Gordji et al (see [9]) respectively. Also the work on ideal convergence of a sequence in
n-normed spaces could also be found in Girdal and Sahiner (see [8]). In a natural way, one may invite these
concepts of convergence for its general study on such n-normed linear spaces and thereby we have been able to
prove here  some of its properties on convergence of a sequences. Through out the paper
N denotes the set of positive integers.

Il. Preliminaries
Definition 2.1 [4]. Let X be the linear space. For n € N, let (ll.,...,.ll) be anon -negative real valued function
on X XX x..xX=X" satisfying the following conditions:
) Il x1,X5,..., %, II= 0 ifand only if x4,%5,...,x, € X are linearly dependent.

(ii) II x¢,%3,...,X, |l isinvariant under any permutation of x4,x,,....,x, € X.

(i) II x1,%,..., 0%, I=|a| Il X1,X,,...,%, l,where a € R, x4,X,,...., %X, €X.

(V) I X, %0, 0, X, Y F Z SN X1, X9, o, Xn_, YV |+ X4, X5, ..., X017, Z I, forall y,z,x4,%5,...,%x,_1 €X
Then |I.,...,.Il is called a n-norm on X and the corresponding pair (X, II.,...,.ll) is called a n-normed linear
space.

Example 2.2 [4]. The space X = R" is equipped with the following n-norm:
X11 X12 ......... Xl]’l
X921 X22 wvr van wen Xon
I x1,%5,...,%X, I= |det k e e ves e e e e e e ) |
Xn1 Xp2ereonrennns Xnn
where x; = (X1, X2, ---,Xip),foreach i=1,2,...,n.

Definition 2.3[4]. A sequence(x,) ina n-normed linear space (X, II.,...,. I)is said to be a Cauchy if
klim | z1,25,...,Z,_1, Xk — Xy, II=0, forall z;,z,,....,z,_; INX.

,M =0
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Definition 2.4[4]. A sequence (x,) in a n-normed linear space(X, Il.,...,.)is said to be convergent if there is a
point x in X such that 1l(im Il z1,2;,...,2h_1, Xk — X |I= 0, forall z;,z,,....,z,_1 in X. If (x,) converges to x,we

write X, = X as n — .

Definition 2.5 [4]. A n-normed linear space in which every Cauchy sequence in X is convergent to an element of
X is called a n-Banach space.

Definition 2.6 [9]. A nonempty family I € P(Y) of subset of a nonempty set Y is said to be an ideal in Y if:

() pel

(ii)) A, B€ I implies AUB €1

(iii) A€ ,B < A implies B € L.

| is called a proper ideal if Y & land | is not a proper ideal if I = P(Y). The ideal of all finite subsets of a
given set Y is called Fin.

Definition 2.7. Anideal I € P(Y) is said to be non-trivial if [ # pand Y € 1.
Definition 2.8 [9]. A non-trivial ideal I in Y is said to be admissible if {x} € I foreachx € Y.

Definition 2.9 [9]. A nonempty family F < P(Y)of subset of a nonempty set Y is said to be a filter in Y if:
() peF

(i) ALBE F implies ANBEF

(iii) Ae F,Ac B implies BE F

If 1 is non-trivial ideal in Y, Y # ¢, then the class F(1)={M <Y :(3Ae )M =Y — A}isafilter on Y,

called the filter associated with Y.

Definition 2.10[3]. Let E be a subset of natural numbers N and j € N.The quotient
d;(E) = card(En{1,...,j})/j is called the jth partial density of E where d;is a probability measure on P(N)
with support {1,...,j}. The limit d(E) = limd; (E)is called the natural density of E < N (if exists).Clearly,finite
j—o0o

subsets have natural density zero and d(E€) = 1 — d(E) where E€ = N — E, i.e. the complement of E.

Definition 2.11. A sequence (x,) of elements in a n-normed linear space X is said to be statistically convergent
tox € X if for each € > 0 and for non zero 7, z,, ....,z,_; in X the set
A(e) ={n eN:|l z1,2,,...,2,_1,%X, — X II= €} has natural density zero.In other words for each € > 0,
1
lim—card({n > k: Il z1,23,...., Zn_1, X — X 1= €}) =0

n—-ow N

Definition 2.12[8]. LetI < P(N) be a nontrivial ideal in N. The sequence (x,) of X is said to be I-convergent
tox € X if for each € > 0 and non zero zy, z,, ...., zZ,_1in X, the set

A(e) ={keN:ll 24,23, ..., Zn_1, Xk — X I= €} €1
If (x,) is I-convergentto x € X then we write 1 — 11(1_1)1010 | z1,23,...,Zp—1, X — X 1= 0; Or

I—ll(im Il 21,2, .., Zn_1, Xk 1=Il 21,25, ...,2,_1, X Il. The number x € X is called the I-limit of the sequence
—00

(%n)-

Further we can see some examples of ideals and its corresponding I-convergence [see 14]. It is immediate that the
following holds.

(1) Let I; be the family of all finite subsets of N. Then I; is an admissible ideal in N and I;-convergence of a
sequence in a n-normed linear space X coincides with its usual convergence in X.

(1) Put 4 = {A c N:d(A) = 0}. Then 14 is an admissible ideal in N and I;-convergence of a sequence in a
n-normed linear space coincides with its statistical convergence in X.

Remark 2.13[8]. If I'is an admissible ideal in n-normed linear space (X, Il.,...,.ll) then the convergence of a
sequence in X implies its I-convergence in X.
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We are now in a position to note that which of the following holds for the convergence of a sequence in X implies
its I-convergence in X.

(A) Every constant sequence (x,X,....,X,...,.) convergesto x in a n-normed linear space.

(B) The limit of any convergent sequence in a n-normed linear space X is uniquely determined.

(C) If asequence (x,) in X hasalimit x in X, then each of its subsequence has the same limit.

(D) If each subsequence of the sequence (x,) in X has a subsequence which converges to x in X, then (x,)
convergesto x in X.

Proposition 2.14 [8]. Suppose that X is a n-normed linear space having at least two points. Let I ¢ P(Y) be
an admissible ideal, then

(i) The T -convergence in X satisfies (A),(B) and (D).

(ii) If I contains an infinite set, then I-convergence in X does not satisfy (C)

Example 2.15 [8].Let I = I;.Define a sequence (x,) in a n-normed linear space (X, II.,...,. ) by
. =¥Qam”m ifn=1i%i€eN
n (0,0, .....,0) otherwise
Let x = (0,0,...,00 X . Then I — 1l<1—1>2 Il z1,25, ., Zn—1, X 1=l 21,23, ...,2,—1, % ll. But the sequence (x,) is
not convergent to x.

We now conclude the fact that I-limit operation for the sequence in n-normed linear space (X, Il.,...,.II) islinear
with respect to summation and scalar multiplication.

Theorem 2.16[8]. Let I be an admissible ideal in a n-normed linear space X. For each z4,z,,....,z,_¢ in X, if
I—ll(im Il z4,25,...,2h_1, %Xk — X I= 0 and I—llim Il z1,23,...,2h_1, Yk — ¥ II= 0 then

ORE l1(1_1)101o 21,25, .21, X + Vi) — (X +y) II=0 and

(i) 1— 1l(im Il z1,25,...,Zh_1,c(Xx — %) I=0 forall ce R

I11. Main Results
Note that there is a strong connection between statistical cluster points and ordinary limit points of a
given sequence. We will prove that analouge fact is also satisfied for I-cluster points and I-limit points for a given
sequences in a n-normed linear space X.

Definition 3.1. Let I < P(X)be an admissible ideal in X and x = (x,,) be a sequence in X. Then

(i) Anumber £ X issaid to be an I-limit point of x ifthereisaset M = {m; < m, <...my_;} € N such that
Mé&l and }l(l_r}; I 21,22,...,24-1,Xm, — § II= 0 for each non zero zy,z,,....,z,_4 in X. The set of all I-limit
point of x is denoted by I(A2).

(i) A number £ X is said to be an I -cluster points of x if for each £>0 the set

{n€eN:llz,25,...,2,_1,%, — £ lI< €} & I for each non zero z,,z,,....,2,_, in X. The set of all I-cluster points
of x is denoted by I(T{").

Theorem 3.2. Let I < P(X) be an admissible ideal in X. Then for each sequence x = (x,) in a n-normed linear
space X we have I(A?) C I(TY) and the set I(IY) is a closed set.

Proof. Let & € I(A}).
Then there existaset M = {m; < m, < ---} € [ such that 1l<im Il 24,22, .., Zn—1,Xm, — & lI= 0 for each non zero

Z1,Z, ., Zn—1 N X. Thus for each & > 0 there exist ko € N such that for k >k, and each nonzero
71,23, e, Zn—1 N X, we have by (3.1)

fneN:llz,2,..,2,_1,%, — ENI< 8} D M\{ml,mz, ...,mko}
andso {n € N: |l z1,75,...,Z,_1,X, — & II< 8} & LTherefore & € I(T}).

Let y € I(T?). For € > 0.So there exists a §, € X such that & € I(T})) N B, (y, €).Choose & > 0 such that
B, (&, 8) < B, (v, €).Therefore we have

{neN:lz,2y,...,Zn_1,X, —y II< e} D{NnEN:| 24,23,..., 271, Xy — & 1< 8}
Hence {n € N: |l z1,2;,...,Z,_1,X, — ¥ I< €} & I which in turn implies that y € I(Ty).
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Definition 3.3. Let I ¢ P(X) be an admissible ideal in X and let x = (x,) be a sequence in n-normed linear
space (X, II.,...,. 1. If K= {k; <k, <...} €1, then the subsequence xx = (xi ) is called I-thin subsequence
of the sequence x and if K= {k; <k, <...} & I ,then the subsequence xx = (xi ) is called I-non- thin
subsequence of the sequence x.

Theorem 3.4. Let I ¢ P(X) be an admissible ideal in a n-normed linear space (X, II.,...,.l) and x = (x,) and
y = (yn) are sequence in X such that M = {n € N:x, # y,} € . Then I(A}) = I(A}) and I(IY) = I(T}).
Proof. Let M ={n € N:x, #y,} €L If £ €I(A}). Then there is a set K= {m; <m, <...} €I such that
I=limyo, | 21,25, .+, Zy—1, X, — & I= 0 for each non zero zy,z,,....,z,_; in X.

Since K; ={neN:neKx, #y,} cMelthen K, ={neN:n€Kx, =y,} €I, because if K, € I,then
K=K; UK; €1, but K & I. Hence the sequence yx, = (ym,) is a I-non- thin subsequence of y = (y,) and

yk, converges to £ X i.e. § € I(A}).Now if E€ I(I}), thenK3 = {n € N: 11 2;,%;,...,2,_1, %, —EI< €} €1

for eache > 0 and for each non zero z4,z,,....,z,_¢ in X and K, = {n € N:n € K3,x, = y,} € L.Therefore
Ky c{n€eN:llz,2y,.,2,_1, ¥, — § I< €} for each € > 0 and nonzero z;,z,,....,z,_1 in X. Thus it follows
that for each € > 0 and non zero z,z,,....,2z,_1 in X the set {n € N:|z{,2,,...,2,_1,yn —ElI< e} & 1. i.e.

§ € I(Iy"). This completes the proof.

The concepts of 1 and I*-convergence are also introduced in different topological space (see [11],[13]). We can
extend these concepts to the notion of the I1¥-convergence for sequences in a n-normed linear space. In a analogue
way we can introduce the definition of I and I*-convergence for a sequences in a n-normed linear space.

Definition 3.5. Let (X, Il.,...,.I)be an-normed linear space and I be an ideal on a set A. The function f: A - Xis

said to be I-convergent to x € X if for all nonzero z,, z,,....,z,_;in X and for all e > 0 we have
A(e)={a€Allf(@) —x21,23,....,Zh_1 I= €} EL

We write itas I — limf = x.

Remark 3.6.1f A = N, we obtain the usual definition I-convergence of the sequence (x,) to x in a n-normed
linear spaced X.

Lemma 3.7.Let X, Y betwo n-normed linear spaces and let A be anonempty setand I, I;and I, beidealson A.
Then

(i) If T is not a proper ideal, then every function f: A - X is I-convergent to each point of X.

(ii) If 1; < I,, then for every function f: A — X, we have I; —limf = x = I, — limf = x.

Proof. (i)Let x be a arbitrary element of X, then for all € > 0 and for each non zero z4,2z,,....,z,_1 in X, we
have A(e) ={a € A:ll f(a) —x,21,22,....,Zp_1 1= €} € P(A) =1

(i) Let I; c I, and I; — limf = x . Then we have for all € > 0 and for all z;,z,,....,z,_; in X the set
A(e)={a€ Al f(d) —x,21,2,....,Zn_1 I= €} €1} C I,. Hence I, — limf = x

Definition 3.8.(X, Il., ...,. II) be a n-normed linear space and I be an ideal on N. The sequence (x,) in X is said to
be I — convergent to a point x € X, if there exists a set M € F(I)such that x, - x as n — oo with respect

replace the ideal Fin by an arbitrary ideal on the set A.

Definition 3.9.Let (X,Il.,...,.l) be a n-normed linear space and let % and I be ideals on N. The
sequence (x,,) in X is said to be I*-convergence to a point x € X, if there exists a set M € F(I) and a sequence
(y,) such that
Vo = {X“ ifn €M satisfying & -limy,, = x. We write it as 1%-limx, = x
" x ifngM n ' n '
Remark 3.10.The definition of I*-convergence can be reformulated in the form of decomposition. A sequence
(x,) is 1%-convergence if and only if (x,) = (v,) + (z,) where (y,) is K-convergent and (z,) is a sequence
of non-zero elements on a set from 1.
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Example 3.11.We now exhibit some examples of ideals and their 1% -convergence

(i) Let I, = K, = {¢}.1, is the minimal ideal in N. A sequence (x,) is 1%-convergent if and only if it is
constant

(ii) Let  # M c N\M # N.Take KX = P(M) i.e K is a proper ideal in N. Let I = {¢}. A sequence (x,) is
1*-convergent if and only if it is constant on N\M.

(iii) Let K be a admissible ideal in N and I be an arbitrary ideal. A sequence (x,) is I*-convergent to a
point x € X if there exists a set M € F(I) and the sequence (y,) given by Definition is such that the
convergence of (y,) is its usual convergence.

Theorem 3.12.The limit of any 1% -convergent sequence in n-normed linear space X is unique.

Proof. Suppose that (x,) be a I*-convergent sequence in a n-normed linear space X. Let I* —lim(x,) = 1;,

1* —lim(x,) =1, and 1; # I,. Hence there exists z;,z,....,z,_; in X, such that z;,z,,...,z,_4 and1; — 1,
are linearly independent. Take € > 0 such that
I z1,2, ..., Zn—1,11 — 15 lI= 2¢.

Since 1% —lim(x,) = 1;, by Definition 3.9 there exists a set M; € F(I) such that the sequence (p,) given by
(%, ifn€M;
Pn = {11 ifn ¢ M,
satisfies K-limp, = 1;.

Since 1% —lim(x,) = 1,, therefore there exist M, € F(I) such that the sequence (q,) given by
_(x, ifn€M,
In = {12 ifn ¢ M,
satisfies K-limq, = 1,.

Therefore forall € > 0 and z4,z,,...,z,_; in X. We have

{mEN” Zl'ZZ"""Zn—l'pm_ll ”2 S}E:K:
al’ld {m € N: ” Zl'ZZ"""Zn—l'qm _12 ”2 E} E:K:
Take M = M; N M,. We have,
2e = 121,29, ooy Z—py 1 — Xy + X — 15 |l
< Zl,Zz,....,Zn_l,ll — Xm I+l 21,23y Zn_1,Xm —12 Il
< Zl,Zz,....,Zn_l,ll — Pm I+ 21,22y, Zn—1,m _12 I
Therefore {im € M:ll 24,25,.++,Zn—1,qQm — L I e} S {Mm € M:ll 21,23,....,Zn—1,Pm — 2 I= €} € K,

which is a contradiction to the fact that T # ¢.

We now show that 1%-limit operation for the sequences in a n-normed linear space (X, Il.,...,.l) is linear with
respect to summation and scalar multiplication .

Theorem 3.13. Let (x,) and (y,) be sequences in n-normed linear space (X, II.,...,.I) and
1* —lim(x,) =1y, I* —lim(x,) =1, then (i) I* —lim(x, +y,) =1 + 1, (i) 1% — limiax,) = al;.

Proof. (i) Let I* — lim(x,) = 1,.By definition there exist M; € F(I) such that the sequence (p,) given by
_(x, ifneM;
Pn = {11 ifn ¢ M,
satisfies K-limp, = 1;.
Since 1% —lim(x,) = l,, there exist M, € F(I) such that the sequence (q,) given by
_(x, ifn€eM,
In = {12 ifn ¢ M,
satisfies K —lim q, = 1,.Take M = M; n M, € F(I) and we define a sequence
_(xpty, ifneEM
B {11 +1, ifng¢M.

n

(i) Proof is straightforward and left out.
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Lemma 3.14. Let K and I beidealsonaset N. Let (x,) be sequences ina n-normed linear space (X, 1.,..,.1)
such that ¥ — lim(x,) = 1. Then I* —lim(x,) = 1.

Lemma 3.15. Let K, %y, K,,1,1; and I, be ideals in a set N such that I; c I, and K; c X,. Let (x,) be a
sequences in a n-normed linear space (X, II.,...,.l) then we have
() ¥ —limx, =1= ¥ — limx, =1

(i) I’ —limx, = 1= "2 — limx, =1
Proof. (i) Suppose I — limx, =1 ,By definition there exist M € F(I) such that the sequence (p,) given by
_ {xn ifne M

"0 ifng M.
satisfies K -limp, = L.
Now for each € > 0 and non zero z4,z,,....,Z,_; in X, we have

{n € N: " Zl'ZZ"""Zn—l'pn _1 "2 E} € :K:

Since I, ¢ I, we have M € F(I;) c F(I,). Therefore I¥ —limx, =1

(ii) Suppose 1%1 — limx,, = 1, By definition there exist M € F(I) such that the sequence (p,) given by

_{xn ifneM
Po = ifneMm

satisfies K-limp, = L.
Foreach € > 0 and zy,2,,....,Z,_1 in X. we have

fmneN:z,2y,....,Zn_1,Pn — 112 €} €K C XK,
Therefore 1%2 — limx, =1

In the followingt theorem, we show the relationship between the I-convergence and 1%-convergence.

Theorem 3.16. Let K and I be ideals on a set N.

Let (x,) be sequences in n-normed linear space (X, 1.,...,.1).

(i) If 1% —lim(x,) =1 implies I — lim(x,)) =1 for some 1 € X, which has one neighborhood different from X,
then € < 1

(ii) If € <1 then 1% — lim(x,) =1 implies I — lim(x,,) =1

Proof. (i) Suppose that K is not a subset of 1. Then there exists a set V. € X such that V& 1. Let 1 € X has a
neighborhood U < X such that U # X and y € X\U. We define a sequence (t,) on X such that

¢ = {y ifnev

n

U ifneV.
satisfying K — lim(x,) = L. Thus by Lemma 3.14, we get IX —lim(x,) = 1.
Hence {n € N: || z1,2,,....,z,_1,t, — L I= €} = V & 1. Hence the sequence (x,) is not I- convergent to 1
(ii) Let (x,) be sequences in a n-normed linear space (X, II.,...,.ll) and 1 € X. Let K <1 and

I¥ —lim(x,) = 1. By definition of 1*¥-convergence, there exist M € F(I) such that the sequence (p,) given by
P, = {xn ifneM
n

U ifngM.
satisfying K —lim(x,) = 1. Now forall € > 0 and z;,2,,....,z,_1 in X, we have
A(e)={n€N:llz,2;,....,2,_1,Pn — 112 e} =M EN: | 24,7;,....,2,_1,%X, — 1= &}

Hence A(e)nMeX cland (n € N: |l z1,2y,....,Zh_1, X, — 1 1= €} € X\M) U (A(e) N M) €]

Therefore I — limx, =1
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