On Quasi Generalized Topological Simple Groups

*C. Selvi, R. Selvi

Research scholar, Department of mathematics, Sriparasakthi college for women, India. Assistant Professor, Department of mathematics, Sriparasakthi college for women, India. Corresponding Author: C. Selvi, R. Selvi

Abstract: In this paper we introduce the concept of quasi -topological simple group. Also some basic properties, theorems and examples of a quasi -topological simple groups are investigated. Moreover we studied the important result, If the mapping between two quasi -topological simple groups is -continous at the identity element, then f *is* G -continous.

Keywords: Quasi topological group, -open set, -continous, Quasi -topological simple group.

--- Date of Submission: 16-08-2017 Date of acceptance: 05-09-2017 ---

I. Introduction

Csaszar[6], Introduced the notion of generalized neighbourhood system and generalized topological space. Also Csaszar[6], Investigated the generalized continous mappings. In this paper we introduce the new concept of quasi G -topological simple group. Quasi G -topological simple group have both topological and algebraic structures such that the translation mappings and the inversion mapping are G -continous with respect to the generalized topology. Also some basic results are studied and discussed.

II. Preliminaries

Definition: 2.1[3] Let X be any set and let $G \subseteq P(X)$ be a subfamily of power set of X. Then G is called a generalized topology if $\phi \in \mathcal{G}$ and for any index set $I, \bigcup_{i \in I} O_i \in \mathcal{G}, O_i \in \mathcal{G}$, $i \in I$.

Definition: 2.2 [3] The elements of G **are called** G **-open sets. Similarly, generalized closed set (or)** G **-closed, is** defined as complement of a G -open set.

Definition: 2.3 [3] Let X and Y be two G-topological space. A mapping $f: X \to Y$ is called a G-continous on X if for any G-open set O in Y, $f^{-1}(0)$ is G-open in X.

Definition : 2.4 [3] The bijective mapping f is called a G-homeomorphism from X to Y if both f and f^{-1} are G -continous. If there is a G -homeomorphism between X and Y , then they are said to be G -homeomorphic. It is denoted by $X \cong_G Y$.

Definition : 2.5 [3] Collection of all \mathcal{G} -interior points of $A \subset X$ is called \mathcal{G} -interior of A. It denoted by $Int_G(A)$. By definiton it obvious that $Int_G(A) \subset A$.

Note: 2.6 [3] *(i)*. $\mathcal{G}\text{-}$ interior of A , $Int_G(A)$ is equal to union of all $\mathcal{G}\text{-}$ open sets contained in A .

(ii). $\mathcal{G}\text{-closure of }A$ as intersection of all $\mathcal{G}\text{-closed sets containing }A$. It is denoted by $\mathcal{C}l_{\mathcal{G}}(A)$.

Definition: 2.7 [3] Let $(G, *)$ is a group and given $x \in G$, $L_x : G \to G$ defined by $L_x(y) = x * y$ and $R_x : G \to G$ G defined by $R_x(y) = y * x$, denote left and right translation by x, respectively.

Definition: 2.8 [1] A quasi topological group G , is a group which is also a topological space if the following conditions are satisfied,

(i). Left translation $L_x: G \to G$, $x \in G$ and right translation $R_x: G \to G$, $x \in G$ are continous and

(ii). The inverse mapping $i: G \to G$ defined by $i(x) = x^{-1}, x \in G$ is continuous.

Definition: 2.9 [20] A group G is called a simple group if it has no nontrivial normal subgroup of G.

III. Quasi Generalized Topological Simple Groups

Definition: 3.1 A quasi G-topological simple group G , is a simple group which is also a G -topological space if the following conditions are satisfied,

(i). Left translation $L_x: G \to G$, $x \in G$ and Right translation $R_x: G \to G$, $x \in G$ are G -continous and

(ii). The inverse mapping $i: G \to G$ defined by $i(x) = x^{-1}, x \in G$ is G -continous.

Example: 3.2 Any group of prime order with indiscrete or discrete G -topology is a quasi G -topological simple group.

Example: 3.3 Let $G = \begin{cases} 0 & 0 \\ 0 & 0 \end{cases}$ $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ be a trivial simple group under addition and we define a generalized topology on G by $\mathcal{G} = \{ \phi, \{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \}$ $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. Clearly $(G, +, G)$ quasi G -topological simple group.

Example: 3.4 $G = \{1, w, w^2\}$, where $w^3 = 1$, is a simple group under multiplication. Now we define a generalized on G by $\mathcal{G} = \{\phi, G, \{w\}\}\.$ Then the inverse mapping i is G-continous at the points 1, w^2 and not Gcontinous at the point w. In right translation mapping, R_1 is G -continous at each point of G, R_w is G -continous at the points w, w^2 and not G-continous at the point 1 and R_{w^2} is G-continous at the point 1, w and not G-continous at the point w^2 . Similarly we can prove left translation(L_x).

Theorem: 3.5 Let $(G, *, G)$ be a quasi G-topological simple group and β_e be the collection of all G-open neighbourhood at identity e of G . Then

(i). For every $U \in \beta_e$, there is an element $V \in \beta_e$ such that $V^{-1} \subseteq U$.

(*ii*). For every $U \in \beta_e$, there is an element $V \in \beta_e$ such that $V * x \subseteq U$ and $x * V \subseteq U$, for each $x \in U$.

Proof: (*i*). Since $(G, *, G)$ is a quasi G-topological simple group. Therefore, for every $U \in \beta_e$, there exists $V \in \beta_e$ such that $i(V) = V^{-1} \subseteq U$, because the inverse mapping $i: G \to G$ is \mathcal{G} -continous.

(ii). Since $(G, *, G)$ is a quasi G-topological simple group. Thus for each G-open set U containing x, there exists $V \in \beta_e$ such that $R_x(V) = V * x \subseteq U$. Similarly, $L_x(V) = x * V \subseteq U$.

Theorem: 3.6 Let G be a quasi G -topological simple group and g be any element of G . Then the right translation(R_q) and left translation(L_q) of G by g is a G-homeomorphism of the space G onto itself.

Proof: First we prove that R_g is a bijection. Assume that $y \in G$, then the element yg^{-1} maps to y. Therefore R_g is surjective.

Assume that $R_g(x) = R_g(y)$.

 \Rightarrow $xg = yg$.

 \Rightarrow x = y. Hence R_g is 1-1. Since G is a quasi G-topological simple group, R_g is G-continous.

Consider R_g^{-1} which maps xg to x, this is equivalent to the map from x to xg^{-1} . Therefore $R_g^{-1}(x)$ = $R_{g^{-1}}(x)$. Since $R_{g^{-1}}(x)$ is G-continous, $R_{g}^{-1}(x)$ is G-continous. Similarly we will prove that the left translation (L_a) . Hence the theorem.

Theorem: 3.7 Let G be a quasi G-topological simple group and U be any G-open set in G. Then (*i*). $a * U$ and $U * a$ is G -open in G for all $a \in G$.

(ii). For any subset A of G, the sets $U * A$ and $A * U$ are \mathcal{G} -open in G.

Proof: Let $x \in U * a$. We want to show that x is a G-interior point of $U * a$. Let $x = u * a$ for some $u \in U =$ $U * a * a^{-1}$. Then $u = x * a^{-1}$. We know that $R_{a^{-1}}: G \to G$ is \mathcal{G} -continous. Then for every \mathcal{G} -open set containing $R_{a^{-1}}(x) = x * a^{-1} = u$, there exists a G-open set M_x containing x such that $R_{a^{-1}}(M_x) \subseteq U$. \Rightarrow $M_x * a^{-1} \subseteq U$.

 \Rightarrow $M_r \subseteq U * a$.

 \Rightarrow x is a G-interior point of U $* a$. Therefore U $* a$ is G-open in G. Similarly we can prove that $a * U$ is Gopen G .

(ii). By above result, $U * a$ is G -open, for all $a \in G$. Then $U * A = \bigcup_{a \in A} U * a$ also G -open in G. Similarly we can prove that $A * U$ is G -open in G .

Theorem: 3.8 Suppose that a subgroup *H* of a quasi \mathcal{G} -topological simple group \mathcal{G} contains a non-empty \mathcal{G} open subset of G. Then H is $\mathcal G$ -open in $\mathcal G$.

Proof: Let U be a non-empty G-open subset of G with $U \subset H$. For every $g \in H$, the set $L_g(U) = U * g$ is Gopen in G, then $H = \bigcup_{g \in H} U * g$ is G-open in G.

Theorem: 3.9 Every quasi G -topological simple group G has G -open neighbourhood at the identity element e consisting of symmetric G -neighbourhoods.

Proof: For an arbitrary G-open neighbourhood U of the identity e, if $V = U \cap U^{-1}$, then $V = V^{-1}$, the set V is an G-open neighbourhood of e , which implies that V is a symmetric G - neighbourhood and $V \subset U$.

Theorem: 3.10 Let $f: G \to H$ be a homomorphism of quasi G-topological simple groups.If f is G-continous at the neutral element e_G of G, then f is G-continuous.

Proof: Let $x \in G$ be arbitrary and suppose that W is an G -open neighbourhood of $y = f(x)$ in H. Since the left translation L_y in H is a G-continous mapping, there exists an G-open neighbourhood V of the neutral element e_H in H such that $L_y(V) = yV \subseteq W$. Since f is G-continous at e_G of G, then $f(U) \subset V$, for some G-open neighbourhood U of e_G in G. Since $L_x: G \to G$ is G-continous, then xU is an G-open neighbourhood of x in G. Now we have $f(xU) = f(x)f(U)$

$$
= y f(U)
$$

$$
\subseteq yV
$$

 \subseteq *W*. Hence *f* is *G*-continous at the point $x \in G$.

Theorem: 3.11 Suppose that G, H and K are quasi G-topological simple groups and that $\phi: G \to H$ and $\psi:$ $G \to K$ are homomorphism Such that $\psi(G) = K$ and $Ker \psi \subset Ker \phi$. Then there exists homomorphism $f: K \to H$ such that $\phi = f \circ \psi$. In addition, for each G-neighbourhood U of the identity element e_H in H, there exists a G-neighbouhood V of the identity element e_k in K such that $\psi^{-1}(V) \subset \phi^{-1}(U)$, then f is G-continous. **Proof:** Algebraic part of the theorem is well known. Suppose U is a \mathcal{G} -neighbourhood of e_H in H. By

assumption, there exists a G-neighbouhood V of the identity element e_k in K such that , $W = \psi^{-1}(V)$ $\phi^{-1}(U)$.

 $\Rightarrow \phi(W) = \varphi(\psi^{-1}(V)) \subset \phi(\phi^{-1}(U))$

 $\Rightarrow \phi(W) = f(V) \subset U$. Hence f is G-continous at the identity element of K. Therefore by above theorem, f is -continous.

Corollary: 3.12 Let $\phi: G \to H$ and $\psi: G \to K$ be G-continous homomorphism of a quasi G-topological simple groups G, H and K Such that $\psi(G) = K$ and $Ker \psi \subset Ker \phi$. If the homomorphism ψ is G-open, then there exists a G-continous homomorhism, $f: K \to H$ such that $\phi = f \circ \psi$.

Proof: The existence of a homomorphism $f: K \to H$ such that $\phi = f \circ \psi$. Take an arbitrary \mathcal{G} -open set V in H . Then $f^{-1}(V) = \psi(\phi^{-1}(V))$. Since ϕ is G-continous and ψ is an G-open map, $f^{-1}(V)$ is G-open in K. Therefore f is G -continous.

Theorem: 3.13 Let G be a quasi G-topological simple group and H is a normal subgroup of G. Then \overline{H} also a normal subgroup of *.*

Proof: Now we have to prove that $g\overline{H}g^{-1} \in \overline{H} \ \forall \ g \in G$. Since H is a normal subgroup of G, $gHg^{-1} \in H \ \forall g \in G$.

Now $\overline{gHg^{-1}}$ $\subset \overline{H}$ $\forall g \in G$. \Rightarrow $g\overline{H}g^{-1}$ \subset \overline{H} \forall $g \in$ G .

 \Rightarrow $g\overline{H}g^{-1} \in \overline{H}$, $\forall g \in G$. Therefore \overline{H} is a normal subgroup of G.

Corrollary: 3.14 Let G be a quasi G-topological simple group and $Z(G)$ be the centre of G. Then $\overline{Z(G)}$ is a normal subgroup of *.*

Proof: proof follows from the above theorem.

Corollary: 3.15 Let G and H be a quasi G-topological simple groups. If $f: G \to H$ is a homomorphism mapping , then \overline{kerf} is a normal subgroup of G.

Theorem: 3.16 Let G and H be quasi G-topological simple groups with neutral elements e_G and e_H ,

respectively, and let p be a G -continous homomorphism of G onto H such that, for some non-empty subset U of G, the set $p(U)$ is G -open in H and the restriction of p to U is an G -open mapping of U onto $p(U)$. Then the homomorphism p is \mathcal{G} -open.

Proof: It suffices to show that $x \in G$, where W is an G-open neighbourhood of x in G, then $p(W)$ is a G-open neighbourhood of $p(x)$ in H. Fix a point y in U, and let L be the left translation of G by yx^{-1} . Then L is a Ghomeomorphism of G onto itself such that,

$$
L_{yx^{-1}}(x) = yx^{-1}
$$

 $= y.$ So $V = U \cap L(W)$ is an G-open neighbourhood of y in U. Then $p(V)$ is G-open subset of H. consider the left translation h of H by the inverse to $p(yx^{-1})$.

Now clearly, $(h \circ p \circ l) = h(p(l(x)))$

$$
= h(p(y))
$$

= $p(xy^{-1})p(y)$
= $p(xy^{-1}y)$
= $p(x)$.

Hence $h(p(l(W))) = p(W)$. Clearly h is a G-homeomorphism of H onto itself. Since $p(V)$ is G-open in H, $h(p(V))$ is also G-open in H. Therefore $p(W)$ contains the G-open neighbourhood $h(p(V))$ of $p(x)$ in H. Hence $p(W)$ is a G-open neighbourhood of $p(x)$ in H.

Definition: 3.17 Let H be a subgroup of quasi G -topological simple group G . Then H is called neutral in G if every G-neighbourhood U of the identity e_G in G, there exists a G-neighbourhood V of e_G such that $VH \subset HU$. **Theorem: 3.18** Let *H* be a subgroup of quasi G -topological simple group G . Suppose that, for every G -open neighbourhood U of the identity e_G in G, there exists an G-open neighbourhood V of e_G in G such that $xVx^{-1} \subset$ *U* whenever $x \in G$. Then *H* is neutral in *G*.

Proof: Given a \mathcal{G} -neighbourhood U of e_G in \mathcal{G} . Take an \mathcal{G} -open neighbourhood V of e_G satisfying, $xVx^{-1} \subset U, \forall x \in G$

 $\Rightarrow xV \ \subset Ux, \forall \; x \in G$

 $\Rightarrow HV \subset UH, \forall x \in G$. Then H is neutral in G.

References

- [1]. A.V.Arhangel'skii, M.Tkachenko, Topological Groups and Related Structures, At- lantis press/world Scientific, Amsterdampairs, 2008.
- [2]. C.Selvi, R.Selvi, On Generalized Topological Simple Groups, Ijirset Vol.6, Issue 7, July (2017).
- [3]. Muard Hussain, Moiz Ud Din Khan, Cenap Ozel, On generalized topological groups, Filomat 27:4(2013),567-575
- Dylan spivak, Introduction to topological groups, Math(4301).
- [5]. J. R. Munkres, Topology, a first course, Prentice-Hall, Inc., Englewood cliffs, N.J.,1975.
- [6]. .A.Csaszar, generalized topology, generalized continuity, Acta Math. Hungar. 96(2002) 351-357.
- [7]. A.Csaszar, γ-connected sets, Acta Math..Hungar.101 (2003) 273-279.
- [8]. A.Csaszar, A separarion axioms for generalized topologies, Acta Math.Hungar.104 (2004) 63-69.
- [9]. A.Csaszar, Product of generalized topologies, Acta Math.Hungar.123 (2009) 127-132.
- [10]. W.K.Min, Weak continuity on generalized topological spaces, Acta Math.Hungar. 124 (2009)73-81.
- L.E.De Arruda Saraiva, Generalized quotient topologies, Acta Math.Hungar. 132 (2011) 168-173.
- [12]. R.Shen, Remarks on products of generalized topologies, Acta Math.Hungar.124 (2009)363-369.
- [13]. Volker Runde, A Taste of topology, Springer(2008).
[14]. Taqdir Hussain, Introduction to Topological groups, Sa
- Taqdir Hussain, Introduction to Topological groups, Saundres(1966).
- [15]. David Dummit and Richard Foote, Abstract Algebra(3rd edition), Wiley(2003).
- [16]. Morris Kline, Mathematical Thought from Ancient to modern times, Oxford University Press(1972).
- [17]. Muhammad Siddique Bosan, Moiz Ud Din Khan and Ljubisa D.R. Kocinac, On s-Topological Groups, Mathematica Moravica,Vol. 18-2(2014),35-44 .
-
- [18]. Pierre Ramond, Group theory: A physicists survey, Cambridge(2010).
[19]. Robert Bartle, The Elements of Integration and Lebesgue Measure, Wil
- [19]. Robert Bartle, The Elements of Integration and Lebesgue Measure, Wiley(1995).
[20]. Joseph A. Gallian, Contemporary Abstract Algebra, Narosa(fourth edition). [20]. Joseph A. Gallian, Contemporary Abstract Algebra, Narosa(fourth edition).

C. Selvi. "On Quasi Generalized Topological Simple Groups." IOSR Journal of Mathematics (IOSR-JM), vol. 13, no. 4, 2017, pp. 57–60.