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Abstract:  For transfinite cardinal number α, using Zorn’s lemma we have given a simple proof which is 

understandable to undergraduate students, of the result   α + α = αα = α, that is, idempotency for addition and 

multiplication. Moreover for a cardinal number  with 2 ≤  < α we obtain easily                               α +  = α 

= α, α

 = α

α
 = 2

α
, α


 < α

. Using these results we get many results directly as                                                      

ℵ0 + ∁ = ℵ0∁ = ∁ + ∁ = ∁∁ 
 = ∁, ℵ0

ℵ0  = ∁ = ∁ℵ0  = 2ℵ0 , ∁∁ = ℵ0
∁ = 2∁  where ℵ0 = card N, ∁ = card R. 
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I. Introduction 
Let A and B be any two nonempty sets. A relation ρ from A to B is defined as a subset of A x B. Thus ρ is a 

relation from A to B if and only if (abbreviated by  iff) ρ ⊆ A x B. In particular subset ρ of A x A is called a 

relation (or a binary relation)on A.  We denote xρy for (x, y) ∈ ρ.                                                                                                                                                

A binary relation ρ on a set A is said to be                                                                                                                                  

(i) reflexive if (a, a) ∈ ρ  a ∈ A.                                                                                                                                                           

(ii) symmetric if (a, b) ∈ ρ  ⇒  (b, a) ∈ ρ.                                                                                                                                   

(iii) anti-symmetric if (a, b) ∈ ρ and (b, a) ∈ ρ  ⇒  a = b.                                                                                                      

(iv) transitive if (a, b) ∈ ρ and (b, c) ∈ ρ  ⇒  (a, c) ∈ ρ.                                                                                                                       

A relation ρ on a set A is called an equivalence relation on A if it is simultaneously reflexive, symmetric and 

transitive on A.                                                                                                                                                                               

An equivalence relation on a set is usually denoted by ~ (wiggle or tilde).                                                                                      

Let ~ be an equivalence relation of a set X and let a ∈ X. The equivalence class of a, denoted by [a] or 𝑎  is 

defined as [a] = {x ∈ X | x ~𝑎} = the set of those elements of X which related to a under ~.                                                                                                                                                                                          

Let X be a nonempty set. A collection of nonempty mutually disjoint subsets of X whose union is X is called a 

partition of the set X.                                                                                                                                               

1.1 Theorem. Let ~ be an equivalence relation in a nonempty set X and a and b be arbitrary elements in X. 

Then                                                                                                                                                                                                           

(i) a ∈ [a](ii) b ∈ [a] iff [a] = [b] iff  a ~ b.                                                                                                                                          

(iii) Any two equivalence classes are either disjoint or identical.                                                                                

1.2 Theorem. (Fundamental Theorem on Equivalence Relation): An equivalence relation ~ on a set X partitions 

the set X and conversely every partition of X induces an equivalence relation on X.                                                                                                                                  

Alternative statement: The distinct equivalence classes of an equivalence relation on X provides us with a 

decomposition of X as a union of mutually disjoint subsets. Conversely, given a decomposition of X as a union 

of mutually disjoint, nonempty subsets, we can define an equivalence relation on X for which these subsets are 

the distinct equivalence classes.                                                                                                                               

A binary relation ρ on a set X is called a partial order relation if it is reflexive,                                                                      

anti-symmetric and transitive. Generally partial order relation is denoted by ≤ and a set with partial order elation 

is termed a partial ordered set (poset).                                                                                                                          

Let (P, ≤) be a poset such that any two elements in it are comparable, i. e. x ≤ y or y ≤ x  x, y ∈ P. Then „≤‟ is 

called linear (or total) order and (P, ≤) is called a totally (or linearly) ordered set or a chain.                                                                                        

Let A and B be two sets. It is natural  to ask whether both sets contain same number of elements or not. If A and 

B are finite sets having same number of elements then we say that A and B are equivalent sets and in this case 

we write A ~ B.                                                                                                                                      

Definition:  
We say that the sets A and B are equivalent (equipotent) if there is a  one – one onto function f: A → B. In this 

case we write A ~ B.                                                                                                                                      

  „~ ‟ is an equivalence relation on a family of sets.                                                                                                          

A set S is said to be a finite set if S = 𝝓, an empty set or S  ~ {1, 2, 3, . . . , n} for some n ∈ N.                             

A set X is said to be countable (atmost countable) if either X is finite or X ~ N = {1, 2, 3, . . .}.                                  



                                                  On Transfinite Cardinal Numbers  

DOI: 10.9790/5728-1404041721                                    www.iosrjournals.org                                     18 | Page 

An infinite countable set = enumerable, denumerable.                                                                                                  

A set X is uncountable means X is not countable (i. e. neither finite nor denumerable).                                              

1.3 Theorem.  „Is equivalent to ‟ is an equivalence relation on a collection of sets.                                                       

Cardinal numbers (Cardinality): The relation „is equivalent to‟ is an equivalence relation on a family of sets. 

Hence by the fundamental theorem of equivalence relations, all sets are partitioned into mutually disjoint 

distinct classes of equivalent sets.                                                                                                                       

Above theorems with proofs, definitions are standard and they are also given in books given in references [1] to 

[5]. Concepts of countable and uncountable sets were introduced by Cantor G. and most of the results on the 

concepts due to himself.                                                                                                                           

 Let A be any set and let α denote the family of sets which are equivalent to A.                                                            

Then α is called a cardinal number or simply cardinal of A. It is written as α = car (A) or                                       

α = |A| or α = ⋕(A). α = |A| means α represents all sets which are equivalent to A.                                                 

Cardinal number is associated with „measure of size‟. There are other definitions given by Frege (1884) and B. 

Russell (1902) identified the cardinal number |A| of the set A with the set of all sets equivalent to A and J. von 

Neumann (1988) suggested the selection of a fixed set C from the set of all sets equivalent to A. With any one of 

these definition one obtains what is essential that an object associated in common with those and only those sets 

which are equivalent to each other. Cardinality of sets under study are identified sets (equivalent sets) and 

arranged in order also.                                            

The cardinal number of sets 𝝓, {1}, {1, 2}, {1, 2, 3}, . . . , {1, 2, . . . , n} are denoted by                                       

0, 1, 2, 3, . . . , n respectively and each is a finite cardinal.                                                                                         

The cardinal number of N is denoted by ℵ0 (aleph naught) or 𝔞. Thus cardinality of any denumerable set is 𝔞. So 

|Z| = |Q| = |NxN| = 𝔞, since NxN ~ N.                                                                                                                     

The cardinality of an infinite set is called an infinite cardinal or transfinite cardinal.                                                                                                                      

Let a set X be equivalent to the interval [0, 1]. Then X is said to have cardinality ∁ and said to have the power of 

continuum. For any a < b, each of the interval [a, b], [a, b), (a, b], (a, b) has cardinality ∁.                                                                                                                                                                

The set R has cardinality ∁ and |R – Q| = ∁ = |[a, ∞)| = |(−∞, a)|, for any a ∈ R.                                          

 

Result 1: [3] Every infinite set contains a denumerable set.                                                                                                      

Let X be an infinite set.                                                                                                                                                      

So it has a X – {a1} as an infinite set, so ∃ a2 ∈ X – {a1} and X – {a1, a2} is an infinite set,                                                    

so ∃ a3 ∈ X – {a1, a2}. Continuing in this way we get a denumerable set D = {a1, a2, a3, . . .}  X.                                                                    

Cardinal Arithmetic: We define addition and multiplication of cardinal numbers α, β.                                      

Let A, B be sets such that α = |A| and β = |B|. We define αβ = |AxB|.                                                                          

For A∩B = 𝝓, we define α + β = |AB|.                                                                                                                   

These definitions are well defined in the sense that if A ∼ A‟, B ∼ B‟, A∩B = ∅ = A‟∩B‟ gives ∃ bijections f: A 

⟶ A‟, g: B ⟶ B‟.                                                                                                                                                                  

Then h1: AB ⟶ A‟B‟ given by h1(x) =  
f x , x ∈ A

g x , x ∈ B
   x ∈ AB is one – one and onto.                                           

 AB ∼ A‟B‟, i. e. |AB| = |A‟B‟|.                                                                                                                

Now h2: AxB ⟶ A‟xB‟ given by h2(x, y) = (f(x), g(y))  (x, y) ∈ AxB is one – one and onto, and so                             

AxB ∼ A‟xB‟. Hence |AxB| = |A‟xB‟|.                                                                                                                                          

Let A, B be sets and  = |A|, β = |B|.Then A ~ Ax{1}, B ~ Bx{2}, and Ax{1}∩Bx{2} = ∅.                                     

Moreover |Ax{1}| = α, |Bx{2}| = β and |Ax{1}Bx{2}| =  + β and |AxB| =  β.                                                                               

Exponents: We now define exponents in cardinal numbers. Let A and B be sets and let                                                    

α = |A| and β = |B|. Let B
A
 be the family (set) of all functions from A (exponent) into B.                                                

Then we define β
α
 = |B

A
|.                                                                                                                                                       

Result 2: For sets A, B, C with B  C, we have B
A
  C

A
  ⇒  |B

A
| ≤ |C

A
|, i. e. |B|

|A|
 ≤ |C|

|A|
.                                                            

Thus if α, , 𝛾 are cardinal numbers with  ≤ 𝛾 then 
α
 ≤ 𝛾α

.                                                                                                                                                                 

Ex. Let A = {a, b, c}, B = {1, 2}. Then |A| = 3, |B| = 2. B
A
 = family of all functions from A into B = {{(a, 1),    

(b, 1), (c, 1)}, {(a, 1), (b, 1), (c, 2)}, {(a, 1), (b, 2), (c, 1)}, {(a, 2), (b, 1), (c, 1)}, {(a, 1), (b, 2), (c, 2)}, {(a, 2),  

(b, 1), (c, 2)}, {(a, 2), (b, 2), (c, 1)}, {(a, 2), (b, 2), (c, 2)}}.  |B
A
| = 8 = 2

3
 = 𝛽

 where 𝛽 = 2 = |B|,  = 3 = |A|.                                                                                                                                                      

1.4 Theorem. [2]The operation of addition and multiplication of cardinal numbers are associative and 

commutative; and multiplication is distributive with respect to addition, and laws of indices also hold,                  

i. e. if α, β, ϒ are any cardinal numbers then                                                                                                      

(a)(i) α + β = β + α, (ii) αβ = βα, (iii) α + (β + ϒ), (iv) α(βϒ) = (αβ)ϒ,                                                                                      

(v) α(β + ϒ) = αβ + αϒ, (b)(i) α
β
α

ϒ
 = α

β+ϒ
, (ii) (α

β
)

ϒ
 = α

βϒ
, (iii) (αβ)

ϒ
 = α

ϒ
β

ϒ
.                                                                 

Definition:  [2]Let A and B be sets and α = |A| and β = |B|. We say that α ≤ β iff A is equivalent to a subset of 

B, that is there is a one – one function f: A → B. α < β means α ≤ β and α ≠ β.                                                                
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[β ≥ α means α ≤ β and 𝛽 > 𝛼 means α < 𝛽.]                                                                                                              

(i) Let A and B be finite sets with n = |A|, m = |B|. Then n ≤ m as cardinal numbers iff n ≤ m as nonnegative 

integers. If A is equivalent to a proper subset of B, then n < m.                                                     

(ii) For any sets A, B with A  B, we have |A| ≤ |B|, since f: A ⟶ B given by f(x) = x, x ∈ A, is 1-1.                   

Now N  R  ⇒  𝑎 ≤ ∁. Since R is not denumerable, 𝔞 ≠ ∁. Therefore 𝔞 < ∁.                                                                                       

If A is any infinite set, then A contains a denumerable subset D, i. e. D  A. So |D| ≤ |A|,                             

i. e. 𝔞 ≤ |A| for any infinite set A.                                                                                                                                       

(iii) For any set A with |A| = , the identity mapping I: A ⟶ A (given by I(x) = x  x ∈ A)                                  

is one – one. Therefore |A| ≤ |A|, i. e.  ≤  for each cardinal number . (≤ is reflexive)                           

  (iv) Let A, B, C be sets such that  = |A|, β = |B|, γ = |C|.  ≤ β and β ≤ γ                                                           ⇒  

∃ functions f: A ⟶ B, g: B ⟶ C which are one – one.  ⇒  g∘f: A ⟶ C is also one – one.                    Hence |A| 

≤ |C|, i. e.  ≤ γ. (≤ is transitive)                                                                                                                   

(v) If , β, γ are cardinal numbers and  ≤ β then  + γ ≤ β + γ and γ ≤ βγ.                                                                          

Proof are trivial and available in books mentioned in references or in any standard books on Set Theory.                                                      

Continuum Hypothesis: There is no cardinal number which lies between 𝔞 and ∁   (𝔞 < ∁).                                      

In other words, there is no cardinal number β such that 𝔞 < β < ∁.                                                                                    

In 1963 it was shown that the continuum hypothesis is independent of our axioms of set theory.                                                                                                                                                                  

The generalized continuum hypothesis: There is no cardinal numbers strictly between  and 2

 for any 

transfinite cardinal number .   ∁ 𝔞 = (2𝔞)𝔞 = 2𝔞 2 = 2𝔞 = ∁.                                                                                                     

0 < 1 < 2 < 3 < . . . < 𝔞 < ∁ < 2 ∁  < 22 ∁ 
< . . . in which there are infinitely many cardinal numbers. It is evident 

that there is only one kind of countable infinity, symbolized by 𝔞 or ℵ0, and beyond this there is an infinite 

hierarchy of uncountable infinities which are all distinct from one another.                                                                                                                                                                    

Note: We know that if a and b are real numbers such that a ≤ b and b ≤ a then a = b. According to Shroeder-

Bernstein theorem, this property also holds in case of transfinite cardinal numbers and also for cardinal 

numbers. Hence a set of cardinal numbers is linearly ordered (a chain).                                                     

Following theorem given in one seminar by Cantor as an open problem, and 19 year old Felix Bernstein has 

settled it, so it referred also as the Cantor–Bernstein theorem.                                                                                                                                                       

Shroeder-Bernstein Theorem:[2, 3,5] If A and B are sets such that |A| ≤ |B| and |B| ≤ |A| then                      |A| 

=   |B|. In other words, if α, β are cardinal numbers such that α ≤ β and β ≤ α then α = β.                                                             

[„≤‟ is a partial order relation on a set of cardinals.]                                                                                                              

This can be stated in equivalent form as follows: Let X, Y, X1 be sets such that X ⊇ Y ⊇ X1 and X ∼ X1 then X 

∼ Y.                                                                                                                                                                                                            

[X ⊇ Y ⊇ X1 and |Y| ≤ |X| and |X1| ≤ |Y| and X ∼ X1, then hypothesis is |Y| ≤ |X| and |X| ≤ |Y|].                                                                                                                                                                                                    

Law of Trichotomy:  If α, β are any two cardinal numbers, then either α < β or α = β or α > β.                                                                                                                                                                      

Cantor’s Theorem: (i) Let X be a set and |X| = α. Then |P(X)| = 2
α
, i. e. |P(X)|= 2

|X|
.                                                           

Power set of X is P(X) = {S : S  X} also denoted by 2
X
.                                                                                                                                             

(ii) Cantor‟s theorem also stated as “α < 2
α 

” for any cardinal number α.                                                                    

Result. [2] For 𝔞 = |N|, ∁ = |[0, 1]| = |R|, we can prove:                                                                                            

(i) 𝔞∁ = ∁      (ii) 1 + ∁ = ∁      (iii) 1 + 𝔞 = 1 𝔞 = 𝔞 = 𝔞𝔞      (iv) 𝔞 + ∁ = ∁      (v) ∁ + ∁ = ∁                                                  

(vi) 𝔞 + β = β for any infinite cardinal number β. (vii) ∁ = 2𝔞 .(viii) ∁∁ = ∁.                                                                  

Maximal and minimal elements: Let (P, ≤) be a poset. An element b ∈ P is called a maximal element of P iff 

there is no element in P which strictly dominates b,                                                                                                          

i. e. for x ∈ P with x ≥ b  ⇒  x = b, i. e. b ≤ x  ⇒  x = b. An element a ∈ P is called minimal element of P iff there 

is no element in P which is strictly preceeds „a‟ i. e. for x ∈ P, x ≤ a  ⇒  x = a.                                                                                                                                                   

Zorn’s Lemma: Let X be a nonempty poset such that every totally ordered subset of X has an upper bound in 

X. Then X contains a maximal element.                                                                                                                   

By  a partial odering on a family ℱ of sets, means (ℱ, ) is a poset. A chain of sets (nest / tower) is a family ℬ 

of sets such that A  B or B  A  A, B ∈ ℬ.                                                                                                     M 

∈ ℱ is a maximal element means M is not proper subset of any member of ℱ.       

 

II. Main Theorem 
2.1 Theorem. If α is any infinite cardinal, then α + α = αα = α and for any cardinal number ,                                          

0 <  ≤ α, α +  = α = α.                                                                                                                                                                 

Proof: (i) Let A be any set with infinite cardinal number α, i. e. α = |A|.Then                                                          

|Ax{0}| = |Ax{1}| = α, so |Ax{0, 1}| = |(Ax{0})(Ax{1})| = |Ax{0}|+|Ax{1}| = α  +  α,                                      

(∵ (Ax{0})∩(Ax{1}) = 𝜙)                                                                                                                                                              

Let ℱ = {(B, f) : B  A and f: B ⟶ Bx{0, 1} is a bijection}. Now A is an infinite set, so A has a countable 
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subset C, say and we have C ~ C x{0, 1} (∵ C x{0, 1} is countable).                                                                                 

Thus ∃ a bijection g: C ⟶ C x{0, 1} and so (C, g) ∈ ℱ.  ⇒  ℱ is a nonempty set (family).                              

Then ≤ defined for (X, f), (Y, g) ∈ ℱ by (X, f) ≤ (Y, g) iff g is an extension of f on Y,                                                 

i. e. f(x) = g(x)  x ∈ X  Y. Clearly ≤ is a partial order relation on ℱ, i. e. (ℱ, ≤) is a poset.                                                                                                                                                              

Consider any chain 𝒞 = {(Bj, fj) ∈ ℱ | j ∈ ∆} in ℱ, where ∆ is an ordered index set such that                       (Bi, fi) 

≤ (Bj, fj) if i ≤ j in ∆. Let D =   Bj∈∆ j. Define h for any x ∈ D by                                                                        

h(x) = fj(x) if x ∈ Bj for some j ∈ ∆ and fj(x) ∈ Bj x{0, 1}   Bj∈∆ j x{0, 1} = Dx{0, 1}.                                               

As 𝒞 is a chain, so h: D ⟶ Dx{0, 1} is a well defined function.                                                                          

Function h is one – one, since x ≠ y in D  ⇒  x ≠ y in some Bj, j ∈ ∆  ⇒  fj(x) ≠ fj(y), i. e. h(x) ≠ h(y).                

To show that h is onto: For any (x, n) ∈ Dx{0, 1}, we have x ∈ D, so x ∈ Bj for some j ∈ ∆ and                                     

n ∈ {0, 1}, i. e. (x, n) ∈ Bjx{0, 1} = codomain of fj  ⇒  x‟ ∈ Bj such that fj(x‟) = (x, n), i. e. x‟ ∈ D                                    

and h(x‟) = fj(x‟) = (x, n). So h is onto.                                                                                                                              

Thus h: D ⟶ Dx{0, 1} is a one – one onto function and D  A,                                                                           

showing (D, h) ∈ ℱand (B, f) ≤ (D, h)  (B, f) ∈ 𝒞.                                                                                                       

 Every chain 𝒞 in ℱ has an upper bound in ℱ. By Zorn‟s lemma ℱ has a maximal element (E, k) with k: E ⟶ 

Ex{0, 1} is a bijection and E  A. Suppose the subset A – E of A is not finite.                                                     

Then A – E has an infinite countable set G and G ~ Gx{0, 1}, since Gx{0, 1} is also an infinite countable set. 

So there is a bijection, say q: G ⟶ Gx{0, 1}.                                                                                                                        

As A∩G = 𝜙, the function p: EG ⟶ (EG)x{0, 1} defined by p(x) =  
k x , if x ∈ E

q x , if x ∈ G,
  is a bijection.                                   

This proves (E, k) ≤ (EG, p) ∈ ℱ, E ⊊ EG, a contradiction to (E, k) as a maximal element in ℱ.                

So supposition „set A – E is not finite‟ is wrong. Hence A – E is a finite subset of A where E  is an infinite 

subset of A, and hence                                                                                                                                                                  

α = |A| = |E|= |Ex{0, 1}| = |(Ex{0})(Ex{1})| = |Ex{0}| + |Ex{1}| = α + α.                                                                

(ii)  Let cardinal number  ≤ α. Then we have α ≤ α +  ≤ α + α = α  ⇒  α +  = α.                                            

(iii) Let A be any set with infinite cardinal number α, i. e. α = |A|. Then |AxA| = |A|.|A| = αα = α
2
.                    

Let ℱ = {(B, f) : B  A and f: B ⟶ BxB is a bijection}. Now A is an infinite set, so A has a countable subset C, 

say and we have C ~ CxC (∵ CxC is countable). Thus ∃ a bijection g: C ⟶ CxC and so                                              

(C, g) ∈ ℱ.  ⇒  ℱ is a nonempty set (family). Then ≤ defined for (X, f), (Y, g) ∈ ℱ by                                                               

(X, f) ≤ (Y, g) iff g is an extension of f on Y,  i. e. f(x) = g(x)  x ∈ X  Y.                                                                                                       

Clearly ≤ is a partial order relation on ℱ, i. e. (ℱ, ≤) is a poset.                                                                       

Consider any chain 𝒞 = {(Bj, fj) ∈ ℱ | j ∈ ∆} in ℱ, where ∆ is an ordered index set such that                        

(Bi, fi) ≤ (Bj, fj) if i ≤ j in ∆. Let D =   Bj∈∆ j. Define h for any x ∈ D by                                                                        

h(x) = fj(x) if x ∈ Bj for some j ∈ ∆ and fj(x) ∈ Bjx{0, 1}   Bj∈∆ jxBj = DxD, since {BjxBj}j∈∆ is an increasing 

sequence of sets and  Bj∈∆ j = D.                                                                                                                                              

As 𝒞 is a chain, so h: D ⟶ DxD is a well defined function.                                                                          

Function h is one – one, since x ≠ y in D  ⇒  x ≠ y in some Bj, j ∈ ∆  ⇒  fj(x) ≠ fj(y), i. e. h(x) ≠ h(y).                

To show that h is onto: For any (x, y) ∈ DxD,  we have x, y ∈ D, so x ∈ Bi, y ∈ Bj for some i, j ∈ ∆ and                           

Bi and Bj are comparable sets. Consider Bi  Bj, so x, y ∈ Bj and fj(z) = (x, y) for some z ∈ Bj,                                       

since fj: Bj ⟶ BjxBj is an onto function. Then z ∈ D with h(z) = (x, y) and hence h is onto.                                           

Thus h: D ⟶ DxD is a bijection and D  A, showing (D, h) ∈ ℱand (B, f) ≤ (D, h)  (B, f) ∈ 𝒞.                                                                                                       

 Every chain 𝒞 in ℱ has an upper bound in ℱ. By Zorn‟s lemma ℱ has a maximal element (E, k)                        

with k: E ⟶ ExE is a bijection and E  A and so |E| = |ExE| = |E||E|.                                                                 

We now prove cardinality of A – E is |A – E| < |E| = , say (and  =  = 
2
).                                                                                            

Suppose |A – E| ≥ . Then ∃ a subset G of A – E of cardinality .                                                                       

Now A∩G = 𝜙 and |(ExG)(GxE)(GxG)| = |ExG| + |GxE| + |GxG| = 
2
 + 

2
 + 

2
 =  +  +  =  by (i),                     

i. e. G ~ (ExG)(GxE)(GxG), so ∃ a bijection, say q: G ⟶ (ExG)(GxE)(GxG) and                                      

(EG)x(EG) = (ExE) (ExG)(GxE)(GxG). As A∩G = 𝜙, the sets ExG, GxE, GxG are pairwise disjoint 

and the function p: EG ⟶ (EG)x(EG) defined by p(x) =  
k x , if x ∈ E

q x , if x ∈ G,
  is a bijection.                                                                                             

This proves (E, k) ≤ (EG, p) ∈ ℱ, E ⊊ EG, a contradiction to (E, k) as a maximal element in ℱ.                                                                                                                                                                    

So supposition „|A – E| ≥ ‟ is wrong. Hence |A – E| < .                                                                                        

Now  = |E| ≤ α =|A| = |E(A – E)| = |E| + |A – E| ≤  +  = ,                                                                                      

since E  A, |A – E| ≤ |E| = .                                                                                                                                                        

⇒  α = , and as  = 
2
 = , we   have αα = α for any transfinite cardinal number.                                                 

Here it is followed that for any infinite set A, we have A and AxA have same cardinality.                                                                                                                                                         

(iv) Let α be a cardinality of an infinite set and  is a cardinal number such that                                                          
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1 ≤  ≤ α. Then α = α1 ≤ α ≤ αα = α  ⇒ α = α.                                                                                                                         

2.2 Corollary. If α,  are nonzero  cardinal numbers and one of them is transfinite then                                                    

α +  = α = max {α, } and 1 ℵ0 = n ℵ0 =  ℵ0 ℵ0 =  ℵ0 and 1∁ = n∁ =  ℵ0∁ =  ∁∁ =  ∁.                                                                                                                                                        

Proof: Any two cardinal numbers are comparable, so we assume 1 ≤  ≤ α, and hence max {α , } = α, and by 

theorem 2.1 α +  = α = α = max {α, }.                                                                                                               

Then 1 ≤ n <  ℵ0 < ∁ for any n ∈ N, gives 1 ℵ0 = n ℵ0 =  ℵ0 ℵ0 =  ℵ0 and 1∁ = n∁ =  ℵ0∁ =  ∁∁ =  ∁.                                                                                                                                                  

Note that ℵ0 + ℵ0 + ℵ0 + . . . = ℵ0, ∁ + ∁ + ∁ + . . . = ∁ and for any cardinal number α;                                                

we have  α
1
 = α, 1

α
 = 1.                                                                                                                                                                 

2.3 Corollary. Let α,  be cardinal numbers with n ∈ N, 2 ≤ n <  < α and α is transfinite.                                

Then α

 = α

n
 = α

2
 = α,  α

α
 = 

α
 = n

α
 = 2

α
 and α


 < 

α
.                                                                                                             

Proof: Let α = ℵ0, 2 ≤ n ≤ α. Now 2 < 3 < 4 < 5 < 6 < 7 < 8 < . . .                                                                                             

⇒ ∁ = 2ℵ0 ≤ 3ℵ0 ≤ 22ℵ0 ≤ 5ℵ0 ≤ 6ℵ0 ≤ 7ℵ0 ≤ 23ℵ0 ≤ . . . and nℵ0 = ℵ0  n ∈ N, 2ℵ0  = ∁.                                  

Hence n
α
 = 2

α
 = ∁  integer n ≥ 2, where α = ℵ0. Also 2 < ℵ0 < ∁                                                                                                  

⇒  ∁ = 2ℵ0  ≤  ℵ0
ℵ0   ≤ ∁ℵ0  = 2ℵ0ℵ0  = 2ℵ0  = ∁. Thus ℵ0

ℵ0  = ∁.                                                                                           

Next consider α >  ℵ0, i. e. α ≥  ∁ and 2 ≤ n ≤  < α.                                                                                                                    

Then ∃ infinite cardinal  such that, ℵ0 ≤  < α,  ≤  and α = 2

, 2 = n =  = , α = α.                                               

Hence α

 = 2


 = 2


 = α, α

n
 = 2

n
 = 2


 = α = α

2
, by theorem 2.1. Now α

α
 = 2

α
 = 2

α
. As 2 ≤ n <  < α                                

⇒  2
α
 ≤ n

α
 ≤ 

α
 ≤ α

α
 = 2

α
. Hence the results α

α
 = 

α
 = n

α
 = 2

α
 and α


 < 

α
.                                                                  

Note that from above corollary: ℵ0ℵ0ℵ0. . . = ∁ = 2ℵ0 , ∁∁∁. . . = 2∁  

 

III.  Conclusions 

                                                                                                                                                                          

1. On a set of transfinite cardinals „addition‟ and „multiplication‟ are commutative, associative, hold laws of 

indices, and multiplication is distributive over addition.                                                                                    

2. Transfinite cardinals do not satisfy cancellation laws for addition and multiplication,    since ℵ0 + ℵ0 = ℵ0ℵ0 = 

1ℵ0 = 1 + ℵ0, 0 ≠ ℵ0 ≠ 1.                                                                                                                                           

For the positive integers a, b, c we have b < c ⇒ ab < ac, b
a
 < c

a
, but these strict inequalities do not hold for 

transfinite numbers, since ℵ0 < ∁ but ℵ0∁ = ∁∁ = ∁, ℵ0
∁ = ∁∁ = 2∁.                                                                     

 For natural numbers 2, 3, 4 we have 2 < 3 < 4 and 2
3
 < 3

2
, 2

4
 = 4

2
; but such results do not hold for transfinite 

numbers, since we have (by corollary 2.3) for any transfinite numbers α,  with                                         

 < α  ⇒  2
α
 = 

α
 > α


 = α.                                                                                                                                                                  

3. For transfinite number α and n ∈ N, we have  𝑎𝑛
𝑖=1  =  𝑎𝑛

𝑘=1  = a and                                                                         

α + α + α + . . . = α, ααα . . . = 2
α
 > α, which is not true in case of any positive number,                                               

since for any n ∈ N; n + n + n + . . . = ℵ0 > n and n.n.n . . . =  
1 < 21 , if n = 1
∁ >  2n , if n ≥ 2.

                                                                  

4. |N| = ℵ0 is called the countable infinity and any α > ℵ0 is called an uncountable infinity.                                   

For example ∁ = |R| = |P(N)| is an uncountable infinity.                                                                                                       

By Cantor‟s theorem ℵ0 = |P(N)| < ∁ = |P(P(N))| < |P(P(R))| < . . . , so there are infinitely many distinct 

infinities and also there are infinitely many distinct uncountable infinities.                                                        

 5. Equation  ∁ + α = ∁ has solutions of any finite cardinal number n, ℵ0 and ∁.                                                

Equation  ∁α = ∁ has solutions of finite positive cardinal number n, ℵ0 and ∁. These linear equations over 

cardinal numbers in α have infinitely many solutions in the set of cardinals.                                                

ℵ0 + α = ∁ and ℵ0α = ∁ both have unique solution α = ∁ and the equation ∁α = ℵ0  has no solution in the set of 

cardinals. ∁𝛼= ∁ has solutions as finite positive cardinal numbers and ℵ0.  
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